1
|
Liang L, Cai T, Li X, An J, Yu S, Zhang Y, Guo F, Wei F, He J, Xie K, Jiang T. Down-regulation of microRNA-23a promotes pancreatic ductal adenocarcinoma initiation and progression by up-regulation of FOXM1 expression. Genes Dis 2024; 11:101203. [PMID: 39022126 PMCID: PMC11252794 DOI: 10.1016/j.gendis.2023.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 11/19/2023] [Indexed: 07/20/2024] Open
Abstract
Transcriptional factor Forkhead box M1 (FOXM1) plays an important role in pancreatic ductal adenocarcinoma (PDAC) development and progression. The molecular mechanisms underlying its dysregulation remain unclear. We identified and functionally validated the microRNAs (miRNAs) that critically regulate FOXM1 expression in PDAC. The expression levels of miRNA-23a (miR-23a-3p and -5p) were altered in PDAC cell lines and their effects on FOXM1 signaling and cell proliferation and migration and tumorigenesis were examined in vitro and in vivo using mouse PDAC models. Compared with non-tumor pancreatic tissues, PDAC tissues and cell lines exhibited significantly reduced levels of miR-23a expression. Reduced miR-23a expression and concomitant increase in FOXM1 expression were also observed in acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia, the major premalignant lesions of PDAC. Transgenic expression of miR-23a reduced the expression of FOXM1 and suppressed cell proliferation and migration in PDAC cells, whereas the inhibitors of miR-23a did the opposite. Loss or reduced levels of miR-23a increased the levels of FOXM1 expression, while increased expression of FOXM1 down-regulated miR-23a expression, suggesting that miR-23a and FOXM1 were mutual negative regulators of their expression in PDAC cells. Therefore, the miR-23a/FOXM1 signaling axis is important in PDAC initiation and progression and could serve as an interventional or therapeutic target for patients with early or late stages of PDAC.
Collapse
Affiliation(s)
- Lixin Liang
- Center for Pancreatic Cancer Research, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Tian Cai
- Department of Laboratory Medicine, The Sixth Affiliated Hospital and Nanhai People's Hospital, South China University of Technology School of Medicine, Foshan, Guangdong 528200, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Jianhong An
- Center for Pancreatic Cancer Research, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Sen Yu
- Center for Pancreatic Cancer Research, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Yang Zhang
- Center for Pancreatic Cancer Research, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Fengjie Guo
- Center for Pancreatic Cancer Research, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Fang Wei
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
3
|
Xiao-Hong H, Meng W, Yang-Yang P, Jiang-Feng F, Jing-Lei W, Ling Z, Ya-Ying W, Tong-Xiang Z, Tian Z, Tian-Yi D, Yan C, Si-Jiu Y. Effect of follicle-stimulating hormone and luteinizing hormone on apoptosis, autophagy, and the release and reception of some steroid hormones in yak granulosa cells through miR-23a/ASK1 axis. Cell Signal 2024; 115:111010. [PMID: 38128707 DOI: 10.1016/j.cellsig.2023.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Follicle-stimulating hormone (FSH), luteinizing hormone (LH), miR-23a, apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase (JNK), autophagy and apoptosis play crucial roles in follicular development. However, their role in yak granulosa cells (GCs) remains unknown. Therefore, we examined the effect of miR-23a, ASK1, FSH, and LH on apoptosis, autophagy, and the release and reception of some steroid hormones in these cells. Our results showed that miR-23a overexpression significantly increased the abundance of Beclin1, the LC3II/I ratio, and the number of Ad-mRFP-GFP-LC3-labeled autophagosomes, and decreased p62 abundance. Additionally, Bax abundance and the number of terminal deoxynucleotidyl transferase deoxynucleotide triphosphate nick end labeling-positive cells were reduced, while Bcl2 expression was increased. Overexpression of miR-23a also significantly increased the abundance of estradiol receptor α (ER-α) and β (ER-β) and the concentrations of estradiol (E2), progesterone (P4) in yak GCs. Here, treating yak GCs with miR-23a decreased ASK1 expression, which regulates ASK1/JNK-mediated apoptosis, autophagy, E2 and P4 levels, and ER-α/β abundance. In contrast, treatment of yak GCs with FSH (10 μg/mL) and LH (100 μg/mL) increased miR-23a abundance, regulating the subsequent effect on ASK1/JNK-mediated apoptosis, autophagy, ER-α/β abundance, and E2 and P4 concentrations. In conclusion, miR-23a enhances autophagy in yak GCs, attenuates apoptosis, and increases ER-α/β abundance and E2 and P4 concentrations by downregulating ASK1. Additionally, FSH and LH can regulate these effects of miR-23a by altering its expression. These results provide important insights that can inform the development of strategies to reduce abnormal follicular atresia and improve the reproductive rate of yaks.
Collapse
Affiliation(s)
- Han Xiao-Hong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Wang Meng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Pan Yang-Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Fan Jiang-Feng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Wang Jing-Lei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhao Ling
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wang Ya-Ying
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhang Tong-Xiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhao Tian
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ding Tian-Yi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Cui Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Yu Si-Jiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China.
| |
Collapse
|
4
|
Yang H, Zhou J, Li D, Zhou S, Dai X, Du X, Mao H, Wang B. The inhibitory role of microRNA-141-3p in human cutaneous melanoma growth and metastasis through the fibroblast growth factor 13-mediated mitogen-activated protein kinase axis. Melanoma Res 2023; 33:492-505. [PMID: 36988403 DOI: 10.1097/cmr.0000000000000873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Human cutaneous melanoma (CM) is a highly invasive malignancy arising from melanocytes, and accompanied by ever-increasing incidence and mortality rates worldwide. Interestingly, microRNAs (miRNAs) possess the ability to regulate CM cell biological functions, resulting in the aggressive progression of CM. Nevertheless, a comprehensive understanding of the underlying mechanism remains elusive. Accordingly, the current study sought to elicit the functional role of miR-141-3p in human CM cells in association with fibroblast growth factor 13 (FGF13) and the MAPK pathway. First, miR-141-3p expression patterns were detected in human CM tissues and cell lines, in addition to the validation of the targeting relationship between miR-141-3p and FGF13. Subsequently, loss- and gain-of-function studies of miR-141-3p were performed to elucidate the functional role of miR-141-3p in the malignant features of CM cells. Intriguingly, our findings revealed that FGF13 was highly expressed, whereas miR-141-3p was poorly expressed in the CM tissues and cells. Further analysis highlighted FGF13 as a target gene of miR-141-3p. Meanwhile, overexpression of miR-141-3p inhibited the proliferative, invasive, and migratory abilities of CM cells, while enhancing their apoptosis accompanied by downregulation of FGF13 and the MAPK pathway-related genes. Collectively, our findings highlighted the inhibitory effects of miR-141-3p on CM cell malignant properties via disruption of the FGF13-dependent MAPK pathway, suggesting a potential target for treating human CM.
