1
|
Liu H, Yang Y, Ma Z, Pei Y. Chiral Inversion of Au 40(SR) 24 Nanocluster Driven by Rotation of Gold Tetrahedra in the Kekulé-like Core. J Phys Chem A 2024; 128:5481-5489. [PMID: 38978476 DOI: 10.1021/acs.jpca.4c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Studying the chiral characteristics and chiral inversion mechanisms of gold nanoclusters is important to promote their applications in the field of chiral catalysis and chiral recognition. Herein, we investigated the chiral inversion process of the Au40(SR)24 nanocluster and its derivatives using density functional theory calculations. The results showed that the chiral inversion process can be achieved by rotation of tetrahedra units in the gold core without breaking the Au-S bond. This work found that Au40 nanoclusters protected by different ligands have different chiral inversion mechanisms, and the difference is mainly attributable to the steric effects of the ligands. Moreover, the chiral inversion of the derivative clusters (Au34, Au28, and Au22) of the Au40 nanocluster can also be accomplished by the rotation of the Au4 tetrahedra units in the gold core. The energy barrier in the chiral inversion process of gold nanoclusters increases with the decrease of Au4 tetrahedra units in the gold core. This work identifies a chiral inversion mechanism with lower reaction energy barriers and provided a theoretical basis for the study of gold nanocluster chirality.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Ying Yang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Zhongyun Ma
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
| |
Collapse
|
2
|
Pang Y, Tao X, Qin Z, Jiang M, Song E, Song Y. Chiral silver nanoparticles with surface-anchored L(D)-Cys exhibit dissimilar biological characteristics in vitro but not in vivo. Toxicol Lett 2024; 398:28-37. [PMID: 38851367 DOI: 10.1016/j.toxlet.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
This work investigated the influence of surface chirality on cellular internalization, cytotoxicity, and tissue distribution of silver nanoparticles (AgNPs). D-cysteine and L-cysteine are chiral forms of the amino acid cysteine. These enantiomers exhibit distinct spatial arrangements, with D-cysteine having a different configuration from L-cysteine. This structural dissimilarity can lead to variations in how these forms interact with biological systems, potentially impacting their cytotoxic responses. Four distinct types of AgNPs were synthesized, each possessing a unique surface coating: pristine AgNPs (pAgNPs), L-cysteine coated AgNPs (AgNPs@L-Cys), D-cysteine coated AgNPs (AgNPs@D-Cys), and racemic AgNPs coated with both L-Cys and D-Cys (AgNPs@L/D-Cys). We found chiral-dependent cytotoxicity of AgNPs on J774A.1 cells. Specifically, AgNPs@L-Cys exhibited the highest toxicity, and AgNPs@D-Cys exhibited the lowest toxicity. Meanwhile, the cellular uptake of the AgNPs correlated nicely with their cytotoxicity, with AgNPs@L-Cys being internalized to the greatest extent while AgNPs@D-Cys displays the least internalization. Scavenger receptors and clathrin predominantly mediate the cellular internalization of these AgNPs. Strikingly, the dissimilar cellular internalization and cytotoxicity of AgNPs with different chirality were eliminated upon protein corona coverage. Notably, following intravenous injection in mice, these four types of AgNPs showed similar patterns among various organs due to the inevitable protein adsorption in the bloodstream. These findings underscored the pivotal role of surface chirality in governing the biological interactions and toxicity of AgNPs.
Collapse
Affiliation(s)
- Yingxin Pang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China; Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, China.
| | - Zongmin Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Muran Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
| |
Collapse
|
3
|
Hameed S, Bhattarai P, Gong Z, Liang X, Yue X, Dai Z. Ultrasmall porphyrin-silica core-shell dots for enhanced fluorescence imaging-guided cancer photodynamic therapy. NANOSCALE ADVANCES 2022; 5:277-289. [PMID: 36605795 PMCID: PMC9765644 DOI: 10.1039/d2na00704e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Clinically used small-molecular photosensitizers (PSs) for photodynamic therapy (PDT) share similar disadvantages, such as the lack of selectivity towards cancer cells, short blood circulation time, life-threatening phototoxicity, and low physiological solubility. To overcome such limitations, the present study capitalizes on the synthesis of ultra-small hydrophilic porphyrin-based silica nanoparticles (core-shell porphyrin-silica dots; PSDs) to enhance the treatment outcomes of cancer via PDT. These ultra-small PSDs, with a hydrodynamic diameter less than 7 nm, have an excellent aqueous solubility in water (porphyrin; TPPS3-NH2) and enhanced tumor accumulation therefore exhibiting enhanced fluorescence imaging-guided PDT in breast cancer cells. Besides ultra-small size, such PSDs also displayed an excellent biocompatibility and negligible dark cytotoxicity in vitro. Moreover, PSDs were also found to be stable in other physiological solutions as a function of time. The fluorescence imaging of porphyrin revealed a prolonged residence time of PSDs in tumor regions, reduced accumulation in vital organs, and rapid renal clearance upon intravenous injection. The in vivo study further revealed reduced tumor growth in 4T1 tumor-bearing bulb mice after laser irradiation explaining the excellent photodynamic therapeutic efficacy of ultra-small PSDs. Thus, ultrasmall hydrophilic PSDs combined with excellent imaging-guided therapeutic abilities and renal clearance behavior represent a promising platform for cancer imaging and therapy.
