1
|
Ding L, Wang F, Wang Z, Pan Y, Liu T, Cheng L, Liu W, Ding K, Zhu H, Yang Z. Construction of [ 89Zr]Zr-Labeled HuL13 for ImmunoPET Imaging of LAG-3 Checkpoint Expression on Tumor-Infiltrating T Cells. Mol Pharm 2024; 21:3992-4003. [PMID: 38941565 DOI: 10.1021/acs.molpharmaceut.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Lymphocyte activation gene 3 (LAG-3) has attracted much attention as a potentially valuable immune checkpoint. Individual identification of LAG-3 expression at screening and during treatment could improve the successful implementation of anti-LAG-3 therapies. HuL13 is a human IgG1 monoclonal antibody that binds to the LAG-3 receptor in T cells. Here, we used [89Zr]Zr-labeled HuL13 to delineate LAG-3+ T-cell infiltration into tumors via positron emission tomography (PET) imaging. A549/LAG-3 cells, which stably express LAG-3, were generated by infection with lentivirus. The uptake of [89Zr]Zr-DFO-HuL13 in A549/LAG-3 cells was greater than that in the negative control (A549/NC) cells at each time point. The equilibrium dissociation constant (Kd) of [89Zr]Zr-DFO-HuL13 for the LAG-3 receptor was 8.22 nM. PET imaging revealed significant uptake in the tumor areas of A549/LAG-3 tumor-bearing mice from 24 h after injection (SUVmax = 2.43 ± 0.06 at 24 h). As a proof of concept, PET imaging of the [89Zr]Zr-DFO-HuL13 tracer was further investigated in an MC38 tumor-bearing humanized LAG-3 mouse model. PET imaging revealed that the [89Zr]Zr-DFO-HuL13 tracer specifically targets human LAG-3 expressed on tumor-infiltrating lymphocytes (TILs). In addition to the tumors, the spleen was also noticeably visible. Tumor uptake of the [89Zr]Zr-DFO-HuL13 tracer was lower than its uptake in the spleen, but high uptake in the spleen could be reduced by coinjection of unlabeled antibodies. Coinjection of unlabeled antibodies increases tracer activity in the blood pool, thereby improving tumor uptake. Dosimetry evaluation of the healthy mouse models revealed that the highest absorbed radiation dose was in the spleen, followed by the liver and heart wall. In summary, these studies demonstrate the feasibility of using the [89Zr]Zr-DFO-HuL13 tracer for the detection of LAG-3 expression on TILs. Further clinical evaluation of the [89Zr]Zr-DFO-HuL13 tracer may be of significant help in the stratification and management of patients suitable for anti-LAG-3 therapy.
Collapse
Affiliation(s)
- Lixin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zilei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yongxiang Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Liansheng Cheng
- Hefei HankeMab Biotechnology Limited, Hefei, Anhui 230088, China
| | - Wenting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, Anhui 230088, China
| | - Kuke Ding
- Office for Public Health Management, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
2
|
Zhang J, Du B, Wang Y, Cui Y, Wang S, Zhao Y, Li Y, Li X. The role of CD8 PET imaging in guiding cancer immunotherapy. Front Immunol 2024; 15:1428541. [PMID: 39072335 PMCID: PMC11272484 DOI: 10.3389/fimmu.2024.1428541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Currently, immunotherapy is being widely used for treating cancers. However, the significant heterogeneity in patient responses is a major challenge for its successful application. CD8-positive T cells (CD8+ T cells) play a critical role in immunotherapy. Both their infiltration and functional status in tumors contribute to treatment outcomes. Therefore, accurate monitoring of CD8+ T cells, a potential biomarker, may improve therapeutic strategy. Positron emission tomography (PET) is an optimal option which can provide molecular imaging with enhanced specificity. This review summarizes the mechanism of action of CD8+ T cells in immunotherapy, and highlights the recent advancements in PET-based tracers that can visualize CD8+ T cells and discusses their clinical applications to elucidate their potential role in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Kazim M, Yoo E. Recent Advances in the Development of Non-Invasive Imaging Probes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202310694. [PMID: 37843426 DOI: 10.1002/anie.202310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