Collapse
Affiliation(s)
- Haojan Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jiateng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Dongdong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xinchao Du
- Shanghai Jiao Tong University School of Medicine
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, P. R. China
| |
Collapse
|
5
|
Yuan W, Fang W, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Therapeutic strategies targeting AMPK-dependent autophagy in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119537. [PMID: 37463638 DOI: 10.1016/j.bbamcr.2023.119537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
Macroautophagy is a health-modifying process of engulfing misfolded or aggregated proteins or damaged organelles, coating these proteins or organelles into vesicles, fusion of vesicles with lysosomes to form autophagic lysosomes, and degradation of the encapsulated contents. It is also a self-rescue strategy in response to harsh environments and plays an essential role in cancer cells. AMP-activated protein kinase (AMPK) is the central pathway that regulates autophagy initiation and autophagosome formation by phosphorylating targets such as mTORC1 and unc-51 like activating kinase 1 (ULK1). AMPK is an evolutionarily conserved serine/threonine protein kinase that acts as an energy sensor in cells and regulates various metabolic processes, including those involved in cancer. The regulatory network of AMPK is complicated and can be regulated by multiple upstream factors, such as LKB1, AKT, PPAR, SIRT1, or noncoding RNAs. Currently, AMPK is being investigated as a novel target for anticancer therapies based on its role in macroautophagy regulation. Herein, we review the effects of AMPK-dependent autophagy on tumor cell survival and treatment strategies targeting AMPK.
Collapse
Affiliation(s)
- Wenbin Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Wanyi Fang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
6
|
Fratta E, Giurato G, Guerrieri R, Colizzi F, Dal Col J, Weisz A, Steffan A, Montico B. Autophagy in BRAF-mutant cutaneous melanoma: recent advances and therapeutic perspective. Cell Death Discov 2023; 9:202. [PMID: 37386023 DOI: 10.1038/s41420-023-01496-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Macroautophagy, hereafter referred to as autophagy, represents a highly conserved catabolic process that maintains cellular homeostasis. At present, the role of autophagy in cutaneous melanoma (CM) is still controversial, since it appears to be tumor-suppressive at early stages of malignant transformation and cancer-promoting during disease progression. Interestingly, autophagy has been found to be often increased in CM harboring BRAF mutation and to impair the response to targeted therapy. In addition to autophagy, numerous studies have recently conducted in cancer to elucidate the molecular mechanisms of mitophagy, a selective form of mitochondria autophagy, and secretory autophagy, a process that facilitates unconventional cellular secretion. Although several aspects of mitophagy and secretory autophagy have been investigated in depth, their involvement in BRAF-mutant CM biology has only recently emerged. In this review, we aim to overview autophagy dysregulation in BRAF-mutant CM, along with the therapeutic advantages that may arise from combining autophagy inhibitors with targeted therapy. In addition, the recent advances on mitophagy and secretory autophagy involvement in BRAF-mutant CM will be also discussed. Finally, since a number of autophagy-related non-coding RNAs (ncRNAs) have been identified so far, we will briefly discussed recent advances linking ncRNAs to autophagy regulation in BRAF-mutant CM.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, 84131, Salerno, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
7
|
Ciardulli MC, Mariconda A, Sirignano M, Lamparelli EP, Longo R, Scala P, D'Auria R, Santoro A, Guadagno L, Della Porta G, Longo P. Activity and Selectivity of Novel Chemical Metallic Complexes with Potential Anticancer Effects on Melanoma Cells. Molecules 2023; 28:4851. [PMID: 37375406 DOI: 10.3390/molecules28124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Human malignant melanoma cells from lymph node metastatic site (MeWo) were selected for testing several synthesized and purified silver(I) and gold(I) complexes stabilized by unsymmetrically substituted N-heterocyclic carbene (NHC) ligands, called L20 (N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide) and M1 (4,5-dichloro, N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide), having halogenide (Cl- or I-) or aminoacyl (Gly=N-(tert-Butoxycarbonyl)glycinate or Phe=(S)-N-(tert-Butoxycarbonyl)phenylalaninate) counterion. For AgL20, AuL20, AgM1 and AuM1, the Half-Maximal Inhibitory Concentration (IC50) values were measured, and all complexes seemed to reduce cell viability more effectively than Cisplatin, selected as control. The complex named AuM1 was the most active just after 8 h of treatment at 5 μM, identified as effective growth inhibition concentration. AuM1 also showed a linear dose and time-dependent effect. Moreover, AuM1 and AgM1 modified the phosphorylation levels of proteins associated with DNA lesions (H2AX) and cell cycle progression (ERK). Further screening of complex aminoacyl derivatives indicated that the most powerful were those indicated with the acronyms: GlyAg, PheAg, AgL20Gly, AgM1Gly, AuM1Gly, AgL20Phe, AgM1Phe, AuM1Phe. Indeed, the presence of Boc-Glycine (Gly) and Boc-L-Phenylalanine (Phe) showed an improved efficacy of Ag main complexes, as well as that of AuM1 derivatives. Selectivity was further checked on a non-cancerous cell line, a spontaneously transformed aneuploid immortal keratinocyte from adult human skin (HaCaT). In such a case, AuM1 and PheAg complexes resulted as the most selective allowing HaCaT viability at 70 and 40%, respectively, after 48 h of treatment at 5 μM. The same complexes tested on 3D MeWo static culture induced partial spheroid disaggregation after 24 h of culture, with almost half of the cells dead.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Raffaella D'Auria
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Lee KM, Seo EC, Lee JH, Kim HJ, Hwangbo C. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. Int J Mol Sci 2023; 24:ijms24119418. [PMID: 37298370 DOI: 10.3390/ijms24119418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1's role in regulating exosome trafficking and its associated cellular signaling pathways.