Collapse
Affiliation(s)
- Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab Lahore 54000 Pakistan
| | - Pravin Bhattarai
- CÚRAM-SFI Research Centre for Medical Devices, Biomedical Sciences, University of Galway Ireland
| | - Zhuoran Gong
- Department of Biomedical Engineering, College of Future Technology, Peking University Beijing 100871 China
| | - Xiaolong Liang
- Department of Ultrasonography, Peking University Third Hospital Beijing 100191 China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology Harbin 150001 China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University Beijing 100871 China
| |
Collapse
|
4
|
Fan X, Li X, Liu H, Xu F, Ji X, Chen Y, Li C. A ROCK1 Inhibitior Fasudil Alleviates Cardiomyocyte Apoptosis in Diabetic Cardiomyopathy by Inhibiting Mitochondrial Fission in a Type 2 Diabetes Mouse Model. Front Pharmacol 2022; 13:892643. [PMID: 35865967 PMCID: PMC9294374 DOI: 10.3389/fphar.2022.892643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) often involves cardiovascular complications; however, treatment regimens are limited. ROCK1 (rho-associated coiled-coil containing protein kinase 1) serves as a pathological factor in several diabetic complications. Herein, we aimed to explore the effect of Fasudil (a ROCK1 inhibitor) on the progress of cardiac dysfunction in type 2 DM (T2DM), and to explore the possible mechanisms. Type II diabetic mice models were established by inducing insulin resistance through a high-fat diet combined with low-dose streptozotocin (STZ) injection. NMCMs (neonatal mouse ventricular cardiac myocytes) in the control group were treated with 5.5 mM glucose, while those in the High Glucose (HG) group were treated with 33 mM glucose and 10 nmol/L insulin. In vivo, we found that type 2 diabetes enhanced the expression and activation of ROCK1 (p < 0.05). The ROCK1 inhibitor, Fasudil, prevented cardiac dysfunction, fibrosis, oxidative stress and myocardial ultrastructural disorders (p < 0.05) in the diabetic mice. In vitro, ROCK1 was upregulated in HG-induced cardiomyocytes, and ROCK1 inhibition using Fasudil reversed the increased apoptosis, consistent with in vivo results. Mechanistically, ROCK1 inhibition abrogated apoptosis, relieved mitochondrial fission, and efficiently attenuated the escalated production of reactive oxygen species in vitro and in vivo. The content of Ser616-phosphorylated dynamin-related protein 1 (Drp1) increased while ROCK1 led to apoptosis in HG-treated cardiomyocytes, which could be partly neutralized by ROCK1 inhibition with Fasudil, consistent with the in vivo results. Fasudil attenuated the cardiac dysfunction in diabetes by decreasing excessive mitochondrial fission via inhibiting Drp1 phosphorylation at serine 616.
Collapse
Affiliation(s)
- Xinhui Fan
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoxing Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Huiruo Liu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Yuguo Chen, ; Chuanbao Li,
| | - Chuanbao Li
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Yuguo Chen, ; Chuanbao Li,
| |
Collapse
|
5
|
Tang H, Li Q, Yan W, Jiang X. Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Tang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Qizhen Li
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Weixiao Yan
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
6
|
Tang H, Li Q, Yan W, Jiang X. Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angew Chem Int Ed Engl 2021; 60:13829-13834. [PMID: 33755292 DOI: 10.1002/anie.202101609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Severe toxicity and rapid in vivo clearance of cationic nanomaterials seriously hinder their clinical translation. Present strategies to improve the biosafety and in vivo performance of cationic nanomaterials require neutralization of positive charge, which often compromises their efficacy. Herein, we report that substituting L-glutathione (L-GSH) on cationic gold nanoclusters (GNCs) with its D-counterpart can effectively improve the biosafety and pharmacokinetics. Compared with L-GNCs, D-GNCs do not exhibit cellular cytotoxicity, hemolysis, or acute damage to organs. Cationic D-GNCs show less cell internalization than L-GNCs, and do not induce cellular apoptosis. In vivo, the chirality of surface ligands distinctly affects the pharmacokinetics and tumor targeting abilities of D-/L-GNCs. D-GNCs show higher extended circulation time in blood plasma compared to similarly-sized and poly (ethylene glycol)-modified gold nanoparticles. This work demonstrates that the choice of chirality of surface ligands can determine toxicities and pharmacokinetics of cationic nanomaterials.
Collapse
Affiliation(s)
- Hao Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Weixiao Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
7
|
Gelpí-Domínguez S, Rossi AR, Gascón JA. Insights into diastereotopic effects in thiolated gold nanoclusters. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Gao P, Chang X, Zhang D, Cai Y, Chen G, Wang H, Wang T. Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharm Sin B 2021; 11:1175-1199. [PMID: 34094827 PMCID: PMC8144895 DOI: 10.1016/j.apsb.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic nanoparticles are designed to enhance efficacy, real-time monitoring, targeting accuracy, biocompatibility, biodegradability, safety, and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials. Recently, bio-inspired metal nanoclusters (NCs) consisting of several to roughly dozens of atoms (<2 nm) have attracted increasing research interest, owing to their ultrafine size, tunable fluorescent capability, good biocompatibility, variable metallic composition, and extensive surface bio-functionalization. Hybrid core-shell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules, such as proteins (enzymes, antigens, and antibodies), DNA, and specific cells, create fluorescently visualized molecular nanoparticle. The resultant nanoparticles possess combinatorial properties and synergistic efficacy, such as simplicity, active bio-responsiveness, improved applicability, and low cost, for combination therapy, such as accurate targeting, bioimaging, and enhanced therapeutic and biocatalytic effects. In contrast to larger nanoparticles, bio-inspired metal NCs allow rapid renal clearance and better pharmacokinetics in biological systems. Notably, advances in nanoscience, interfacial chemistry, and biotechnologies have further spurred researchers to explore bio-inspired metal NCs for therapeutic purposes. The current review presents a comprehensive and timely overview of various metal NCs for various therapeutic applications, with a special emphasis on the design rationale behind the use of biomolecules/cells as the main scaffolds. In the different hybrid platform, we summarize the current challenges and emerging perspectives, which are expected to offer in-depth insight into the rational design of bio-inspired metal NCs for personalized treatment and clinical translation.