The last two decades have witnessed a major revolution in the field of tumor immunology including clinical progress using various immunotherapy strategies. These advances have highlighted the potential for approaches that harness the power of the immune system to fight against cancer. While cancer immunotherapies have shown significant clinical successes, patient responses vary widely due to the complex and heterogeneous nature of tumors and immune responses, calling for reliable biomarkers and therapeutic strategies to maximize the benefits of immunotherapy. Especially, stratifying responding individuals from non-responders during the early stages of treatment could help avoid long-term damage and tailor personalized treatments. In efforts to develop non-invasive means for accurately evaluating and predicting tumor response to immunotherapy, multiple affinity-based agents targeting immune cell markers and checkpoint molecules have been developed and advanced to clinical trials. In addition, researchers have recently turned their attention to substrate and activity-based imaging probes that can provide real-time, functional assessment of immune response to treatment. Here, we highlight some of those recently designed probes that image functional proteases as biomarkers of cancer immunotherapy with a focus on their chemical design and detection modalities and discuss challenges and opportunities for the development of imaging tools utilized in cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Kazim
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
5
|
Xue C, Zhou Q, Xi H, Zhou J. Radiomics: A review of current applications and possibilities in the assessment of tumor microenvironment. Diagn Interv Imaging 2023; 104:113-122. [PMID: 36283933 DOI: 10.1016/j.diii.2022.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
With the recent success in the application of immunotherapy for treating various advanced cancers, the tumor microenvironment has rapidly become an important field of research. The tumor microenvironment is complex and its characteristics strongly influence disease biology and potentially responses to systemic therapy. Accurate preoperative assessment of tumor microenvironment is of great significance for the formulation of an immunotherapy strategy and evaluation of patient prognosis. As a research hotspot in medical image analysis technology, radiomics has been applied in the auxiliary diagnosis of the tumor microenvironment. This article reviews the current status of radiomics in the elective application on tumor microenvironment and discusses potential prospects.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China.
| |
Collapse
|
6
|
Priyam J, Saxena U. Computational Gene Expression and Network Analysis of Myc Reveal Insights into Its Diagnostic and Prognostic Role in Subtypes of Renal Cancer. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04357-5. [PMID: 36689165 DOI: 10.1007/s12010-023-04357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
In this study, we analysed the Myc expression in the pan-kidney cohort (KIPAN) and kidney renal clear cell carcinoma (KIRC) in human tumour tissues compared to normal tissues. Myc is overexpressed and associated with poor overall survival (OS) in the KIPAN and KIRC. It shows that Myc plays a crucial role in the growth and maintenance of these malignancies. Additionally, we explored coexpressed genes, gene-set enrichment analysis of coexpressed genes, proteins and regulatory partners directly linked with Myc in KIPAN and KIRC and their role in cancer-specific events. Pathway enrichment analysis concluded that Myc-related genes are involved in many cancer-related pathways. Furthermore, we studied that among KIPAN, mutant forms of tumour suppressor genes have a poor prognosis and are associated with higher Myc expression but not in KIRC. This paper also investigates the correlation between Myc expression and promoter methylation, tumour-infiltrating lymphocytes, and the interaction of Myc with drugs. Our study indicates that Myc can be used as a diagnostic and prognostic biomarker in patients with KIPAN and KIRC with diverse clinical and pathological characteristics.
Collapse
Affiliation(s)
- Jyotsna Priyam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Urmila Saxena
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India.
