1
|
Li Q, Zhang RX, Yang JJ, Huang HB, Feng G, Li GR. Characterization of extrachromosomal circular DNAs in plasma of patients with clear cell renal cell carcinoma. World J Urol 2024; 42:328. [PMID: 38753087 DOI: 10.1007/s00345-024-05031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/06/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Extrachromosomal circular DNAs (eccDNAs) have been recognized for their significant involvement in numerous biological processes. Nonetheless, the existence and molecular characteristics of eccDNA in the peripheral blood of patients diagnosed with clear cell renal cell carcinoma (ccRCC) have not yet been reported. Our aim was to identify potentially marked plasma eccDNAs in ccRCC patients. METHODS AND MATERIALS The detection of plasma eccDNA in ccRCC patients and healthy controls was performed using the Tn5-tagmentation and next-generation sequencing (NGS) method. Comparisons were made between ccRCC patients and healthy controls regarding the distribution of length, gene annotation, pattern of junctional nucleotide motif, and expression pattern of plasma eccDNA. RESULTS We found 8,568 and 8,150 plasma eccDNAs in ccRCC patients and healthy controls, respectively. There were no statistical differences in the length distribution, gene annotation, and motif signature of plasma eccDNAs between the two groups. A total of 701 differentially expressed plasma eccDNAs were identified, and 25 plasma eccDNAs with potential diagnostic value for ccRCC have been successfully screened. These up-regulated plasma eccDNAs also be indicated to originate from the genomic region of the tumor-associated genes. CONCLUSION This work demonstrates the characterization of plasma eccDNAs in ccRCC and suggests that the up-regulated plasma eccDNAs could be considered as a promising non-invasive biomarker in ccRCC.
Collapse
Affiliation(s)
- Qing Li
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Rui-Xuan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Jing-Jing Yang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Hou-Bao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Gang Feng
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China.
- Department of Urology, North Hospital, CHU of Saint-Etienne, 42055, Saint-Etienne, France.
| | - Guo-Rong Li
- Department of Urology, North Hospital, CHU of Saint-Etienne, 42055, Saint-Etienne, France
| |
Collapse
|
2
|
Wang X, Wang X. The regulation of hypoxia-related lncRNAs in hepatocellular carcinoma. Discov Oncol 2024; 15:144. [PMID: 38713276 PMCID: PMC11076439 DOI: 10.1007/s12672-024-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is still a public health disease with its high prevalence and morbidity. Short of early diagnosis biomarkers and effective therapy, the treatment of HCC patients hasn't achieved ideal effect. Hypoxia is a hallmark of HCC, which is mainly induced by imbalance of tumor cell proliferation and insufficient supply of oxygen. Recently, amounting evidence suggested lncRNAs, especially hypoxia-related lncRNAs play a pivotal role in regulating HCC. Hypoxia-related lncRNAs are involved in altering glucose metabolism, maintaining of cancer stem cell-like properties (CSCs), cell apotosis, proliferation and immune escape, which all contribute to the poor prognosis of HCC patients. The novel identified hypoxia-related lncRNAs could be the potential target or biomarkers of HCC, which are beneficial to the clinical treatment. Herein, we summarized currently reported hypoxia-related lncRNAs and their related mechanisms, providing potential application and future perspective of hypoxia-related lncRNAs as a potential therapeutic target.