Collapse
Affiliation(s)
- Peng Gao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Chang
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Hao Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Badu S, Melnik R, Singh S. Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1804564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
- BCAM-Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Vairavel M, Devaraj E, Shanmugam R. An eco-friendly synthesis of Enterococcus sp.-mediated gold nanoparticle induces cytotoxicity in human colorectal cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8166-8175. [PMID: 31900772 DOI: 10.1007/s11356-019-07511-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/22/2019] [Indexed: 05/06/2023]
Abstract
Gold nanoparticles (AuNPs) have become frequently used materials in biotechnological and biomedical applications including cancer. They can be commonly synthesized by biological and chemical methods. In the present study, we synthesized Enterococcus-mediated AuNPs and evaluated their cytotoxicity in human colorectal cancer cell line (HT-29). AuNPs are synthesized intracellularly using Enterococcus sp. RMAA. Characterization of AuNPs has done using UV spectrophotometry and transmission electron microscope. Cytotoxicity was evaluated by MTT assay. Intercellular reactive oxygen species (ROS) expression and apoptosis-related morphology were evaluated by dichlorodihydrofluorescein diacetate and acridine orange/ethidium bromide staining via fluorescence microscopy. JC-1 staining and caspase 3 immunofluorescence expression were analyzed by confocal microscopy. Enterococcus sp. RMAA-mediated AuNPs are spherical and induced concentration-dependent cytotoxicity in HT-29 cells. AuNP treatments also induced ROS and caspase-3 expressions and reduced the mitochondrial membrane potential. Morphology related to apoptotic changes was also noticed after AuNP treatments in HT-29 cells. The present study revealed that Enterococcus-derived AuNPs induced apoptotic cell death in HT-29 cells and suggests that AuNPs could be used as a pro apoptotic agent for colon cancer treatment.
Collapse
Affiliation(s)
- Mathivadani Vairavel
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
- Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College (SDC), Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India.
| | - Rajeshkumar Shanmugam
- Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
11
|
Zhao X, Zang SQ, Chen X. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem Soc Rev 2020; 49:2481-2503. [DOI: 10.1039/d0cs00093k] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is ubiquitous in nature and plays mysterious and essential roles in maintaining key biological and physiological processes.
Collapse
Affiliation(s)
- Xueli Zhao
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
12
|
Yu XA, Lu M, Luo Y, Hu Y, Zhang Y, Xu Z, Gong S, Wu Y, Ma XN, Yu BY, Tian J. A cancer-specific activatable theranostic nanodrug for enhanced therapeutic efficacy via amplification of oxidative stress. Am J Cancer Res 2020; 10:371-383. [PMID: 31903126 PMCID: PMC6929611 DOI: 10.7150/thno.39412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Despite considerable advances, the reactive oxygen species (ROS)-mediated cancer treatment suffers from the problems of up-regulation of adaptive antioxidants in cancer cells as well as side effects to normal cells. Therefore, development of a new generation of cancer-specific nanomedicine capable of amplifying oxidative stress would be of great interest for accurate and effective cancer treatment. Methods: Herein, transferrin (Tf)-decorated, dihydroartemisinin (DHA), L-buthionine-sulfoximine (BSO), and CellROX-loaded liposomal nanoparticles (Tf-DBC NPs) were developed for precise cancer theranositcs. Tf-DBC NPs could specifically recognize cancer cells via Tf-Tf receptor binding and be uptaken into the lysosomes of cancer cells, where Tf-DBC NPs were activated to release Fe(II), DHA, and BSO. ROS was generated by DHA in the presence of Fe(II), and GSH was depleted by BSO to disrupt the redox balance in cancer cells. Furthermore, CellROX, as a fluorescent probe for imaging of intracellular oxidative stress, was used to monitor the therapeutic efficacy. Results: The integration of Tf, DHA, and BSO into the acidic pH-responsive liposomes selectively and effectively killed cancer cells and prevented the oxidative injury to normal cells. The high oxidative state was visualized at the tumor site and the amplification of oxidative stress enabled tumor eradication by Tf-DBC NPs, demonstrating the successful implementation of this novel strategy in vivo. Conclusion: Our study provides a new paradigm for the design of ROS-mediated therapeutics and offers a promising perspective for precise cancer treatment.
Collapse
|
13
|
Roy Bhattacharya S, Bürgi T. Amplified vibrational circular dichroism as a manifestation of the interaction between a water soluble gold nanocluster and cobalt salt. NANOSCALE 2019; 11:23226-23233. [PMID: 31782463 DOI: 10.1039/c9nr07534h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vibrational circular dichroism (VCD) is a powerful tool for the structure determination of dissolved molecules. However, the application of VCD to nanostructures is limited up to now due to the weakness of the effect and hence the low signal intensities. Here we show that the addition of a small amount of cobalt(ii) drastically enhances the VCD signals of a thiolate-protected gold cluster Au25(Capt)18 (Capt = captopril) in aqueous solution. An increase of VCD signal intensity of at least one order of magnitude is observed. The enhancement depends on the amount of CoCl2 added but almost an order of magnitude enhancement is already observed at a cluster : CoCl2 ratio of 1 : 1. In contrast, circular dichroism (CD) and infrared spectra hardly change. The increase in VCD intensity goes along with a qualitative change of the spectrum and the enhancement increases with time reaching a stable state only after several hours. The enhancement is due to an interaction between the cobalt(ii) and the cluster, which also leads to quenching of its fluorescence. The behaviour is completely different for free captopril, where the addition of cobalt(ii) salt does not affect the VCD spectrum.
Collapse
Affiliation(s)
- Sarita Roy Bhattacharya
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
14
|
Wang T, Li L, Yang Q, Song W, Hou Y, Duan W, Shi X. Visualization and high sensitivity detection of Fe 3+ and Cu 2+ based on glutathione functionalized gold nanoclusters. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:2233-2240. [PMID: 32245915 DOI: 10.2166/wst.2019.407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, a glutathione functionalized gold nanocluster (GSH-AuNCs) was prepared. GSH-AuNCs can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide to produce a blue-green ox-TMB. By using its peroxidase activity and the GSH-AuNCs-TMB-H2O2 system, the visualization of Fe3+ and Cu2+ and the high sensitivity detection of Fe3+ and Cu2+ can be realized according to the change of absorbance value and color of the system. The results showed that the sensitivity of the system to detect Fe3+ and Cu2+ in industrial wastewater reached 1.25 × 10-9 M and 1.25 × 10-10M, respectively. At the same time, the chelating agents NH4F and EDTA · 2Na were introduced to realize the selective detection of the two ions under the coexistence of Fe3+ and Cu2+ ions.