| |
Collapse
|
7
|
Crombé A, Roulleau‐Dugage M, Italiano A. The diagnosis, classification, and treatment of sarcoma in this era of artificial intelligence and immunotherapy. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1288-1313. [PMID: 36260064 PMCID: PMC9759765 DOI: 10.1002/cac2.12373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Soft-tissue sarcomas (STS) represent a group of rare and heterogeneous tumors associated with several challenges, including incorrect or late diagnosis, the lack of clinical expertise, and limited therapeutic options. Digital pathology and radiomics represent transformative technologies that appear promising for improving the accuracy of cancer diagnosis, characterization and monitoring. Herein, we review the potential role of the application of digital pathology and radiomics in managing patients with STS. We have particularly described the main results and the limits of the studies using radiomics to refine diagnosis or predict the outcome of patients with soft-tissue sarcomas. We also discussed the current limitation of implementing radiomics in routine settings. Standard management approaches for STS have not improved since the early 1970s. Immunotherapy has revolutionized cancer treatment; nonetheless, immuno-oncology agents have not yet been approved for patients with STS. However, several lines of evidence indicate that immunotherapy may represent an efficient therapeutic strategy for this group of diseases. Thus, we emphasized the remarkable potential of immunotherapy in sarcoma treatment by focusing on recent data regarding the immune landscape of these tumors. We have particularly emphasized the fact that the development of immunotherapy for sarcomas is not an aspect of histology (except for alveolar soft-part sarcoma) but rather that of the tumor microenvironment. Future studies investigating immunotherapy strategies in sarcomas should incorporate at least the presence of tertiary lymphoid structures as a stratification factor in their design, besides including a strong translational program that will allow for a better understanding of the determinants involved in sensitivity and treatment resistance to immune-oncology agents.
Collapse
Affiliation(s)
- Amandine Crombé
- Department of ImagingInstitut BergoniéBordeauxNouvelle‐AquitaineF‐33076France,Faculty of MedicineUniversity of BordeauxBordeauxNouvelle‐AquitaineF‐33000France
| | | | - Antoine Italiano
- Faculty of MedicineUniversity of BordeauxBordeauxNouvelle‐AquitaineF‐33000France,Early Phase Trials and Sarcoma UnitInstitut BergoniéBordeauxNouvelle‐AquitaineF‐33076France
| |
Collapse
|
8
|
Hormuth DA, Farhat M, Christenson C, Curl B, Chad Quarles C, Chung C, Yankeelov TE. Opportunities for improving brain cancer treatment outcomes through imaging-based mathematical modeling of the delivery of radiotherapy and immunotherapy. Adv Drug Deliv Rev 2022; 187:114367. [PMID: 35654212 PMCID: PMC11165420 DOI: 10.1016/j.addr.2022.114367] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/01/2022]
Abstract
Immunotherapy has become a fourth pillar in the treatment of brain tumors and, when combined with radiation therapy, may improve patient outcomes and reduce the neurotoxicity. As with other combination therapies, the identification of a treatment schedule that maximizes the synergistic effect of radiation- and immune-therapy is a fundamental challenge. Mechanism-based mathematical modeling is one promising approach to systematically investigate therapeutic combinations to maximize positive outcomes within a rigorous framework. However, successful clinical translation of model-generated combinations of treatment requires patient-specific data to allow the models to be meaningfully initialized and parameterized. Quantitative imaging techniques have emerged as a promising source of high quality, spatially and temporally resolved data for the development and validation of mathematical models. In this review, we will present approaches to personalize mechanism-based modeling frameworks with patient data, and then discuss how these techniques could be leveraged to improve brain cancer outcomes through patient-specific modeling and optimization of treatment strategies.
