1
|
Hashemi M, Rezaei M, Rezaeiaghdam H, Jamali B, Koohpar ZK, Tanha M, Bizhanpour A, Asadi S, Jafari AM, Khosroshahi EM, Eslami M, Salimimoghadam S, Nabavi N, Rashidi M, Fattah E, Taheriazam A, Entezari M. Highlighting function of Wnt signalling in urological cancers: Molecular interactions, therapeutic strategies, and (nano)strategies. Transl Oncol 2024; 50:102145. [PMID: 39357465 PMCID: PMC11474201 DOI: 10.1016/j.tranon.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a complex, multistep process characterized by abnormal cell growth and metastasis as well as the capacity of the tumor cells in therapy resistance development. The urological system is particularly susceptible to a group of malignancies known as urological cancers, where an accumulation of genetic alterations drives carcinogenesis. In various human cancers, Wnt singalling is dysregulated; following nuclear transfer of β-catenin, it promotes tumor progression and affects genes expression. Elevated levels of Wnt have been documented in urological cancers, where its overexpression enhances growth and metastasis. Additionally, increased Wnt singalling contributes to chemoresistance in urological cancers, leading to reduced sensitivity to chemotherapy agents like cisplatin, doxorubicin, and paclitaxel. Wnt upregulation can change radiotherapy response of urological cancers. The regulation of Wnt involves various molecular pathways, including Akt, miRNAs, lncRNAs, and circRNAs, all of which play roles in carcinogenesis. Targeting and silencing Wnt or its associated pathways can mitigate tumorigenesis in urological cancers. Anti-cancer compounds such as curcumin and thymoquinone have shown efficacy in suppressing tumorigenesis through the downregulation of Wnt singalling. Notably, nanoparticles have proven effective in treating urological cancers, with several studies in prostate cancer (PCa) using nanoparticles to downregulate Wnt and suppress tumor growth. Future research should focus on developing small molecules that inhibit Wnt singalling to further suppress tumorigenesis and advance the treatment of urological cancers. Moreover, Wnt can be used as reliable biomarker for the diagnosis and prognosis of urological cancers.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Hadi Rezaeiaghdam
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Zeinab Khazaei Koohpar
- Department Of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahsa Tanha
- Department Of Biological Sciences, University Of Alabama, Tuscaloosa, Al, United States
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Zhang Z, Zhang D, Su K, Wu D, Hu Q, Jin T, Ye T, Zhang R. NTSR1 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma through the Wnt/β-catenin pathway. Mutat Res 2024; 829:111877. [PMID: 39180939 DOI: 10.1016/j.mrfmmm.2024.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) patients are implicated in poor prognoses and increased mortality rates. Metastasis, as a leading cause of LUAD-related deaths, requires further investigation. Highly metastatic cancer cells often exhibit extensive characteristics of epithelial-mesenchymal transition (EMT). This study attempted to identify novel targets associated with LUAD metastasis and validate their specific molecular mechanisms. METHODS Bioinformatics was conducted to determine NTSR1 expression in LUAD and the enriched pathways. Immunohistochemical analysis was used to assess NTSR1 expression in LUAD tissue. qRT-PCR examined expressions of NTSR1 and Wnt/β-Catenin pathway-related genes in LUAD cells. Transwell assayed cell migration and invasion. Cell adhesion experiments were conducted to evaluate cell adhesion capacity. Western blot analysis was employed to examine expression of EMT, Wnt/β-Catenin pathway, and cell adhesion markers. RESULTS NTSR1 was upregulated in LUAD tissues and cells, and enriched in EMT pathway. Knockdown of NTSR1 reduced migration, invasion, and adhesion abilities in LUAD cells, and inhibited EMT progression and Wnt/β-Catenin pathway. Rescue experiments demonstrated that β-Catenin activator SKL2001 reversed repressive influence of NTSR1 knockdown on LUAD cell malignant phenotypes and EMT progression. CONCLUSION The data obtained in this study suggested that NTSR1 stimulated EMT and metastasis in LUAD via Wnt/β-Catenin pathway. This finding may provide options for overcoming LUAD metastasis.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China.