Collapse
Affiliation(s)
- Tielong Wang
- School of Economics and Management, Beijing Forestry University, Beijing 100083, China; Chinese Academy of Inspection and Quarantine, Beijing 100083, China E-mail:
| | - Li Li
- Chinese Academy of Inspection and Quarantine, Beijing 100083, China E-mail:
| | - Qian Yang
- Chinese Academy of Inspection and Quarantine, Beijing 100083, China E-mail:
| | - Weiming Song
- School of Economics and Management, Beijing Forestry University, Beijing 100083, China
| | - Yang Hou
- Chinese Academy of Inspection and Quarantine, Beijing 100083, China E-mail:
| | - Wei Duan
- Chinese Academy of Inspection and Quarantine, Beijing 100083, China E-mail:
| | - Xiaoliang Shi
- College of Economics and Management, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
15
|
Wang L, Zhang C, Li T, Duan M, Xia F, Li X, Song C, Pan S, Liu B, Cui D. A modular approach for cytosolic protein delivery: metal ion-induced self-assembly of gold nanoclusters as a general platform. NANOSCALE 2019; 11:22237-22242. [PMID: 31740916 DOI: 10.1039/c9nr07334e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed a versatile and modular method for cytosolic protein delivery through metal ion-induced co-assembly of gold nanoclusters and proteins into supramolecular assemblies. The versatility and high efficiency of this strategy to assemble and deliver various proteins into living cells were demonstrated. Importantly, the activity of proteins was maintained during the delivery. This modular approach provides an exciting and promising new nano-platform for cytosolic protein delivery.
Collapse
Affiliation(s)
- Lirui Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Utembe W. Chirality, a neglected physico-chemical property of nanomaterials? A mini-review on the occurrence and importance of chirality on their toxicity. Toxicol Lett 2019; 311:58-65. [DOI: 10.1016/j.toxlet.2019.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
17
|
Byeon JC, Lee SE, Kim TH, Ahn JB, Kim DH, Choi JS, Park JS. Design of novel proliposome formulation for antioxidant peptide, glutathione with enhanced oral bioavailability and stability. Drug Deliv 2019; 26:216-225. [PMID: 30843439 PMCID: PMC6407602 DOI: 10.1080/10717544.2018.1551441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop proliposome formulations to improve the oral bioavailability of l-glutathione (GSH), GSH-loaded proliposomes were prepared using the granule method. Mannitol was selected as an effective excipient to achieve the desired particle size, entrapment efficiency (EE), and solubility for oral delivery of the final formulation. To evaluate the effect of surface charge of proliposomes on the oral bioavailability of GSH, negative (F1-F4) and positive proliposomes (F5-F9) were prepared. Particle size of F1 and F5 was 167.8 ± 0.9 and 175.9 ± 2.0 nm, and zeta potential of F1 and F5 was -8.1 ± 0.7 and 21.1 ± 2.0 mV, respectively. Encapsulation efficiency of F1 and F5 was 58.6% and 54.7%, respectively. Considering their particle size, zeta potential, and EE, the proliposomes F1 and F5 were adopted as the optimal formulations for further experiments. Solid state characterization of the proliposomes confirmed lipid coating on the surface of mannitol. The release of GSH from F1 and F5 formulations was prolonged until 24 h and pH independent. The total antioxidant capacity of GSH was concentration-dependent and maintained after formulation of GSH proliposomes. Circular dichroism spectroscopy confirmed that the molecular structure of GSH was maintained in the proliposome formulations. GSH proliposomes exhibited no significant changes in particle size and zeta potential for 4 weeks. An oral bioavailability study in rats revealed that F5 exhibited 1.05-, 1.08-, and 1.11-fold higher bioavailability than F1, commercial capsule formulation, and pure GSH, respectively. In conclusion, the prepared GSH proliposomes enhanced the poor bioavailability of GSH and prolonged its duration of action.
Collapse
Affiliation(s)
- Jong Chan Byeon
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Sang-Eun Lee
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Tae-Hyeon Kim
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Jung Bin Ahn
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Dong-Hyun Kim
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Jin-Seok Choi
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea.,b Department of Medical Management , Chodang University , Jeollanam-do , South Korea
| | - Jeong-Sook Park
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| |
Collapse
|
18
|
Zhou T, Cheng Y, Zhang H, Wang G. Sunlight-Mediated Antibacterial Activity Enhancement of Gold Nanoclusters and Graphene Co-decorated Titanium Dioxide Nanocomposites. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01558-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Abstract
Cell death is crucial to human health and is related to various serious diseases. Therefore, generation of new cell death regulators is urgently needed for disease treatment. Nanoparticles (NPs) are now routinely used in a variety of fields, including consumer products and medicine. Exhibiting stability and ease of decoration, gold nanoparticles (GNPs) could be used in diagnosis and disease treatment. Upon entering the human body, GNPs contact human cells in the blood, targeting organs and the immune system. This property results in the disturbance of cell function and even cell death. Therefore, GNPs may act as powerful cell death regulators. However, at present, we are far from establishing a structure–activity relationship between the physicochemical properties of GNPs and cell death, and predicting GNP-induced cell death. In this review, GNPs’ size, shape, and surface properties are observed to play key roles in regulating various cell death modalities and related signaling pathways. These results could guide the design of GNPs for nanomedicine.