Collapse
Affiliation(s)
- David A Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Maguy Farhat
- Departments of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Chase Christenson
- Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brandon Curl
- Departments of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77230, USA
| | - C Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Caroline Chung
- Departments of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Thomas E Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Oncology, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77230, USA
| |
Collapse
|
9
|
Wang Y, Wang C, Huang M, Qin S, Zhao J, Sang S, Zheng M, Bian Y, Huang C, Zhang H, Guo L, Jiang J, Xu C, Dai N, Zheng Y, Han J, Yang M, Xu T, Miao L. Pilot study of a novel nanobody 68 Ga-NODAGA-SNA006 for instant PET imaging of CD8 + T cells. Eur J Nucl Med Mol Imaging 2022; 49:4394-4405. [PMID: 35829748 DOI: 10.1007/s00259-022-05903-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Positron emission tomography (PET) with specific diagnostic probes for quantifying CD8+ T cells has emerged as a powerful technique for monitoring the immune response. However, most CD8+ T cell radiotracers are based on antibodies or antibody fragments, which are slowly cleared from circulation. Herein, we aimed to develop and assess 68 Ga-NODAGA-SNA006 for instant PET (iPET) imaging of CD8+ T cells. METHODS A novel nanobody without a hexahistidine (His6) tag, SNA006-GSC, was designed, site-specifically conjugated with NODAGA-maleimide and radiolabelled with 68 Ga. The PET imaging profiles of 68 Ga-NODAGA-SNA006 were evaluated in BALB/c MC38-CD8+/CD8- tumour models and cynomolgus monkeys. Three volunteers with lung cancer underwent whole-body PET/CT imaging after 68 Ga-NODAGA-SNA006 administration. The biodistribution, pharmacokinetics and dosimetry of patients were also investigated. In addition, combined with immunohistochemistry (IHC), the quantitative performance of the tracer for monitoring CD8 expression was evaluated in BALB/c MC38-CD8+/CD8- and human subjects. RESULTS 68 Ga-NODAGA-SNA006 was prepared with RCP > 98% and SA > 100 GBq/μmol. 68 Ga-NODAGA-SNA006 exhibited specific uptake in MC38-CD8+ xenografts tumours, CD8-rich tissues (such as the spleen) in monkeys and CD8+ tumour lesions in patients within 1 h. Fast washout from circulation was observed in three volunteers (t1/2 < 20 min). A preliminary quantitative linear relationship (R2 = 0.9668, p < 0.0001 for xenografts and R2 = 0.7924, p = 0.0013 for lung patients) appeared between 68 Ga-NODAGA-SNA006 uptake and CD8 expression. 68 Ga-NODAGA-SNA006 was well tolerated by all patients. CONCLUSION 68 Ga-NODAGA-SNA006 PET imaging can instantly quantify CD8 expression with an ideal safety profile and is expected to be important for dynamically tracking CD8+ T cells and monitoring immune responses for individualised cancer immunotherapy. TRIAL REGISTRATION NCT05126927 (19 November 2021, retrospectively registered).
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chao Wang
- Smart-Nuclide Biotech, No. 218 Xing-Hu Rd., Suzhou, 215125, Jiangsu, China
| | - Minzhou Huang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Songbing Qin
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shibiao Sang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Meng Zheng
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yicong Bian
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chenrong Huang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiwei Jiang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chun Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Dai
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yushuang Zheng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiajun Han
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qian-Rong Rd., Wuxi, 214063, Jiangsu, China.
| | - Tao Xu
- Smart-Nuclide Biotech, No. 218 Xing-Hu Rd., Suzhou, 215125, Jiangsu, China.
| | - Liyan Miao
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China. .,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Lauwerys L, Smits E, Van den Wyngaert T, Elvas F. Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10051074. [PMID: 35625811 PMCID: PMC9139020 DOI: 10.3390/biomedicines10051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body’s immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Correspondence:
| |
Collapse
|
11
|
Arnouk S, De Groof TW, Van Ginderachter JA. Imaging and therapeutic targeting of the tumor immune microenvironment with biologics. Adv Drug Deliv Rev 2022; 184:114239. [PMID: 35351469 DOI: 10.1016/j.addr.2022.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/14/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
The important role of tumor microenvironmental elements in determining tumor progression and metastasis has been firmly established. In particular, the presence and activity profile of tumor-infiltrating immune cells may be associated with the outcome of the disease and may predict responsiveness to (immuno)therapy. Indeed, while some immune cell types, such as macrophages, support cancer cell outgrowth and mediate therapy resistance, the presence of activated CD8+ T cells is usually indicative of a better prognosis. It is therefore of the utmost interest to obtain a full picture of the immune infiltrate in tumors, either as a prognostic test, as a way to stratify patients to maximize therapeutic success, or as therapy follow-up. Hence, the non-invasive imaging of these cells is highly warranted, with biologics being prime candidates to achieve this goal.