| | - Dongliang Zhang
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Kai Su
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Dongqiang Wu
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Qiqi Hu
- Human Resource Management Department, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Tianying Jin
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Tingting Ye
- Medical Insurance Information Section, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Rongrong Zhang
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
3
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci 2024; 81:79. [PMID: 38334836 PMCID: PMC10857981 DOI: 10.1007/s00018-023-05099-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3β that destructs β-catenin, while ligand-receptor interaction impairs GSK-3β function to increase β-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxin Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA.
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Paul B, Merta H, Ugrankar-Banerjee R, Hensley M, Tran S, Dias do Vale G, McDonald JG, Farber SA, Henne WM. Paraoxonase-like APMAP maintains endoplasmic reticulum-associated lipid and lipoprotein homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577049. [PMID: 38328083 PMCID: PMC10849633 DOI: 10.1101/2024.01.26.577049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Oxidative stress perturbs lipid homeostasis and contributes to metabolic diseases. Though ignored compared to mitochondrial oxidation, the endoplasmic reticulum (ER) generates reactive oxygen species requiring antioxidant quality control. Using multi-organismal profiling featuring Drosophila, zebrafish, and mammalian cells, here we characterize the paraoxonase-like APMAP as an ER-localized protein that promotes redox and lipid homeostasis and lipoprotein maturation. APMAP-depleted mammalian cells exhibit defective ER morphology, elevated ER and oxidative stress, lipid droplet accumulation, and perturbed ApoB-lipoprotein homeostasis. Critically, APMAP loss is rescued with chemical antioxidant NAC. Organismal APMAP depletion in Drosophila perturbs fat and lipoprotein homeostasis, and zebrafish display increased vascular ApoB-containing lipoproteins, particles that are atherogenic in mammals. Lipidomics reveals altered polyunsaturated phospholipids and increased ceramides upon APMAP loss, which perturbs ApoB-lipoprotein maturation. These ApoB-associated defects are rescued by inhibiting ceramide synthesis. Collectively, we propose APMAP is an ER-localized antioxidant that promotes lipid and lipoprotein homeostasis.
Collapse
Affiliation(s)
- Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Monica Hensley
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Son Tran
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Goncalo Dias do Vale
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Jeffrey G McDonald
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
5
|
Han S, Liu X, Ju S, Mu W, Abulikemu G, Zhen Q, Yang J, Zhang J, Li Y, Liu H, Chen Q, Cui B, Wu S, Zhang Y. New mechanisms and biomarkers of lymph node metastasis in cervical cancer: reflections from plasma proteomics. Clin Proteomics 2023; 20:35. [PMID: 37689639 PMCID: PMC10492398 DOI: 10.1186/s12014-023-09427-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/21/2023] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVE Lymph node metastasis (LNM) and lymphatic vasculature space infiltration (LVSI) in cervical cancer patients indicate a poor prognosis, but satisfactory methods for diagnosing these phenotypes are lacking. This study aimed to find new effective plasma biomarkers of LNM and LVSI as well as possible mechanisms underlying LNM and LVSI through data-independent acquisition (DIA) proteome sequencing. METHODS A total of 20 cervical cancer plasma samples, including 7 LNM-/LVSI-(NC), 4 LNM-/LVSI + (LVSI) and 9 LNM + /LVSI + (LNM) samples from a cohort, were subjected to DIA to identify differentially expressed proteins (DEPs) for LVSI and LNM. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for DEP functional annotation. Protein-protein interaction (PPI) and weighted gene coexpression network analysis (WGCNA) were used to detect new effective plasma biomarkers and possible mechanisms. RESULTS A total of 79 DEPs were identified in the cohort. GO and KEGG analyses showed that DEPs were mainly enriched in the complement and coagulation pathway, lipid and atherosclerosis pathway, HIF-1 signal transduction pathway and phagosome and autophagy. WGCNA showed that the enrichment of the green module differed greatly between groups. Six interesting core DEPs (SPARC, HPX, VCAM1, TFRC, ERN1 and APMAP) were confirmed to be potential plasma diagnostic markers for LVSI and LNM in cervical cancer patients. CONCLUSION Proteomic signatures developed in this study reflected the potential plasma diagnostic markers and new possible pathogenesis mechanisms in the LVSI and LNM of cervical cancer.