Collapse
Affiliation(s)
- Hainan Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jianbo Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
20
|
Bhunia S, Kumar S, Purkayastha P. Gold Nanocluster-Grafted Cyclodextrin Suprastructures: Formation of Nanospheres to Nanocubes with Intriguing Photophysics. ACS OMEGA 2018; 3:1492-1497. [PMID: 31458475 PMCID: PMC6641434 DOI: 10.1021/acsomega.7b01914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/24/2018] [Indexed: 05/05/2023]
Abstract
Glutathione (GSH)-coated gold nanoclusters (Au NCs) were synthesized in aqueous acidic medium. On deprotonation of the carboxyl groups of the GSH molecules under alkaline condition, the anionic ends react with the added cationic surfactant molecules to convert the Au NCs hydrophobic, resulting in loss of fluorescence due to apparent insolubility in water. The fluorescence is revived by adding cyclodextrins (CDs) that encapsulate the protruding hydrophobic tails of the surfactant molecules surrounding the GSH-coated Au NCs. While addition of β-CD showed maximum revival of the Au NC fluorescence, that by adding α-CD was lesser. Interestingly, on adding γ-CD, there was no increase in fluorescence of Au NCs at all. The size of CDs varies as γ- > β- > α-. It appears that the cavity size of the CD-hosts controls the fluorescence from the Au NCs abruptly, and the reason behind that was found to be formation of suprastructures, the shapes of which varied from spherical to cubic. The work shows the production of Au NC-grafted CD suprastructures that develop fluorescence on-off composites on the basis of their overall shapes.
Collapse
Affiliation(s)
- Soumyadip Bhunia
- Department
of Chemical Sciences and Center for Advanced Functional
Materials (CAFM), Indian Institute of Science
Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India
| | - Sumit Kumar
- Department
of Chemical Sciences and Center for Advanced Functional
Materials (CAFM), Indian Institute of Science
Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India
| | - Pradipta Purkayastha
- Department
of Chemical Sciences and Center for Advanced Functional
Materials (CAFM), Indian Institute of Science
Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India
- E-mail:
| |
Collapse
|
21
|
Zhang Q, Yang M, Zhu Y, Mao C. Metallic Nanoclusters for Cancer Imaging and Therapy. Curr Med Chem 2018; 25:1379-1396. [PMID: 28393695 PMCID: PMC6349033 DOI: 10.2174/0929867324666170331122757] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/11/2017] [Accepted: 03/15/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Nanoclusters are made of a few to tens of atoms with a size below 2 nm. Compared with nanoparticles, they exhibited excellent properties, such as tunable fluorescence, ease of conjugation, high quantum yield and biocompatibility, which are highly desired in the development of cancer nanotheranostics. Hence, the metallic nanoclusters have emerged as a newcomer in cancer nanomedicines. This review aims to summarize recently developed approaches to preparing metallic nanoclusters, highlight their applications in cancer theranostics, and provide a brief outlook for the future developments of nanoclusters in nanomedicine. METHOD We carried out a thorough literature search using online databases. The search was focused on a centered question. Irrelevant articles were excluded after further examination and directly relevant articles were included. The relevant articles were classified by the subjects and the information from these articles was synthesized. RESULTS One hundred and forty-three articles were included in this review. About eighty articles outlined the development in the synthetic methods of nanoclusters. The synthesis approaches include chemical reduction, photoreduction and so on. The progress in the application of gold and silver nanoclusters to cancer theranostics was described in fifteen and eight articles, respectively. The rest articles were about the advancements in the use of other metal nanoclusters and nanocluster nanocomposites as cancer theranostic agents. CONCLUSION This review summarizes the synthesis and use of metallic nanoclusters or their nanocomposites as cancer theranostic agents. It confirms their importance, advantages and potentials in serving as a new generation of cancer theranostics in clinics.
Collapse
Affiliation(s)
- Qing Zhang
- School of Materials Science and Engineering, Zhejiang
University, Hangzhou, Zhejiang, 310027, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of
Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang,
310058, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life
Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman,
OK, 73019, USA
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang
University, Hangzhou, Zhejiang, 310027, China
- Department of Chemistry & Biochemistry, Stephenson Life
Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman,
OK, 73019, USA
| |
Collapse
|
22
|
Yue C, Yang Y, Song J, Alfranca G, Zhang C, Zhang Q, Yin T, Pan F, de la Fuente JM, Cui D. Mitochondria-targeting near-infrared light-triggered thermosensitive liposomes for localized photothermal and photodynamic ablation of tumors combined with chemotherapy. NANOSCALE 2017; 9:11103-11118. [PMID: 28741634 DOI: 10.1039/c7nr02193c] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lonidamine, an anticancer drug that acts on mitochondria, has poor water solubility. Mitochondria are the primary source of cellular reactive oxygen species (ROS), which are necessary for photodynamic therapy. Hence, a mitochondria-targeting drug delivery system loaded with Lonidamine and a ROS-produced photosensitizer could improve the bioavailability of Lonidamine and maximize photodynamic therapeutic efficiency. Here we report, for the first time, new IR-780 and Lonidamine encapsulated mitochondria-targeting thermosensitive liposomes (IL-TTSL). DSPE-PEG2000-NH2 was coupled with triphenylphosphine to form DSPE-PEG2K-TPP. The liposomes (IL-TTSL) were self-assembled from DPPC, DSPC, DSPE-PEG2K-TPP, cholesterol, IR-780 and Lonidamine. Coupled linker modified triphenylphosphine (TPP) is cationic and can selectively accumulate several hundred-fold within mitochondria. Once the liposomes are located inside mitochondria, 808 nm laser irradiation could trigger photosensitizer IR-780 to elevate the local temperature, which could be utilized in photothermal therapy and induce the release of Lonidamine from the thermosensitive liposomes. Meanwhile, IR-780 could release ROS for photodynamic therapy in mitochondria and increase photodynamic therapeutic efficiency. Our results showed that the surface modification of the liposomes with triphenylphosphine cations had good mitochondria-targeting ability. The liposomes exhibited good biocompatibility and all components of the empty liposomes were safe to be used in humans. Few reports were related to IR-780 being used in photodynamic therapy and we proved this function of IR-780. Overall, the stealth liposomes provide a promising new strategy to realize mitochondria-targeting thermosensitive chemo-, photodynamic and photothermal combination therapy with a single light source for lung cancer.