Collapse
|
12
|
Li C, Han C, Duan S, Li P, Alam I, Xiao Z. Visualizing T cell responses: The T cell PET imaging toolbox. J Nucl Med 2021; 63:183-188. [PMID: 34887338 DOI: 10.2967/jnumed.121.261976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
T lymphocytes are key mediators of the adaptive immune response. Inappropriate or imbalanced T cell responses are underlying factors in cancer progression, allergy and other immune disorders. Monitoring the spatiotemporal dynamics of T cells and their functional status has the potential to provide unique biological insights in health and disease. Non-invasive positron emission tomography (PET) imaging represents an ideal whole-body modality for achieving this goal. With the appropriate PET imaging probes, T cell dynamics can be monitored in vivo, with high specificity and sensitivity. Herein, we provide a comprehensive overview of the applications of this state-of-the-art T cell PET imaging toolbox, and the potential it has to improve the clinical management of cancer immunotherapy and T cell- driven diseases. We also discuss future directions and prospects for clinical translation.
Collapse
Affiliation(s)
- Chao Li
- Harbin Medical University, China
| | | | | | - Ping Li
- Department of Radiology and Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University
| | - Israt Alam
- MIPS, Department of Radiology, Stanford University School of Medicine
| | | |
Collapse
|
13
|
Conejos-Sánchez I, Đorđević S, Medel M, Vicent MJ. Polypeptides as building blocks for image-guided nanotherapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Yang Y, Wang C, Wang Y, Sun Y, Huang X, Huang M, Xu H, Fan H, Chen D, Zhao F. Dose escalation biodistribution, positron emission tomography/computed tomography imaging and dosimetry of a highly specific radionuclide-labeled non-blocking nanobody. EJNMMI Res 2021; 11:113. [PMID: 34718889 PMCID: PMC8557220 DOI: 10.1186/s13550-021-00854-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immunotherapy is a valuable option for cancer treatment, and the curative effect of anti-PD-1/PD-L1 therapy correlates closely with PD-L1 expression levels. Positron emission tomography (PET) imaging of PD-L1 expression is feasible using 68Ga-NOTA-Nb109 nanobody. 68Ga-NOTA-Nb109 was generated by radionuclide (68Ga) labeling of Nb109 using a NOTA chelator. To facilitate clinical trials, we explored the optimal dose range of 68Ga-NOTA-Nb109 in BALB/c A375-hPD-L1 tumor-burdened nude mice and C57-hPD-L1 transgenic MC38-hPD-L1 tumor-burdened mice by administration of a single intravenous dose of 68Ga-NOTA-Nb109 and confirmed the dose in cynomolgus monkeys. The biodistribution data of cynomolgus monkey PET images were extrapolated to estimate the radiation dose for the adult male and female using OLINDA2.1 software. RESULTS 68Ga-NOTA-Nb109 was stable in physiologic media and human serum. Ex vivo biodistribution studies showed rapid and specific uptake in A375-hPD-L1 or MC38-hPD-L1 tumors. The estimated ED50 was approximately 5.4 µg in humanized mice. The injected mass (0.3-100 µg in nude mice and approximately 1-100 µg in humanized mice) greatly influenced the general biodistribution, with a better tumor-to-background ratio acquired at lower doses of Nb109 (0.3-10 µg in nude mice and approximately 1 µg in humanized mice), indicating maximum uptake in tumors at administered mass doses below the estimated ED50. Therefore, a single 15-μg/kg dose was adopted for the PET/CT imaging in the cynomolgus monkey. The highest specific and persistent uptake of the tracer was detected in the spleen, except the levels in the kidney and urine bladder, which was related to metabolism and excretion. The spleen-to-muscle ratio of the tracer exceeded 10 from immediately to 4 h after administration, indicating that the dose was appropriate. The estimated effective dose was calculated to yield a radiation dose of 4.1 mSv to a patient after injecting 185 MBq of 68Ga-NOTA-Nb109. CONCLUSION 68Ga-NOTA-Nb109 showed specific accumulation in hPD-L1 xenografts in ex vivo biodistribution studies and monkey PET/CT imaging. The dose escalation distribution data provided a recommended dose range for further use, and the safety of the tracer was confirmed in dosimetry studies.
