1
|
Chong Z, Huang F, McLeod M, Irwin R, Smithson M, Yue Z, Gao M, Hardiman K. Molecular differentiation between complete and incomplete responders to neoadjuvant therapy in rectal cancer. RESEARCH SQUARE 2024:rs.3.rs-4456000. [PMID: 39011117 PMCID: PMC11247942 DOI: 10.21203/rs.3.rs-4456000/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Background Neoadjuvant chemoradiotherapy (nCRT) is the standard treatment for locally advanced rectal cancer, but only 20-40% of patients completely respond to this treatment. Methods To define the molecular features that are associated with response to nCRT, we generated and collected genomic and transcriptomic data from 712 cancers prior to treatment from our own data and from publicly available data. Results We found that patients with a complete response have decreased risk of both local recurrence and future metastasis. We identified multiple differences in DNA mutations and transcripts between complete and incomplete responders. Complete responder tumors have a higher tumor mutation burden and more significant co-occurring mutations than the incomplete responder tumors. In addition, mutations in DNA repair genes (across multiple mechanisms of repair) were enriched in complete responders and they also had lower expression of these genes indicating that defective DNA repair is associated with complete response to nCRT. Using logistic regression, we identified three significant predictors of complete response: tumor size, mutations within specific network genes, and the existence of three or more specific co-occurrent mutations. In incompletely responder tumors, abnormal cell-cell interaction and increased cancer associated fibroblasts were associated with recurrence. Additionally, gene expression analysis identified a subset of immune hot tumors with worse outcomes and upregulated of immune checkpoint proteins. Conclusions Overall, our study provides a comprehensive understanding of the molecular features associated with response to nCRT and the molecular differences in non-responder tumors that later reoccur. This knowledge may provide critical insight for the development of precision therapy for rectal cancer.
Collapse
Affiliation(s)
| | | | - M McLeod
- University of Alabama at Birmingham
| | | | | | | | - Min Gao
- University of Alabama at Birmingham
| | | |
Collapse
|
2
|
Bokhari SZ, Aloss K, Leroy Viana PH, Schvarcz CA, Besztercei B, Giunashvili N, Bócsi D, Koós Z, Balogh A, Benyó Z, Hamar P. Digoxin-Mediated Inhibition of Potential Hypoxia-Related Angiogenic Repair in Modulated Electro-Hyperthermia (mEHT)-Treated Murine Triple-Negative Breast Cancer Model. ACS Pharmacol Transl Sci 2024; 7:456-466. [PMID: 38357275 PMCID: PMC10863435 DOI: 10.1021/acsptsci.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 02/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer type with no targeted therapy and hence limited treatment options. Modulated electrohyperthermia (mEHT) is a novel complementary therapy where a 13.56 MHz radiofrequency current targets cancer cells selectively, inducing tumor damage by thermal and electromagnetic effects. We observed severe vascular damage in mEHT-treated tumors and investigated the potential synergism between mEHT and inhibition of tumor vasculature recovery in our TNBC mouse model. 4T1/4T07 isografts were orthotopically inoculated and treated three to five times with mEHT. mEHT induced vascular damage 4-12 h after treatment, leading to tissue hypoxia detected at 24 h. Hypoxia in treated tumors induced an angiogenic recovery 24 h after the last treatment. Administration of the cardiac glycoside digoxin with the potential hypoxia-inducible factor 1-α (HIF1-α) and angiogenesis inhibitory effects could synergistically augment mEHT-mediated tumor damage and reduce tissue hypoxia signaling and consequent vascular recovery in mEHT-treated TNBC tumors. Conclusively, repeated mEHT induced vascular damage and hypoxic stress in TNBC that promoted vascular recovery. Inhibiting this hypoxic stress signaling enhanced the effectiveness of mEHT and may potentially enhance other forms of cancer treatment.