Collapse
Affiliation(s)
- Caixia Yue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cui HD, Hu DH, Zhang JN, Gao GH, Zheng CF, Gong P, Xi XH, Sheng ZH, Cai LT. Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Kuznetsova V, Visheratina A, Ryan A, Martynenko I, Loudon A, Maguire C, Purcell-Milton F, Orlova A, Baranov A, Fedorov A, Prina-Mello A, Volkov Y, Gun'Ko Y. Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells. Chirality 2017; 29:403-408. [DOI: 10.1002/chir.22713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - A.K. Visheratina
- Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| | - A. Ryan
- Chemistry School, Trinity College Dublin; Dublin Ireland
| | - I.V. Martynenko
- Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| | - A. Loudon
- Chemistry School, Trinity College Dublin; Dublin Ireland
| | - C.M. Maguire
- Clinical Medicine, School of Medicine; Trinity College Dublin; Dublin Ireland
| | | | - A.O. Orlova
- Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| | - A.V. Baranov
- Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| | - A.V. Fedorov
- Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| | - A. Prina-Mello
- Clinical Medicine, School of Medicine; Trinity College Dublin; Dublin Ireland
| | - Y. Volkov
- Clinical Medicine, School of Medicine; Trinity College Dublin; Dublin Ireland
| | - Y.K. Gun'Ko
- Chemistry School, Trinity College Dublin; Dublin Ireland
- Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| |
Collapse
|
25
|
Lu J, Chang YX, Zhang NN, Wei Y, Li AJ, Tai J, Xue Y, Wang ZY, Yang Y, Zhao L, Lu ZY, Liu K. Chiral Plasmonic Nanochains via the Self-Assembly of Gold Nanorods and Helical Glutathione Oligomers Facilitated by Cetyltrimethylammonium Bromide Micelles. ACS NANO 2017; 11:3463-3475. [PMID: 28332821 DOI: 10.1021/acsnano.6b07697] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gold nanorods are excellent anisotropic building blocks for plasmonic chiral nanostructures. The near-infrared plasmonic band of nanorods makes them highly desirable for biomedical applications such as chiral bioimaging and sensing, in which a strong circular dichroism (CD) signal is required. Chiral assemblies of gold nanorods induced by self-associating peptides are especially attractive for this purpose as they exhibit plasmonic-enhanced chiroptical activity. Here, we showed that the presence of cetyltrimethylammonium bromide (CTAB) micelles in a gold nanorod solution promoted the self-association of l-/d-glutathione (GSH) and significantly enhanced the chirality of the resulting plasmonic nanochains. Chiroptical signals for the ensemble in the presence of CTAB micelles were 20 times greater than those obtained below the critical micelle concentration of CTAB. The strong optical activity was attributed to the formation of helical GSH oligomers in the hydrophobic core of the CTAB micelles. The helical GSH oligomers led the nanorods to assemble in a chiral, end-to-end crossed fashion. The CD signal intensities were also proportional to the fraction of nanorods in the nanochains. In addition, finite-difference time-domain simulations agreed well with the experimental extinction and CD spectra. Our work demonstrated a substantial effect from the CTAB micelles on gold nanoparticle assemblies induced by biomolecules and showed the importance of size matching between the inorganic nanobuilding blocks and the chiral molecular templates (i.e., the GSH oligomers in the present case) in order to attain strong chiroptical activities.
Collapse
Affiliation(s)
- Jun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
| | - Yi-Xin Chang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
| | - Ying Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
| | - Ai-Ju Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
| | - Jia Tai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
| | - Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
| | - Zhao-Yi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
| | - Yang Yang
- Department of Chemistry and Biochemistry and Department of Materials Science and Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Li Zhao
- School of Life Sciences, Jilin University , Changchun 130012, P.R. China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, P.R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P.R. China
| |
Collapse
|
26
|
Hou W, Xia F, Alfranca G, Yan H, Zhi X, Liu Y, Peng C, Zhang C, de la Fuente JM, Cui D. Nanoparticles for multi-modality cancer diagnosis: Simple protocol for self-assembly of gold nanoclusters mediated by gadolinium ions. Biomaterials 2017; 120:103-114. [DOI: 10.1016/j.biomaterials.2016.12.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/11/2016] [Accepted: 12/24/2016] [Indexed: 12/27/2022]
|
27
|
Expression analysis of microRNAs and mRNAs in ovarian granulosa cells after microcystin-LR exposure. Toxicon 2017; 129:11-19. [PMID: 28161121 DOI: 10.1016/j.toxicon.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/25/2022]
Abstract
Microcystin is a cyclic heptapeptide compounds which could cause female mammals' reproductive toxicity. Ovarian granulosa cells (GCs) are essential for the growth and development of follicles. In this study, after mouse granulosa cells (mGCs) treated with microcystin-LR (MC-LR) for 48 h, microRNAs (miRNAs) and mRNAs microarray technology were adopted to detect the expression of miRNAs and mRNAs. The results showed that 125 miRNAs and 283 mRNAs changed significantly, including 50 miRNAs down-regulated (fold change < -1.2), 75 miRNAs up-regulated (fold change > 1.2), 162 mRNAs down-regulated (fold change < -1.15) and 121 mRNAs up-regulated (fold change > 1.15) in treated group compared with the control group. Functional analysis showed that significant changed miRNAs and mRNAs are mainly involved in proliferation, apoptosis, immunity, metabolism and other biological processes of mGCs. By KEGG pathways analysis, we found that differentially expressed miRNAs and mRNAs mainly participated in apoptosis, formation of cancer, proliferation, production of hormones and other related signal pathways. miRNA-gene network analysis indicated that miR-29b-3p, miR-29a-3p, miR-29c-3p, miR-1906, miR-182-5p, growth factor receptor bound protein 2-associated protein 2 (Gab2), FBJ osteosarcoma oncogene (Fos), insulin-like growth factor 1 (Igf1), mannosidase 1, alpha (Man1a) are key miRNAs and genes. The microarray results were validated by real-time fluorescent quantitative PCR (qRT-PCR).