Collapse
Affiliation(s)
- Yanling Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Chao Wang
- SmartNuclide Biopharma Co. Ltd, 218 Xinghu St., BioBAY A4-202, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Yan Wang
- Department of Clinical Pharmacology, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Gusu District, Suzhou, 215006, People's Republic of China
| | - Yan Sun
- SmartNuclide Biopharma Co. Ltd, 218 Xinghu St., BioBAY A4-202, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Minzhou Huang
- Department of Clinical Pharmacology, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Gusu District, Suzhou, 215006, People's Republic of China
| | - Hui Xu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Huaying Fan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Daquan Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China.
| | - Feng Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
15
|
Abstract
Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of ‘omics’ era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
Collapse
|
16
|
Soliman MM, Sakr TM, Rashed HM, Hamed AA, Abd El-Rehim HA. Polyethylene oxide-polyacrylic acid-folic acid (PEO-PAAc) nanogel as a 99m Tc targeting receptor for cancer diagnostic imaging. J Labelled Comp Radiopharm 2021; 64:534-547. [PMID: 34582054 DOI: 10.1002/jlcr.3952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023]
Abstract
Nanoparticles are frequently used as targeting delivery systems for therapeutic and diagnostic radiopharmaceuticals. Polyethylene oxide-polyacrylic acid (PEO-PAAc) nanogel was prepared via γ-radiation-induced polymerization. Variable factors affecting nanoparticles size were investigated. The nanogel was radiolabeled with the imaging radioisotope 99m Tc and finally conjugated with folic acid to target folate receptor actively. PEO-PAAc-folic acid gel was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM). Biodistribution was studied in normal mice and solid tumor-bearing mice via intravenous and intratumor injections of the radiolabeled PEO-PAAc-folic acid nanogel. Results of biodistribution showed high selective uptake of the prepared complex in tumor muscle compared with normal muscle for both intravenous and intratumor injections. The T/NT ratio was found to be 6.186 and 294.5 for intravenous and intratumor injections, respectively. Consequently, 99m Tc-PEO-PAAc-folic acid complex could be a promising agent for cancer diagnostic imaging.
Collapse
Affiliation(s)
- Moamen M Soliman
- Department of Polymers, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hassan M Rashed
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Ashraf A Hamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassan A Abd El-Rehim
- Department of Polymers, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
17
|
Chen W, Gao C, Shen J, Yao L, Liang X, Chen Z. The expression and prognostic value of REXO4 in hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:1704-1717. [PMID: 34532121 DOI: 10.21037/jgo-21-98] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Globally, one of the dominant causes of cancer-related mortality is liver cancer. Identification of potent biomarkers for initial stage diagnosis and prognosis is a key factor to ensure efficient therapy and reduce the mortality rate in liver cancer patients. REXO4 has been reported in neuropathic pain and familial isolated pituitary adenoma (FIPA), however, its relationship with liver cancer is still elusive. Methods In an attempt to scrutinize the expression of REXO4 in liver cancer, the Oncomine, and TCGA databases were analyzed. Real-time PCR was employed to identify the REXO4 mRNA levels in 45 patient tissue samples and western blot was used to detect the REXO4 protein levels in hepatocellular carcinoma (HCC) cells. Evaluation of the prognostic value of REXO4 in liver cancer was made using Univariate and multivariate Cox proportional hazards regression models and Kaplan-Meier plots. Tumor-associated biological processes related to REXO4 were revealed by LinkedOmics. The correlation of REXO4 and immune infiltration was evaluated using the TIMER database. Results REXO4 is significantly up-regulated in liver cancer in comparison with the nontumor controls. Moreover, poor progression-free survival and overall survival is a frequent outcome related to high expression of REXO4, highlighting it as a risk factor in case of liver cancer. Additionally, the plausible role of REXO4 in tumor-immune interactions was also investigated and it was revealed that the immune infiltration and immune activation of liver cancer might have an association with REXO4. Conclusions REXO4 has a significant expression in liver cancer and could potentially become a predictor for the prognosis of liver cancers and a biomarker for targeted therapeutic regimens. Significant overexpression of REXO4 in HCC was revealed by the bioinformatics analysis, with REXO4 overexpression being related to a negative outcome in HCC patients, in addition, REXO4 might be associated with the immune infiltration in liver cancer. Such a vital understanding of the functioning of REXO4 may furnish a foundation for new targeted drug therapy as well as a new direction for additional investigation into the underlying mechanisms of REXO4 carcinogenesis in liver cancer.