Collapse
Affiliation(s)
- Kwang-Min Lee
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Chan Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon 24414, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Motlagh FM, Kadkhoda S, Motamedrad M, Javidzade P, Khalilian S, Modarressi MH, Ghafouri-Fard S. Roles of non-coding RNAs in cell death pathways involved in the treatment of resistance and recurrence of cancer. Pathol Res Pract 2023; 247:154542. [PMID: 37244050 DOI: 10.1016/j.prp.2023.154542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Considering the burden of cancer, a number of methods have been applied to control or stop it. However, because of drug resistance or cancer recurrence, these treatments usually face failure. Combination of modulation of expression of non-coding RNAs (ncRNAs) with other treatments can increase treatment-sensitivity of tumors but these approaches still face some challenges. Gathering information in this field is a prerequisite to find more efficient cures for cancer. Cancer cells use ncRNAs to enhance uncontrolled proliferation originated from inactivation of cell death routs. In this review article, the main routes of cell death and involved ncRNAs in these routes are discussed. Moreover, extant information in the role of different ncRNAs on cell death pathways involved in the treatment resistance and cancer recurrence is summarized.
Collapse
Affiliation(s)
- Fatemeh Movahedi Motlagh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Motamedrad
- Division of Human Nutrition, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Biology, Faculty of Science, University of Birjand, Birjand, Iran
| | - Parisa Javidzade
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Yu H, Jia X, Niu H, Xie L, Du B, Pang Y, Xu X, Li J. miR-23a regulates the disease resistance of grass carp (Ctenopharyngodon idella) by targeting autophagy-related genes, ATG3 and ATG12. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108812. [PMID: 37172750 DOI: 10.1016/j.fsi.2023.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
miRNAs play a key role in the autophagy process. In recent years, the emerging role of autophagy in regulating immune response has attracted increasing attention. Since then, specific miRNAs have also been found to play an immune function indirectly by modulating autophagy as well. This study proved that miR-23a could downregulate grass carp autophagy simultaneously by targeting ATG3 and ATG12. Besides, both ATG3 and ATG12 mRNA levels were increased in kidney and intestine after being infected by Aeromonas hydrophila; yet almost at the same time, miR-23a was decreased. Besides, we illustrated that grass carp miR-23a could affect antimicrobial capacity, proliferation, migration, and antiapoptotic abilities of CIK cells. These results indicate that miR-23a was related to grass carp autophagy and plays an important role in antimicrobial immunity through targeting ATG3 and ATG12, which provides important information on autophagy-related miRNAs about the defense and immune mechanisms against pathogens in teleost.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Huiqin Niu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yifang Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
11
|
Longo R, Raimondo M, Vertuccio L, Ciardulli MC, Sirignano M, Mariconda A, Della Porta G, Guadagno L. Bottom-Up Strategy to Forecast the Drug Location and Release Kinetics in Antitumoral Electrospun Drug Delivery Systems. Int J Mol Sci 2023; 24:ijms24021507. [PMID: 36675021 PMCID: PMC9861055 DOI: 10.3390/ijms24021507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Electrospun systems are becoming promising devices usable for topical treatments. They are eligible to deliver different therapies, from anti-inflammatory to antitumoral. In the current research, polycaprolactone electrospun membranes loaded with synthetic and commercial antitumoral active substances were produced, underlining how the matrix-filler affinity is a crucial parameter for designing drug delivery devices. Nanofibrous membranes loaded with different percentages of Dacarbazine (the drug of choice for melanoma) and a synthetic derivative of Dacarbazine were produced and compared to membranes loaded with AuM1, a highly active Au-complex with low affinity to the matrix. AFM morphologies showed that the surface profile of nanofibers loaded with affine substances is similar to one of the unloaded systems, thanks to the nature of the matrix-filler interaction. FTIR analyses proved the efficacy of the interaction between the amidic group of the Dacarbazine and the polycaprolactone. In AuM1-loaded membranes, because of the weak matrix-filler interaction, the complex is mainly aggregated in nanometric domains on the nanofiber surface, which manifests a nanometric roughness. Consequently, the release profiles follow a Fickian behavior for the Dacarbazine-based systems, whereas a two-step with a highly prominent burst effect was observed for AuM1 systems. The performed antitumoral tests evidence the high-cytotoxic activity of the electrospun systems against melanoma cell lines, proving that the synthetic substances are more active than the commercial dacarbazine.
Collapse
Affiliation(s)
- Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Luigi Vertuccio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 813031 Aversa, Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, Università di Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Correspondence:
| |
Collapse
|
12
|
Ye Q, Li Z, Li Y, Li Y, Zhang Y, Gui R, Cui Y, Zhang Q, Qian L, Xiong Y, Yu Y. Exosome-Derived microRNA: Implications in Melanoma Progression, Diagnosis and Treatment. Cancers (Basel) 2022; 15:cancers15010080. [PMID: 36612077 PMCID: PMC9818028 DOI: 10.3390/cancers15010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a malignant and aggressive cancer, and its progression is greatly affected by interactions between melanoma cells and their surroundings. Exploration on mechanism of melanoma and improved diagnostic and therapeutic strategies are becoming increasingly important. Unlike extracellular messengers that mainly work on targeted cells through corresponding receptors, exosomes are essential intercellular messengers that deliver biologically active substances such as nucleic acids and proteins to target cells for cell-cell communication. Of them, microRNAs (miRNAs) are common and important exosomal components that can regulate the expression of a wide range of target genes. Accordingly, exosome-derived miRNAs play a significant role in melanoma progression, including invasion and metastasis, microenvironment establishment, angiogenesis, and immune escape. MiRNA signatures of exosomes are specific in melanoma patients compared to healthy controls, thus circulating miRNAs, especially exosomal miRNAs, become potential diagnostic markers and therapeutic targets for melanoma. This review aims to summarize recent studies on the role of exosomal miRNAs in melanoma as well as ongoing efforts in melanoma treatment.