Collapse
|
28
|
Dutta D, Chattopadhyay A, Ghosh SS. Cationic BSA Templated Au–Ag Bimetallic Nanoclusters As a Theranostic Gene Delivery Vector for HeLa Cancer Cells. ACS Biomater Sci Eng 2016; 2:2090-2098. [DOI: 10.1021/acsbiomaterials.6b00517] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Deepanjalee Dutta
- Centre for Nanotechnology, ‡Department of Chemistry, §Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, ‡Department of Chemistry, §Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, ‡Department of Chemistry, §Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
29
|
Yue C, Yang Y, Zhang C, Alfranca G, Cheng S, Ma L, Liu Y, Zhi X, Ni J, Jiang W, Song J, Fuente JMDL, Cui D. ROS-Responsive Mitochondria-Targeting Blended Nanoparticles: Chemo- and Photodynamic Synergistic Therapy for Lung Cancer with On-Demand Drug Release upon Irradiation with a Single Light Source. Am J Cancer Res 2016; 6:2352-2366. [PMID: 27877240 PMCID: PMC5118600 DOI: 10.7150/thno.15433] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/19/2016] [Indexed: 12/23/2022] Open
Abstract
Mitochondria in cancer cells maintain a more negative membrane potential than normal cells. Mitochondria are the primary source of cellular reactive oxygen species (ROS), which are necessary for photodynamic therapy. Thus, the strategy of targeting mitochondria can maximize the photodynamic therapeutic efficiency for cancer. Here we report, for the first time, synthesis of a new mitochondria-targeting drug delivery system, ZnPc/CPT-TPPNPs. To synthesize this novel compound, polyethylene glycol was functionalized with thioketal linker-modified camptothecin (TL-CPT) and triphenylphosphonium to form the block copolymer, TL-CPT-PEG1K-TPP. The ZnPc/CPT-TPPNPs was constructed for delivery of the photosensitizer Zinc phthalocyanine (ZnPc) by blending the block copolymer TL-CPT-PEG1K-TPP with 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)] (DSPE-PEG).Triphenylphosphine can accumulate selectively several hundred-fold within mitochondria. The thioketal linker is ROS-responsive and CPT can be released upon ROS cleavage. We also show that the ZnPc loaded in ZnPc/CPT-TPPNPs absorbed the 633 nm laser to produce ROS, which could be utilized both in photodynamic therapy and to cleave the thioketal linker thereby releasing camptothecin for chemotherapy. Thus, the mitochondria-targeting nanoparticles could elevate photodynamic therapeutic efficacy. Our results showed that surface modification of the nanoparticles with triphenylphosphine cations facilitated efficient subcellular delivery of the photosensitizer to mitochondria. The nanoparticles had a good ROS-responsive effect to release CPT, which could transfer to the nucleus and interfere with DNA replication as a topoisomeraseⅠinhibitor. Thus, the blended nanoparticles provide a new promising approach as a mitochondria-targeting ROS-activated chemo- and photodynamic therapy with a single light source for lung cancer.
Collapse
|
30
|
Ma Y, Fu H, Zhang C, Cheng S, Gao J, Wang Z, Jin W, Conde J, Cui D. Chiral Antioxidant-based Gold Nanoclusters Reprogram DNA Epigenetic Patterns. Sci Rep 2016; 6:33436. [PMID: 27633378 PMCID: PMC5025748 DOI: 10.1038/srep33436] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifications sit 'on top of' the genome and influence DNA transcription, which can force a significant impact on cellular behavior and phenotype and, consequently human development and disease. Conventional methods for evaluating epigenetic modifications have inherent limitations and, hence, new methods based on nanoscale devices are needed. Here, we found that antioxidant (glutathione) chiral gold nanoclusters induce a decrease of 5-hydroxymethylcytosine (5hmC), which is an important epigenetic marker that associates with gene transcription regulation. This epigenetic change was triggered partially through ROS activation and oxidation generated by the treatment with glutathione chiral gold nanoclusters, which may inhibit the activity of TET proteins catalyzing the conversion of 5-methylcytosine (5mC) to 5hmC. In addition, these chiral gold nanoclusters can downregulate TET1 and TET2 mRNA expression. Alteration of TET-5hmC signaling will then affect several downstream targets and be involved in many aspects of cell behavior. We demonstrate for the first time that antioxidant-based chiral gold nanomaterials have a direct effect on epigenetic process of TET-5hmC pathways and reveal critical DNA demethylation patterns.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hualin Fu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shangli Cheng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts, USA
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
31
|
Deng J, Wu S, Yao M, Gao C. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles. Sci Rep 2016; 6:31595. [PMID: 27531648 PMCID: PMC4987644 DOI: 10.1038/srep31595] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.
Collapse
Affiliation(s)
- Jun Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sai Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengyun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Zhao Y, Yang Y, Zhao J, Weng P, Pang Q, Song Q. Dynamic Chiral Nanoparticle Assemblies and Specific Chiroplasmonic Analysis of Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:4877-83. [PMID: 27115447 DOI: 10.1002/adma.201600369] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/03/2016] [Indexed: 05/28/2023]
Abstract
Fabricated Ag@Au core-shell nanoparticle (CS NP) assemblies exhibit pronounced and reverse chiral bisignate plasmonic signals spanning 400 to 580 nm, in comparison to Ag NP assemblies. The time-dependent chiro-optical response of assemblies that shift with shell deposition is systematically recorded. Chiral Ag@Au CS NP assemblies first achieve the special discrimination of circulating tumor cells with HER2 overexpression.