Collapse
Affiliation(s)
- Weipeng Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| | - Cheng Gao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbo Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lanqing Yao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoliang Liang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
18
|
Zhao Y, Liu L, Weng L. Comparisons of Underlying Mechanisms, Clinical Efficacy and Safety Between Anti-PD-1 and Anti-PD-L1 Immunotherapy: The State-of-the-Art Review and Future Perspectives. Front Pharmacol 2021; 12:714483. [PMID: 34305619 PMCID: PMC8293989 DOI: 10.3389/fphar.2021.714483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, diverse PD-1/PD-L1 blockades have demonstrated significant clinical benefit in across a wide range of tumor and cancer types. With the increasing number of PD-1/PD-L1 blockades available in the market, differences between the clinical performance of each of them started to be reported. Here, we provide a comprehensive historical and biological perspective regarding the underlying mechanism and clinical performance of PD-1/PD-L1 blockades, with an emphasis on the comparisons of their clinical efficacy and safety. The real-world evidence indicated that PD-1 blockade may be more effective than the PD-L1, though no significant differences were found as regards to their safety profiles. Future head-to-head studies are warranted for direct comparison between them. Finally, we summarize the yet to be elucidated questions and future promise of anti-PD-1/PD-L1 immunotherapy, including a need to explore novel biomarkers, novel combinatorial strategies, and their clinical use on chronic infection.
Collapse
Affiliation(s)
- Yating Zhao
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom.,Clinical Pharmacology, BeiGene Ltd., Shanghai, China
| | - Liu Liu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Liang Weng
- Key Laboratory of Molecular Radiation Oncology, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Abstract
Chimeric antigen receptor-engineer (CAR) T-cell therapy is a promising novel immunotherapy that has the potential to revolutionize cancer treatment. With four CAR T-cell therapies receiving FDA approval within the last 5 years, the role of CAR T-cells is anticipated to continue to evolve and expand. However, various aspects of CAR T-cell therapies remain poorly understood, and the therapies are associated with severe side effects [including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS)] that require prompt diagnosis and intervention. In this review, we discuss the role of imaging in diagnosing and monitoring toxicities from CAR T-cell therapies and explore the application of various imaging techniques, including use of PET/CT with novel radiotracers, to predict and assess treatment response and adverse effects. It is important for radiologists to recognize the imaging findings associated with each syndrome, as well as the typical and atypical treatment response patterns associated with CAR T-cell therapy. Given the expected increase in use of CAR T-cells in the near future, radiologists should familiarize themselves with the imaging findings encountered in these novel therapies, to provide comprehensive and up-to-date guidance for clinical management.
Collapse
|
20
|
Berland L, Kim L, Abousaway O, Mines A, Mishra S, Clark L, Hofman P, Rashidian M. Nanobodies for Medical Imaging: About Ready for Prime Time? Biomolecules 2021; 11:637. [PMID: 33925941 PMCID: PMC8146371 DOI: 10.3390/biom11050637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Recent advances in medical treatments have been revolutionary in shaping the management and treatment landscape of patients, notably cancer patients. Over the last decade, patients with diverse forms of locally advanced or metastatic cancer, such as melanoma, lung cancers, and many blood-borne malignancies, have seen their life expectancies increasing significantly. Notwithstanding these encouraging results, the present-day struggle with these treatments concerns patients who remain largely unresponsive, as well as those who experience severely toxic side effects. Gaining deeper insight into the cellular and molecular mechanisms underlying these variable responses will bring us closer to developing more effective therapeutics. To assess these mechanisms, non-invasive imaging techniques provide valuable whole-body information with precise targeting. An example of such is immuno-PET (Positron Emission Tomography), which employs radiolabeled antibodies to detect specific molecules of interest. Nanobodies, as the smallest derived antibody fragments, boast ideal characteristics for this purpose and have thus been used extensively in preclinical models and, more recently, in clinical early-stage studies as well. Their merit stems from their high affinity and specificity towards a target, among other factors. Furthermore, their small size (~14 kDa) allows them to easily disperse through the bloodstream and reach tissues in a reliable and uniform manner. In this review, we will discuss the powerful imaging potential of nanobodies, primarily through the lens of imaging malignant tumors but also touching upon their capability to image a broader variety of nonmalignant diseases.