Collapse
Affiliation(s)
- Qiang Ye
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Zi Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yang Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yirong Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yan Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Runlin Gui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yue Cui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Qi Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Lu Qian
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Department of Endocrinology, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi’an 710069, China
| | - Yuyan Xiong
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| | - Yi Yu
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| |
Collapse
|
13
|
Li X, Liu D, Chen H, Zeng B, Zhao Q, Zhang Y, Chen Y, Wang J, Xing HR. Melanoma stem cells promote metastasis via exosomal miR-1268a inactivation of autophagy. Biol Res 2022; 55:29. [PMID: 36182945 PMCID: PMC9526915 DOI: 10.1186/s40659-022-00397-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Background Metastatic melanoma has a high mortality rate and poor survival. This is associated with efficient metastatic colonization, but the underlying mechanisms remain elusive. Communication between cancer stem cells (CSCs) and cancer cells plays an important role in metastatic dissemination. Whether cancer stem cells can alter the metastatic properties of non-CSC cells; and whether exosomal crosstalk can mediate such interaction, have not been demonstrated in melanoma prior to this report. Results The results revealed that exosomes secreted by highly metastatic melanoma CSCs (OL-SCs) promoted the invasiveness of the low metastatic melanoma cells (OL) and accelerated metastatic progression. miR-1268a was up-regulated in cells and exosomes of OL-SCs. Moreover, OL-SCs-derived exosomal miR-1268a, upon taking up by OL cells, promoted the metastatic colonization ability of OL cells in vitro and in vivo. In addition, the pro-metastatic activity of exosomal miR-1268a is achieved through inhibition of autophagy. Conclusion Our study demonstrates that OL cells can acquire the “metastatic ability” from OL-SCs cells. OL-SCs cells achieves this goal by utilizing its exosomes to deliver functional miRNAs, such as miR-1268a, to the targeted OL cells which in turn augments metastatic colonization by inactivating the autophagy pathway in OL cells. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00397-z.
Collapse
Affiliation(s)
- Xiaoshuang Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Doudou Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Qiting Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yuhan Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuting Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - H Rosie Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Guo S, Chen J, Yi X, Lu Z, Guo W. Identification and validation of ferroptosis-related lncRNA signature as a prognostic model for skin cutaneous melanoma. Front Immunol 2022; 13:985051. [PMID: 36248853 PMCID: PMC9556814 DOI: 10.3389/fimmu.2022.985051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Melanoma is a type of skin cancer, which originates from the malignant transformation of epidermal melanocytes, with extremely high lethality. Ferroptosis has been documented to be highly related to cancer pathogenesis and the effect of immunotherapy. In addition, the dysregulation of lncRNAs is greatly implicated in melanoma progression and ferroptosis regulation. However, the significance of ferroptosis-related lncRNA in melanoma treatment and the prognosis of melanoma patients remains elusive. Methods Via Least Absolute Shrinkage Selection Operator (LASSO) regression analysis in the TCGA SKCM database, a cutaneous melanoma risk model was established based on differentially-expressed ferroptosis-related lncRNAs (DEfrlncRNAs). The nomogram, receiver operating characteristic (ROC) curves, and calibration plots were conducted to examine the predictive performance of this model. Sequentially, we continued to analyze the differences between the high- and low-risk groups, in terms of clinical characteristics, immune cell infiltration, immune-related functions, and chemotherapy drug sensitivity. Moreover, the expressions of DEfrlncRNAs, PD-L1, and CD8 were also examined by qRT-PCR and immunohistochemical staining in melanoma tissues to further confirm the potential clinical implication of DEfrlncRNAs in melanoma immunotherapy. Results 16 DEfrlncRNAs were identified, and a representative risk score for patient survival was constructed based on these 16 genes. The risk score was found to be an independent prognostic factor for the survival of melanoma patients. In addition, the low-risk group of patients had higher immune cell infiltration in the melanoma lesions, higher sensitivity to chemotherapeutic agents, and a better survival prognosis. Besides, the high expression of the identified 5 DEfrlncRNA in the low-risk group might suggest a higher possibility to benefit from immune checkpoint blockade therapy in the treatment of melanoma. Conclusion The DEfrlncRNA risk prediction model related to ferroptosis genes can independently predict the prognosis of patients with melanoma and provide a basis for evaluating the response of clinical treatment in melanoma.
Collapse
Affiliation(s)
- Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zifan Lu
- Department of Biopharmaceuticals, School of Pharmacy, Fourth Military Medical University, Xi’an, China
- *Correspondence: Weinan Guo, ; Zifan Lu,
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Weinan Guo, ; Zifan Lu,
| |
Collapse
|
15
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|
16
|
Liu X, Zhang Y, Wu X, Xu F, Ma H, Wu M, Xia Y. Targeting Ferroptosis Pathway to Combat Therapy Resistance and Metastasis of Cancer. Front Pharmacol 2022; 13:909821. [PMID: 35847022 PMCID: PMC9280276 DOI: 10.3389/fphar.2022.909821] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is an iron-dependent regulated form of cell death caused by excessive lipid peroxidation. This form of cell death differed from known forms of cell death in morphological and biochemical features such as apoptosis, necrosis, and autophagy. Cancer cells require higher levels of iron to survive, which makes them highly susceptible to ferroptosis. Therefore, it was found to be closely related to the progression, treatment response, and metastasis of various cancer types. Numerous studies have found that the ferroptosis pathway is closely related to drug resistance and metastasis of cancer. Some cancer cells reduce their susceptibility to ferroptosis by downregulating the ferroptosis pathway, resulting in resistance to anticancer therapy. Induction of ferroptosis restores the sensitivity of drug-resistant cancer cells to standard treatments. Cancer cells that are resistant to conventional therapies or have a high propensity to metastasize might be particularly susceptible to ferroptosis. Some biological processes and cellular components, such as epithelial–mesenchymal transition (EMT) and noncoding RNAs, can influence cancer metastasis by regulating ferroptosis. Therefore, targeting ferroptosis may help suppress cancer metastasis. Those progresses revealed the importance of ferroptosis in cancer, In order to provide the detailed molecular mechanisms of ferroptosis in regulating therapy resistance and metastasis and strategies to overcome these barriers are not fully understood, we described the key molecular mechanisms of ferroptosis and its interaction with signaling pathways related to therapy resistance and metastasis. Furthermore, we summarized strategies for reversing resistance to targeted therapy, chemotherapy, radiotherapy, and immunotherapy and inhibiting cancer metastasis by modulating ferroptosis. Understanding the comprehensive regulatory mechanisms and signaling pathways of ferroptosis in cancer can provide new insights to enhance the efficacy of anticancer drugs, overcome drug resistance, and inhibit cancer metastasis.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yiqian Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Fuyan Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Ma
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
17
|
Promising Blood-Based Biomarkers for Melanoma: Recent Progress of Liquid Biopsy and Its Future Perspectives. Curr Treat Options Oncol 2022; 23:562-577. [PMID: 35298769 DOI: 10.1007/s11864-022-00948-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT Because the recent success of novel therapeutic approaches has dramatically changed the clinical management of melanoma, less invasive and repeatable monitoring tools that can predict the disease status, drug resistance, and the development of side effects are increasingly needed. As liquid biopsy has enabled us to diagnose and monitor disease status less invasively, substantial attention has been directed toward this technique, which is gaining importance as a diagnostic and/or prognostic tool. It is evident that microRNA, cell-free DNA, and circulating tumor cells obtained via liquid biopsy are promising diagnostic and prognostic tools for melanoma, and they also have utility for monitoring the disease status and predicting drug effects. Although current challenges exist for each biomarker, such as poor sensitivity and/or specificity and technical problems, recent technical advances have increasingly improved these aspects. For example, next-generation sequencing technology for detecting microRNAs or cell-free DNA enabled high-throughput analysis and provided significantly higher sensitivity. In particular, cancer personalized profiling by deep sequencing for quantifying cell-free DNA is a promising method for high-throughput analysis that provides real-time comprehensive data for patients at various disease stages. For wide clinical implementation, it is necessary to increase the sensitivity for the markers and standardize the assay procedures to make them reproducible, valid, and inexpensive; however, the broad clinical application of liquid biopsy could occur quickly. This review focuses on the significance of liquid biopsy, particularly related to the use of blood samples from patients with melanoma, and discusses its future perspectives.