Collapse
Affiliation(s)
- Yuan Zhao
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yaxin Yang
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Ping Weng
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Qingfeng Pang
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Qijun Song
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
33
|
Zhang L, Wang T, Shen Z, Liu M. Chiral Nanoarchitectonics: Towards the Design, Self-Assembly, and Function of Nanoscale Chiral Twists and Helices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1044-59. [PMID: 26385875 DOI: 10.1002/adma.201502590] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/13/2015] [Indexed: 05/23/2023]
Abstract
Helical structures such as double helical DNA and the α-helical proteins found in biological systems are among the most beautiful natural structures. Chiral nanoarchitectonics, which is used here to describe the hierarchical formation and fabrication of chiral nanoarchitectures that can be observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), or transmission electron microscopy (TEM), is one of the most effective ways to mimic those natural chiral nanostructures. This article focuses on the formation, structure, and function of the most common chiral nanoarchitectures: nanoscale chiral twists and helices. The types of molecules that can be designed and how they can form hierarchical chiral nanoarchitectures are explored. In addition, new and unique functions such as amplified chiral sensing, chiral separation, biological effects, and circularly polarized luminescence associated with the chiral nanoarchitectures are discussed.
Collapse
Affiliation(s)
- Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Zhaocun Shen
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| |
Collapse
|
34
|
Yue C, Zhang C, Alfranca G, Yang Y, Jiang X, Yang Y, Pan F, de la Fuente JM, Cui D. Near-Infrared Light Triggered ROS-activated Theranostic Platform based on Ce6-CPT-UCNPs for Simultaneous Fluorescence Imaging and Chemo-Photodynamic Combined Therapy. Theranostics 2016; 6:456-69. [PMID: 26941840 PMCID: PMC4775857 DOI: 10.7150/thno.14101] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/31/2015] [Indexed: 12/26/2022] Open
Abstract
Many drug controlled release methods have been integrated in multifunctional nanoparticles, such as pH-, redox-, temperature-, enzyme-, and light-responsive release. However, few report is associated with the ROS responsive drug controlled release. Herein, a thioketal linker-based ROS responsive drug (camptothecin conjugated with thioketal linker, abbreviated as TL-CPT) was prepared and the thioketal linker could be cleaved by ROS(reactive oxygen species). To achieve cancer simultaneous optical imaging, photodynamic therapy and chemotherapy, the photosensitizer Chlorin e6(Ce6), TL-CPT and carboxyl-mPEG were loaded on the upconversion nanoparticles (UCNPs), which were named as Ce6-CPT-UCNPs. Under 980 nm laser irradiation, Ce6-CPT-UCNPs emitted a narrow emission band at 645-675 nm which was overlapped with Ce6 absorption peak. Ce6 absorbed the light to produce ROS, which was used for photodynamic therapy and to cleave the thioketal linker in Ce6-CPT-UCNPs to release camptothecin for chemotherapy. Meanwhile, Ce6 absorbed the light, was used for near-infrared fluorescence imaging. The in vivo biodistribution studies showed that the prepared nanoparticles had high orthotopic lung cancer targeting efficiency. The in vivo therapeutic results demonstrated that NCI-H460 lung cancers could be completely eliminated by combining chemo- and photodynamic therapy under 980 nm laser irradiation. The prepared multifunctional Ce6-CPT-UCNPs have great potential in applications such as cancer targeted fluorescent imaging, simultaneous ROS activated chemo- and photodynamic therapy in near future.
Collapse
Affiliation(s)
- Caixia Yue
- 1. Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- 2. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chunlei Zhang
- 1. Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Gabriel Alfranca
- 1. Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yao Yang
- 1. Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinquan Jiang
- 3. Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, P. R. China
| | - Yuming Yang
- 1. Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fei Pan
- 1. Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jesús M. de la Fuente
- 1. Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Daxiang Cui
- 1. Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- 4. National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
35
|
Milton FP, Govan J, Mukhina MV, Gun'ko YK. The chiral nano-world: chiroptically active quantum nanostructures. NANOSCALE HORIZONS 2016; 1:14-26. [PMID: 32260598 DOI: 10.1039/c5nh00072f] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chirality is one of the key factors in molecular recognition, therefore the development of new chiral nanoparticles is of great interest to many fields of scientific endeavour including chemistry, biochemistry, pharmacology and medicine. Knowledge of the fundamental concepts relevant to chirality in nanosystems is also very important for further advancement of nanoscience and nanotechnology in general. Over the past years, the use of stereospecific chiral stabilising molecules has opened a new avenue to the area of nanocrystal research. In this review article we present some recent advances in the development of various chiroptically active quantum nanostructures and discuss the latest progress in various approaches for the preparation of these nanostructures. We also consider the intrinsic chirality in quantum nanostructures due to the presence of chiral defects such as screw dislocations and discuss the structure-property relationship. Furthermore, the corresponding potential applications of these chiral nanomaterials has been analysed for key areas: sensing, cytotoxicity mediation and cell imaging, asymmetric catalysis and enantiomeric separation, circular polarised light emitting devices and spintronics. Finally, we provide an outlook for the future development of chiroptically active quantum nanostructures.
Collapse
Affiliation(s)
- Finn Purcell Milton
- School of Chemistry and CRANN, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | | | | | |
Collapse
|
36
|
Song XR, Goswami N, Yang HH, Xie J. Functionalization of metal nanoclusters for biomedical applications. Analyst 2016; 141:3126-40. [DOI: 10.1039/c6an00773b] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metal nanoclusters (NCs) are emerging as a new class of functional nanomaterials in the area of biological sensing, labelling, imaging and therapy due to their unique physical and chemical properties, such as ultrasmall size, HOMO–LUMO transition, strong luminescence together with good photostability and biocompatibility.
Collapse
Affiliation(s)
- Xiao-Rong Song
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE
- State Key Laboratory of Photocatalysis on Energy and Environment
| | - Nirmal Goswami
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Huang-Hao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|