Collapse
Affiliation(s)
- Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuang Ju
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wendi Mu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Gulijinaiti Abulikemu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qianwei Zhen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jiaqi Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Hongli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuxia Wu
- Department of Obstetrics and Gynecology, the Fifth People's Hospital of Jinan, Jinan, Shandong, 250012, People's Republic of China.
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
6
|
Insulin-induced gene 2 expression is associated with cervical adenocarcinoma malignant behavior. Mol Biol Rep 2023; 50:1553-1563. [PMID: 36515824 DOI: 10.1007/s11033-022-08095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The incidence of cervical adenocarcinoma (CA) as a malignant tumor has increased over the past few decades due to its low detection rate and malignant biological behaviors. Insulin-induced gene 2 (INSIG2), a membrane protein of the endoplasmic reticulum (ER), plays a crucial role in cancer progression. However, there is little known about the connection between INSIG2 and CA. METHODS The Human Protein Atlas (HPA) and the Cancer Genome Atlas (TCGA) Cervical Cancer (CESC) data were applied to study the alteration in INSIG2 expression. Biological functions were performed to test the change of malignant behavior. Bioinformatics analysis was conducted to explore the potential affection of INSIG2 in CA progression. RESULTS Our study confirmed that the high INSIG2 expression levels had a poor prognosis. INSIG2-knockdown inhibited the CA cell proliferation, migration, and invasion of CA cells while downregulating the epithelial-mesenchymal transition (EMT)-associated gene expression levels. Moreover, the enrichment analysis of DEGs showed more potential functions of INSIG2 in the CA progression. CONCLUSION We found that INSIG2 knockdown may play a suppressor role in the CA progression, and may provide the potential functional influence in inhibiting of CA development.
Collapse
|
7
|
Wang L, Zhao H, Fang Y, Yuan B, Guo Y, Wang W. LncRNA CARMN inhibits cervical cancer cell growth via the miR-92a-3p/BTG2/Wnt/β-catenin axis. Physiol Genomics 2023; 55:1-15. [PMID: 36314369 DOI: 10.1152/physiolgenomics.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNA (lncRNA) cardiac mesoderm enhancer-associated noncoding RNA (CARMN) is a newly discovered tumor-suppressor lncRNA in cancers. However, its role in cervical cancer (CC) remains elusive. This study was conducted to analyze the molecular mechanism of CARMN in CC cell growth and provide a novel theoretical basis for CC treatment. RT-qPCR and clinical analysis revealed that CARMN and B-cell translocation gene 2 (BTG2) were downregulated, whereas miR-92a-3p was upregulated in CC tissues and cells and their expressions were correlated with clinicopathological characteristics and prognosis. MTT assay, flow cytometry, and Transwell assays revealed that CARMN overexpression reduced proliferation, migration, and invasion and increased apoptosis rate in CC cells. Mechanically, CARMN repressed miR-92a-3p to promote BTG2 transcription. Functional rescue assays revealed that miR-92a-3p overexpression or BTG2 downregulation reversed the inhibitory role of CARMN overexpression in CC cell growth. Western blot analysis elicited that Wnt3a and β-catenin were elevated in CC cells and CARMN blocked the Wnt/β-catenin signaling pathway via the miR-92a-3p/BTG2 axis. Overall, our findings demonstrated that CARMN repressed miR-92a-3p to upregulate BTG2 transcription and then blocked the Wnt/β-catenin signaling pathway, thereby suppressing CC cell growth.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Hu Zhao
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Ying Fang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Bo Yuan
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Yilin Guo
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Wuliang Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| |
Collapse
|