Collapse
Affiliation(s)
| | - Kenan Aloss
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | | | - Csaba András Schvarcz
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
- Cerebrovascular
and Neurocognitive Disorders Research Group, Eötvös, Loránd Research Network and Semmelweis
University (ELKH-SE), Tűzoltó utca 37-47, Budapest 1094, Hungary
| | - Balázs Besztercei
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Nino Giunashvili
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Dániel Bócsi
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Zoltán Koós
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Andrea Balogh
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Zoltán Benyó
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Péter Hamar
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| |
Collapse
|
3
|
Yi L, Qiang J, Yichen P, Chunna Y, Yi Z, Xun K, Jianwei Z, Rixing B, Wenmao Y, Xiaomin W, Parker L, Wenbin L. Identification of a 5-gene-based signature to predict prognosis and correlate immunomodulators for rectal cancer. Transl Oncol 2022; 26:101529. [PMID: 36130456 PMCID: PMC9493070 DOI: 10.1016/j.tranon.2022.101529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Specific tumor markers have yet to be identified in rectal cancer. This study aims to identify a novel genetic signature in rectal cancer to provide clues for survival and immunotherapy. METHODS DEGs were obtained from two GEO datasets of rectal cancer. By using data from TCGA and GSE133057, two cohorts of rectal cancer were applied to establish and evaluate the signature. A nomogram was constructed for training and validation. We integrated the risk-score with clinicopathological features and assessed its interplay with immune cells and molecules. Finally, our study performed functional annotations, gene-targeted miRNAs, and single-cell analysis. RESULTS A total of 468 DEGs were identified, and a signature consisting of 5 genes (CLIC5, ENTPD8, PACSIN3, HGD, and GNG7) was selected to calculate the risk-score. The model exhibited high performance in time-dependent ROC and a nomogram. Further results showed that overall survival was significantly worse in the high-risk group. As an independent prognostic factor, the risk-score was associated with vascular invasion. There was a dramatic difference in nonregulatory CD4+ and CD8+ T cells between the high and low-risk groups, and the 5 genes were correlated with immune inhibitors. There was a considerable difference in autophagy, immune, cell cycle, infection, and apoptosis-associated terms and pathways in GO and KEGG. The functional states of differentiation, apoptosis, and quiescence were closely related to the 5-gene signature in single-cell analysis. CONCLUSION Our results suggest that the signature could serve as a novel prognostic biomarker in rectal cancer, which might benefit decision-making regarding immunotherapy.
Collapse
Affiliation(s)
- Lin Yi
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuro-oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ji Qiang
- Department of Neuro-oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Peng Yichen
- Department of Neuro-oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chunna
- Department of Neuro-oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Yi
- Department of Neuro-oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Kang Xun
- Department of Neuro-oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Jianwei
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bai Rixing
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Wenmao
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Xiaomin
- Department of Neuro-oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Li Parker
- Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wenbin
- Department of Neuro-oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Alsayed RKME, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic Regulation of CXCR4 Signaling in Cancer Pathogenesis and Progression. Semin Cancer Biol 2022; 86:697-708. [PMID: 35346802 DOI: 10.1016/j.semcancer.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Signaling involving chemokine receptor CXCR4 and its ligand SDF-1/CXL12 has been investigated for many years for its possible role in cancer progression and pathogenesis. Evidence emerging from clinical studies in recent years has further established diagnostic as well as prognostic importance of CXCR4 signaling. CXCR4 and SDF-1 are routinely reported to be elevated in tumors, distant metastases, which correlates with poor survival of patients. These findings have kindled interest in the mechanisms that regulate CXCR4/SDF-1 expression. Of note, there is a particular interest in the epigenetic regulation of CXCR4 signaling that may be responsible for upregulated CXCR4 in primary as well as metastatic cancers. This review first lists the clinical evidence supporting CXCR4 signaling as putative cancer diagnostic and/or prognostic biomarker, followed by a discussion on reported epigenetic mechanisms that affect CXCR4 expression. These mechanisms include regulation by non-coding RNAs, such as, microRNAs, long non-coding RNAs and circular RNAs. Additionally, we also discuss the regulation of CXCR4 expression through methylation and acetylation. Better understanding and appreciation of epigenetic regulation of CXCR4 signaling can invariably lead to identification of novel therapeutic targets as well as therapies to regulate this oncogenic signaling.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
| |
Collapse
|