Collapse
|
18
|
Ma J, Shi Q, Guo S, Xu P, Yi X, Yang Y, Zhang W, Liu Y, Liu L, Yue Q, Zhao T, Gao T, Guo W, Li C. Long Non-Coding RNA CD27-AS1-208 Facilitates Melanoma Progression by Activating STAT3 Pathway. Front Oncol 2022; 11:818178. [PMID: 35096622 PMCID: PMC8791859 DOI: 10.3389/fonc.2021.818178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Melanoma is the most lethal skin cancer that originates from epidermal melanocytes. Recently, long non-coding RNAs (lncRNAs) are emerging as critical regulators of cancer pathogenesis and potential therapeutic targets. However, the expression profile of lncRNAs and their role in melanoma progression have not been thoroughly investigated. Herein, we firstly obtained the expression profile of lncRNAs in primary melanomas using microarray analysis and unveiled the differentially-expressed lncRNAs compared with nevus. Subsequently, a series of bioinformatics analysis showed the great involvement of dysregulated lncRNAs in melanoma biology and immune response. Further, we identified lncRNA CD27-AS1-208 as a novel nuclear-localized factor with prominent facilitative role in melanoma cell proliferation, invasion and migration. Mechanistically, CD27-AS1-208 could directly interact with STAT3 and contribute to melanoma progression in a STAT3-dependent manner. Ultimately, the role of CD27-AS1-208 in melanoma progression in vivo was also investigated. Collectively, the present study offers us a new horizon to better understand the role of lncRNAs in melanoma pathogenesis and demonstrates that CD27-AS1-208 up-regulation contributes to melanoma progression by activating STAT3 pathway. Targeting CD27-AS1-208 in melanoma cells can be exploited as a potential therapeutic approach that needs forward validation in clinical trials in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
19
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
21
|
Liu Y, Chen Q, Zhu Y, Wang T, Ye L, Han L, Yao Z, Yang Z. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov 2021; 7:210. [PMID: 34381023 PMCID: PMC8358062 DOI: 10.1038/s41420-021-00596-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Distant metastasis is the main cause of death for cancer patients. Recently, the newly discovered programmed cell death includes necroptosis, pyroptosis, and ferroptosis, which possesses an important role in the process of tumor metastasis. At the same time, it is widely reported that non-coding RNA precisely regulates programmed death and tumor metastasis. In the present review, we summarize the function and role of necroptosis, pyrolysis, and ferroptosis involving in cancer metastasis, as well as the regulatory factors, including non-coding RNAs, of necroptosis, pyroptosis, and ferroptosis in the process of tumor metastasis.
Collapse
Affiliation(s)
- Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Qiuyun Chen
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yanan Zhu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Tiying Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lijuan Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China.
| |
Collapse
|
22
|
Claisened Hexafluoro Inhibits Metastatic Spreading of Amoeboid Melanoma Cells. Cancers (Basel) 2021; 13:cancers13143551. [PMID: 34298765 PMCID: PMC8305480 DOI: 10.3390/cancers13143551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Metastatic melanoma is characterized by poor prognosis and a low free-survival rate. Thanks to their high plasticity, melanoma cells are able to migrate exploiting different cell motility strategies, such as the rounded/amoeboid-type motility and the elongated/mesenchymal-type motility. In particular, the amoeboid motility strongly contributes to the dissemination of highly invasive melanoma cells and no treatment targeting this process is currently available for clinical application. Here, we tested Claisened Hexafluoro as a novel inhibitor of the amoeboid motility. Reported data demonstrate that Claisened Hexafluoro specifically inhibits melanoma cells moving through amoeboid motility by deregulating mitochondrial activity and activating the AMPK signaling. Moreover, Claisened Hexafluoro is able to interfere with the adhesion abilities and the stemness features of melanoma cells, thus decreasing the in vivo metastatic process. This evidence may contribute to pave the way for future possible therapeutic applications of Claisened Hexafluoro to counteract metastatic melanoma dissemination.
Collapse
|
23
|
The Sex-Related Interplay between TME and Cancer: On the Critical Role of Estrogen, MicroRNAs and Autophagy. Cancers (Basel) 2021; 13:cancers13133287. [PMID: 34209162 PMCID: PMC8267629 DOI: 10.3390/cancers13133287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
The interplay between cancer cells and the tumor microenvironment (TME) has a fundamental role in tumor progression and response to therapy. The plethora of components constituting the TME, such as stroma, fibroblasts, endothelial and immune cells, as well as macromolecules, e.g., hormones and cytokines, and epigenetic factors, such as microRNAs, can modulate the survival or death of cancer cells. Actually, the TME can stimulate the genetically regulated programs that the cell puts in place under stress: apoptosis or, of interest here, autophagy. However, the implication of autophagy in tumor growth appears still undefined. Autophagy mainly represents a cyto-protective mechanism that allows cell survival but, in certain circumstances, also leads to the blocking of cell cycle progression, possibly leading to cell death. Since significant sex/gender differences in the incidence, progression and response to cancer therapy have been widely described in the literature, in this review, we analyzed the roles played by key components of the TME, e.g., estrogen and microRNAs, on autophagy regulation from a sex/gender-based perspective. We focused our attention on four paradigmatic and different forms of cancers-colon cancer, melanoma, lymphoma, and lung cancer-concluding that sex-specific differences may exert a significant impact on TME/cancer interaction and, thus, tumor growth.