Collapse
Affiliation(s)
- Léa Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
| | - Lauren Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Chemistry and Bioengineering, Harvard University, Cambridge, MA 02138, USA
| | - Omar Abousaway
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Andrea Mines
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Center Hospital, 06100 Nice, France
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, Terreno E, Deandreis D. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Molecules 2021; 26:2201. [PMID: 33920423 PMCID: PMC8069316 DOI: 10.3390/molecules26082201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is an effective therapeutic option for several cancers. In the last years, the introduction of checkpoint inhibitors (ICIs) has shifted the therapeutic landscape in oncology and improved patient prognosis in a variety of neoplastic diseases. However, to date, the selection of the best patients eligible for these therapies, as well as the response assessment is still challenging. Patients are mainly stratified using an immunohistochemical analysis of the expression of antigens on biopsy specimens, such as PD-L1 and PD-1, on tumor cells, on peritumoral immune cells and/or in the tumor microenvironment (TME). Recently, the use and development of imaging biomarkers able to assess in-vivo cancer-related processes are becoming more important. Today, positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is used routinely to evaluate tumor metabolism, and also to predict and monitor response to immunotherapy. Although highly sensitive, FDG-PET in general is rather unspecific. Novel radiopharmaceuticals (immuno-PET radiotracers), able to identify specific immune system targets, are under investigation in pre-clinical and clinical settings to better highlight all the mechanisms involved in immunotherapy. In this review, we will provide an overview of the main new immuno-PET radiotracers in development. We will also review the main players (immune cells, tumor cells and molecular targets) involved in immunotherapy. Furthermore, we report current applications and the evidence of using [18F]FDG PET in immunotherapy, including the use of artificial intelligence (AI).
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Artificial Intelligence
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Fluorodeoxyglucose F18/administration & dosage
- Fluorodeoxyglucose F18/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/chemistry
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/diagnostic imaging
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Positron-Emission Tomography/methods
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemical synthesis
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
- Department of Nuclear Medicine, Kantonsspital Baden, 5004 Baden, Switzerland
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
22
|
Makuku R, Khalili N, Razi S, Keshavarz-Fathi M, Rezaei N. Current and Future Perspectives of PD-1/PDL-1 Blockade in Cancer Immunotherapy. J Immunol Res 2021; 2021:6661406. [PMID: 33681388 PMCID: PMC7925068 DOI: 10.1155/2021/6661406] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer immunotherapy, which reactivates weakened immune cells of cancer patients, has yielded great success in recent years. Among immunotherapeutic agents, immune checkpoint inhibitors have been of particular interest and have gained approval by the FDA for treatment of cancers. Immune checkpoint blockade through targeting programmed cell death protein-1 (PD-1) has demonstrated promising antitumor effects in cancer immunotherapy of many different solid and hematologic malignancies. However, despite promising results, a favorable response is observed only in a fraction of patients, and there is still lack of a single therapy modality with curative ability. In this paper, we review the current and future perspectives of PD-1/L1 blockade in cancer immunotherapy, with a particular focus on predictive biomarkers of response to therapy. We also discuss the adverse events associated with PD-1/L1/2 inhibitors, ranging from severe life-threatening conditions such as autoimmune myocarditis to mild and moderate reactions such as skin rashes, and explore the potential strategies for improving the efficacy of immunotherapy with PD-1/L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|