Collapse
Affiliation(s)
- Xuejing Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiaojun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Wang Y, Wang J, Zhang Y, Luo H, Yuan H. LncRNA-MUF: A Novel Oncogenic Star with Potential as a Biological Marker and Therapeutic Target for Gastrointestinal Malignancies. J Cancer 2024; 15:1498-1510. [PMID: 38370364 PMCID: PMC10869981 DOI: 10.7150/jca.91984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024] Open
Abstract
Gastrointestinal (GI) cancers pose a significant global health challenge, characterized by a high incidence and poor prognosis. The delayed detection and occurrence of metastasis contribute to the overall low survival rates associated with these cancers. Therefore, there is an urgent need to identify novel molecular targets for effective GI cancer treatment. Recent research has shed light on the potential of long non-coding RNAs (lncRNAs) as promising targets in cancer therapy, given their strong association with carcinogenesis and profound impact on tumor development. Among these lncRNAs, lncRNA-MUF, also known as LINC00941, has emerged as a key player in oncogenic regulation, specifically implicated in the progression of various GI cancers, including esophageal, gastric, colorectal, hepatic, and pancreatic cancer. This review aims to provide an updated and focused analysis of the regulatory roles of LINC00941 in the initiation and progression of GI cancer. Our objective is to unravel the underlying molecular mechanisms through which LINC00941 influences GI cancer phenotypes both in vivo and in vitro, with a special emphasis on the key molecules and signaling pathways involved. Additionally, LINC00941 has demonstrated clinical significance in terms of clinical pathology, prognosis, and diagnosis in GI tumors, further reinforcing its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yihan Zhang
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Huazhao Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332007, Jiangxi, China
| |
Collapse
|
4
|
Wei H, Huang L, Lu Q, Huang Z, Huang Y, Xu Z, Li W, Pu J. N 6-Methyladenosine-Modified LEAWBIH Drives Hepatocellular Carcinoma Progression through Epigenetically Activating Wnt/β-Catenin Signaling. J Hepatocell Carcinoma 2023; 10:1991-2007. [PMID: 37954496 PMCID: PMC10637240 DOI: 10.2147/jhc.s433070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose N6-methyladenosine (m6A) modification plays an important role in regulating RNA maturation, stability, and translation. Thus, m6A modification is involved in various pathophysiological processes including hepatocellular carcinoma (HCC). However, the direct contribution of m6A modifications to RNA function in HCC remains unclear. Here, we identified LEAWBIH (long non-coding RNA epigenetically activating Wnt/β-catenin signalling in HCC) as an m6A-modified long non-coding RNA (lncRNA) and investigated the effects of m6A on the function of LEAWBIH in HCC. Methods Quantitative polymerase chain reaction was performed to measure the gene expression in tissues and cells. The level of m6A modification was detected using a methylated RNA immunoprecipitation assay and single-base elongation- and ligation-based qPCR amplification method. Cell proliferation was evaluated using the Glo cell viability and CCK-8 assays. Cell migration and invasion were evaluated using Transwell migration and invasion assays. The mechanisms of m6A modified LEAWBIH were investigated using chromatin isolation by RNA purification, chromatin immunoprecipitation, and dual-luciferase reporter assays. Results LEAWBIH was highly expressed and correlated with poor survival in HCC patients. LEAWBIH was identified as a m6A-modified transcript. m6A modification increased LEAWBIH transcript stability. The m6A modification level of LEAWBIH was increased in HCC, and a high m6A modification level of LEAWBIH predicted poor survival. LEAWBIH promotes HCC cell proliferation, migration, and invasion in an m6A modification-dependent manner. Mechanistic investigations revealed that m6A-modified LEAWBIH activated Wnt/β-catenin signaling. m6A-modified LEAWBIH binds to the m6A reader YTHDC1, which further interacts with and recruits H3K9me2 demethylase KDM3B to CTNNB1 promoter, leading to H3K9me2 demethylation and CTNNB1 transcription activation. Functional rescue assays showed that blocking Wnt/β-catenin signaling abolished the role of LEAWBIH in HCC. Conclusion m6A-modified LEAWBIH exerts oncogenic effects in HCC by epigenetically activating Wnt/β-catenin signaling, highlighting m6A-modified LEAWBIH as a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Qi Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
- Guangxi Clinical Medical Research Center of Hepatobiliary Disease, Baise, People’s Republic of China
| |
Collapse
|
5
|
Zhong X, Chen R. Detection of Ferroptosis by Immunohistochemistry and Immunofluorescence. Methods Mol Biol 2023; 2712:211-222. [PMID: 37578709 DOI: 10.1007/978-1-0716-3433-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a type of regulated cell death driven by oxidative damage, characterized by iron overload and lipid peroxidation, and regulated by a network of distinct molecules and organelles. Impaired ferroptotic response is implicated in multiple physiological and pathological processes, including tumorigenesis, neurodegeneration, and ischemia-reperfusion damage. Classical techniques of immunohistochemistry (IHC) and immunofluorescence (IF) can be employed to exhibit antigen expression and location in tissues observed with microscopy, making them powerful tools in studying the ferroptosis process. In this chapter, we introduce commonly used protocols and summarize typical markers used in IHC and IF to monitor ferroptosis.
Collapse
Affiliation(s)
- Xiao Zhong
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|