Collapse
|
24
|
Yadav M, Bhayana S, Liu J, Lu L, Huang J, Ma Y, Qamri Z, Mo X, Jacob DS, Parasa ST, Bhuiya N, Fadda P, Xu-Welliver M, Chakravarti A, Jacob NK. Two-miRNA-based finger-stick assay for estimation of absorbed ionizing radiation dose. Sci Transl Med 2021; 12:12/552/eaaw5831. [PMID: 32669422 DOI: 10.1126/scitranslmed.aaw5831] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 09/12/2019] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
Nuclear radiation and radioactive fallouts resulting from a nuclear weapon detonation or reactor accidents could result in injuries affecting multiple sensitive organs, defined as acute radiation syndrome (ARS). Rapid and early estimation of injuries to sensitive organs using markers of radiation response is critical for identifying individuals who could potentially exhibit ARS; however, there are currently no biodosimetry assays approved for human use. We developed a sensitive microRNA (miRNA)-based blood test for radiation dose reconstruction with ±0.5 Gy resolution at critical dose range. Radiation dose-dependent changes in miR-150-5p in blood were internally normalized by a miRNA, miR-23a-3p, that was nonresponsive to radiation. miR-23a-3p was not highly expressed in blood cells but was abundant in circulation and was released primarily from the lung. Our assay showed the capability for dose estimation within hours to 1 week after exposure using a drop of blood from mice. We tested this biodosimetry assay for estimation of absorbed ionizing radiation dose in mice of varying ages and after exposure to both improvised nuclear device (IND)-spectrum neutrons and gamma rays. Leukemia specimens from patients exposed to fractionated radiation showed depletion of miR-150-5p in blood. We bridged the exposure of these patients to fractionated radiation by comparing responses after fractionated versus single acute exposure in mice. Although validation in nonhuman primates is needed, this proof-of-concept study suggests the potential utility of this assay in radiation disaster management and clinical applications.
Collapse
Affiliation(s)
- Marshleen Yadav
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Sagar Bhayana
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Joseph Liu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lanchun Lu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jason Huang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ya Ma
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Zahida Qamri
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Diviya S Jacob
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shashaank T Parasa
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Noureen Bhuiya
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Meng Xu-Welliver
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Naduparambil K Jacob
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA. .,Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Weidle UH, AuslÄnder S, Brinkmann U. Micro RNAs Promoting Growth and Metastasis in Preclinical In Vivo Models of Subcutaneous Melanoma. Cancer Genomics Proteomics 2021; 17:651-667. [PMID: 33099468 DOI: 10.21873/cgp.20221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years a considerable therapeutic progress in melanoma patients with the RAF V600E mutation via RAF/MEK pathway inhibition and immuno-therapeutic modalities has been witnessed. However, the majority of patients relapse after therapy. Therefore, a deeper understanding of the pathways driving oncogenicity and metastasis of melanoma is of paramount importance. In this review, we summarize microRNAs modulating tumor growth, metastasis, or both, in preclinical melanoma-related in vivo models and possible clinical impact in melanoma patients as modalities and targets for treatment of melanoma. We have identified miR-199a (ApoE, DNAJ4), miR-7-5p (RelA), miR-98a (IL6), miR-219-5p (BCL2) and miR-365 (NRP1) as possible targets to be scrutinized in further target validation studies.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Simon AuslÄnder
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
26
|
Liao S, He J, Liu C, Zhang Z, Liao H, Liao Z, Yu C, Guan J, Mo H, Yuan Z, Liang T, Lu Z, Xu G, Wang Z, Chen J, Jiang J, Zhan X. Construction of autophagy prognostic signature and analysis of prospective molecular mechanisms in skin cutaneous melanoma patients. Medicine (Baltimore) 2021; 100:e26219. [PMID: 34087900 PMCID: PMC8183723 DOI: 10.1097/md.0000000000026219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Autophagy is closely related to skin cutaneous melanoma (SKCM), but the mechanism involved is unclear. Therefore, exploration of the role of autophagy-related genes (ARGs) in SKCM is necessary. MATERIALS AND METHODS Differential expression autophagy-related genes (DEARGs) were first analysed. Univariate and multivariate Cox regression analyses were used to evaluate the expression of DEARGs and prognosis of SKCM. Further, the expression levels of prognosis-related DEARGs were verified by immunohistochemical (IHC) staining. Finally, gene set enrichment analysis (GSEA) was used to explore the underlying molecular mechanisms of SKCM. RESULTS Five ARGs (APOL1, BIRC5, EGFR, TP63, and SPNS1) were positively correlated with the prognosis of SKCM. IHC verified the results of the differential expression of these 5 ARGs in the bioinformatics analysis. According to the receiver operating characteristic curve, the signature had a good performance at predicting overall survival in SKCM. The signature could classify SKCM patients into high-risk or low-risk groups according to distinct overall survival. The nomogram confirmed that the risk score has a particularly large impact on the prognosis of SKCM. Calibration plot displayed excellent agreement between nomogram predictions and actual observations. Principal component analysis indicated that patients in the high-risk group could be distinguished from those in low-risk group. Results of GSEA indicated that the low-risk group is enriched with aggressiveness-related pathways such as phosphatidylinositol-3-kinase/protein kinase B and mitogen-activated protein kinase signalling pathways. CONCLUSION Our study identified a 5-gene signature. It revealed the mechanisms of autophagy that lead to the progression of SKCM and established a prognostic nomogram that can predict overall survival of patients with SKCM. The findings of this study provide novel insights into the relationship between ARGs and prognosis of SKCM.
Collapse
Affiliation(s)
- Shian Liao
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Juliang He
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital
| | - Chong Liu
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Zide Zhang
- Guangxi Medical University, Nanning, Guangxi
| | - Hongyu Liao
- Southern Medical University, Guangzhou, Guangdong
| | - Zuowei Liao
- Department of General Surgery, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Chaojie Yu
- Guangxi Medical University, Nanning, Guangxi
| | - Jian Guan
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital
| | - Hao Mo
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital
| | - Zhenchao Yuan
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital
| | - Tuo Liang
- Guangxi Medical University, Nanning, Guangxi
| | - Zhaojun Lu
- Guangxi Medical University, Nanning, Guangxi
| | - Guoyong Xu
- Guangxi Medical University, Nanning, Guangxi
| | - Zequn Wang
- Guangxi Medical University, Nanning, Guangxi
| | - Jiarui Chen
- Guangxi Medical University, Nanning, Guangxi
| | - Jie Jiang
- Guangxi Medical University, Nanning, Guangxi
| | - Xinli Zhan
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| |
Collapse
|
27
|
Cai M, Fan W, Li X, Sun H, Dai L, Lei D, Dai Y, Liao Y. The Regulation of Staphylococcus aureus-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells. Front Vet Sci 2021; 8:683886. [PMID: 34136558 PMCID: PMC8200483 DOI: 10.3389/fvets.2021.683886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Mastitis, an inflammatory disease, causes severe economic loss in the dairy industry, which is mainly infected by bacteria. Staphylococcus aureus (S. aureus), the major pathogenic microorganism, derived from lipoteichoic acid (LTA) has been identified to activate inflammatory responses, but the cellular or intercellular regulatory mechanism is unclear. This study mainly focused on the effects of LTA in bovine mammary epithelial cells (Mac-T) and elaborated the regulation of microRNAs (miRNAs). The results showed that LTA enhanced the messenger RNA (mRNA) expression and production of tumor necrosis factor α (TNF-α) and interleukin (IL)-6. Furthermore, LTA could activate Toll-like receptor (TLR)2/MyD88-mediated phosphoinositide 3-kinase (PI3K)/AKT pathway, and TLR2 plays a pivotal role in LTA-induced inflammatory responses. The results of qRT-PCR showed that miRNA levels increased and reached the highest at 3 h and then gradually decreased over time in Mac-T cells. In exosomes, the levels of 11 and three miRNAs were upregulated and downregulated at 24 h, respectively. In addition, miR-23a showed the highest increase in Mac-T cells treated with LTA and targeted PI3K to regulate inflammatory responses. Furthermore, Mac-T cell-derived exosomes were identified to play a cell–cell communication by promoting M1 polarization of bovine macrophages. In summary, our study demonstrated that LTA could activate inflammatory responses via TLR2/MyD88/PI3K/AKT signaling pathway, and miR-23a inhibited it by targeting PI3K. Furthermore, we found that Mac-T cell-derived exosomes might be associated with inflammatory responses by promoting M1 polarization of bovine macrophages.
Collapse
Affiliation(s)
- Mingcheng Cai
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Wenqiao Fan
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Xiaoying Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Hanchang Sun
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Liuliu Dai
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Defang Lei
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Ying Dai
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Yuhua Liao
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| |
Collapse
|
28
|
Wu X, Bao H. Tumor suppressive microRNA-485-5p targets PRRX1 in human skin melanoma cells, regulating epithelial-mesenchymal transition and apoptosis. Cell Biol Int 2021; 45:1404-1414. [PMID: 33620119 DOI: 10.1002/cbin.11575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Melanoma is one of the most aggressive skin cancers. Existing evidence has reported the aberrant expression of microRNAs (miRNAs) in melanoma, but their putative targets and underlying downstream effects remain to be further understood. Herein, we explored the suppressive role of miR-485-5p in melanoma progression. Initial bioinformatics analyses showed that the PRRX1 gene was differentially expressed in melanoma, while miR-485-5p was predicted to be a potential regulatory miRNA binding to PRRX1 mRNA. We confirmed that PRRX1 was upregulated, while miR-485-5p was downregulated in human melanoma samples compared with adjacent normal skin tissues. We then showed that PRRX1 was a target gene of miR-485-5p by dual-luciferase reporter gene assay. Moreover, a reduction in the expression of PRRX1 and downregulation of important proteins of the transforming growth factor-beta (TGFβ) signaling pathway was observed after miR-485-5p overexpression. Furthermore, miR-485-5p overexpression or PRRX1 knockdown suppressed epithelial-mesenchymal transition, cell viability, migration, and invasion, and promoted cell apoptosis in melanoma cells. Our study demonstrates the tumor-suppressive functions of miR-485-5p in the development of human melanoma, providing a potential target for therapy.
Collapse
Affiliation(s)
- Xiaolin Wu
- School of Traditional Chinese Medicine, Jilin Agriculture University, Changchun, Jilin, PR China.,College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Changchun, Jilin, PR China
| | - Haiying Bao
- School of Traditional Chinese Medicine, Jilin Agriculture University, Changchun, Jilin, PR China
| |
Collapse
|
29
|
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front Oncol 2021; 11:608987. [PMID: 33968718 PMCID: PMC8100681 DOI: 10.3389/fonc.2021.608987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the utmost fatal kind of skin neoplasms. Molecular changes occurring during the pathogenic processes of initiation and progression of melanoma are diverse and include activating mutations in BRAF and NRAS genes, hyper-activation of PI3K/AKT pathway, inactivation of p53 and alterations in CDK4/CDKN2A axis. Moreover, several miRNAs have been identified to be implicated in the biology of melanoma through modulation of expression of genes being involved in these pathways. In the current review, we provide a summary of the bulk of information about the role of miRNAs in the pathobiology of melanoma, their possible application as biomarkers and their emerging role as therapeutic targets for this kind of skin cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0510. [PMID: 33861527 PMCID: PMC8185860 DOI: 10.20892/j.issn.2095-3941.2020.0510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Theranostics that integrates therapy and diagnosis in one system to achieve accurate cancer diagnosis and treatment has attracted tremendous interest, and has been recognized as a potential breakthrough in overcoming the challenges of conventional oncotherapy. Nanoparticles are ideal candidates as carriers for theranostic agents, which is attributed to their extraordinary physicochemical properties, including nanoscale sizes, functional properties, prolonged blood circulation, active or passive tumor targeting, specific cellular uptake, and in some cases, excellent optical properties that ideally meet the needs of phototherapy and imaging at the same time. Overall, with the development of nanotechnology, theranostics has become a reality, and is now in the transition stage of "bench to bedside." In this review, we summarize recent progress on nanotechnology-based theranostics, i.e., nanotheranostics, that has greatly assisted traditional therapies, and has provided therapeutic strategies emerging in recent decades, as well as "cocktail" theranostics mixing various treatment modalities.
Collapse
Affiliation(s)
- Ying Xue
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
31
|
Xiao D, Liu K, Chen J, Gong Y, Zhou X, Huang J. RUNX2 as a Potential Prognosis Biomarker and New Target for Human Lung Cancer. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2021.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Li H, Wang J, Huang K, Zhang T, Gao L, Yang S, Yi W, Niu Y, Liu H, Wang Z, Wang G, Tao K, Wang L, Cai K. Nkx2.5 Functions as a Conditional Tumor Suppressor Gene in Colorectal Cancer Cells via Acting as a Transcriptional Coactivator in p53-Mediated p21 Expression. Front Oncol 2021; 11:648045. [PMID: 33869046 PMCID: PMC8047315 DOI: 10.3389/fonc.2021.648045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
NK2 homeobox 5 (Nkx2.5), a homeobox-containing transcription factor, is associated with a spectrum of congenital heart diseases. Recently, Nkx2.5 was also found to be differentially expressed in several kinds of tumors. In colorectal cancer (CRC) tissue and cells, hypermethylation of Nkx2.5 was observed. However, the roles of Nkx2.5 in CRC cells have not been fully elucidated. In the present study, we assessed the relationship between Nkx2.5 and CRC by analyzing the expression pattern of Nkx2.5 in CRC samples and the adjacent normal colonic mucosa (NCM) samples, as well as in CRC cell lines. We found higher expression of Nkx2.5 in CRC compared with NCM samples. CRC cell lines with poorer differentiation also had higher expression of Nkx2.5. Although this expression pattern makes Nkx2.5 seem like an oncogene, in vitro and in vivo tumor suppressive effects of Nkx2.5 were detected in HCT116 cells by establishing Nkx2.5-overexpressed CRC cells. However, Nkx2.5 overexpression was incapacitated in SW480 cells. To further assess the mechanism, different expression levels and mutational status of p53 were observed in HCT116 and SW480 cells. The expression of p21WAF1/CIP1, a downstream antitumor effector of p53, in CRC cells depends on both expression level and mutational status of p53. Overexpressed Nkx2.5 could elevate the expression of p21WAF1/CIP1 only in CRC cells with wild-type p53 (HCT116), rather than in CRC cells with mutated p53 (SW480). Mechanistically, Nkx2.5 could interact with p53 and increase the transcription of p21WAF1/CIP1 without affecting the expression of p53. In conclusion, our findings demonstrate that Nkx2.5 could act as a conditional tumor suppressor gene in CRC cells with respect to the mutational status of p53. The tumor suppressive effect of Nkx2.5 could be mediated by its role as a transcriptional coactivator in wild-type p53-mediated p21WAF1/CIP1 expression.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyang Yi
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Feng XE. miR-548b Suppresses Melanoma Cell Growth, Migration, and Invasion by Negatively Regulating Its Target Gene HMGB1. Cancer Biother Radiopharm 2021; 36:189-201. [PMID: 33750228 DOI: 10.1089/cbr.2019.3507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Melanoma is one of the most aggressive malignancies. Exploration of metastasis-related genes will improve the clinical outcomes of patients with melanoma. Recently, microRNAs (miRNAs) have been implicated in regulating the aggressiveness of melanoma. In the current study, the author demonstrated the expression of miR-548b and its functions in melanoma. Materials and Methods: The expression levels of miR-548b and high mobility group protein 1 (HMGB1) in melanoma specimens and adjacent normal tissues were examined using the quantitative real-time PCR method. The Cell Counting Kit-8 (CCK-8), wound healing test, and Transwell assays were conducted to examine the impact of miR-548b on aggressive phenotypes of melanoma cells. The protein expression of HMGB1 was detected by Western blot. The tumor growth of melanoma cells in vivo was analyzed using the transplanted tumor model. The expression of HMGB1 in vivo was assessed using immunohistochemistry assay. Results: miR-548b was significantly downregulated in the melanoma sample when compared with adjacent normal tissues. In addition, low levels of miR-548b were related to poor overall survival in patients with melanoma. As predicted, overexpression of miR-548b suppressed the growth and metastasis-associated traits of melanoma cells. Furthermore, the luciferase reporter gene assay and Western blotting revealed that HMGB1 was a target of miR-548b and its expression level was negatively modulated by miR-548b. Several rescue experiments indicated that reintroduction of HMGB1 abolished the inhibiting effects of miR-548b on melanoma cells. Finally, the author demonstrated that upregulation of miR-548b repressed melanoma cell growth in vivo. Conclusions: All these findings demonstrate that miR-548b serves as a cancer-suppressive miRNA in human melanoma by inhibiting HMGB1.
Collapse
Affiliation(s)
- Xi-En Feng
- Department of Dermatology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| |
Collapse
|
34
|
Zhou X, He J, Wang Q, Ma T. MiRNA-128-3p Restrains Malignant Melanoma Cell Malignancy by Targeting NTRK3. Front Oncol 2021; 10:538894. [PMID: 33575204 PMCID: PMC7871904 DOI: 10.3389/fonc.2020.538894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
The functions of non-coding RNA, including microRNA (miRNA), have attracted considerable attention in the field of oncology, In this report, we examined the roles and molecular mechanisms of miR-128-3p, as related to the biological behaviors of malignant melanoma (MM). We found that miR-128-3p was expressed in low levels in these MM cells and may serve as a tumor suppressor by inhibiting proliferation, migration, and invasion, as well as inducing apoptosis in these MM cells. Moreover, neurotrophin receptor 3 (NTRK3), which serves as an oncogene that can enhance malignant behaviors of MM cells, was up-regulated in MM cells. Our current survey disclosed a complementary binding between miR-128-3p and the NTRK3 3' untranslated regions (3'-UTR), while luciferase activities of NTRK3 3'-UTR were restrained by miR-128-3p in 293T cells. The effects of pre-miR-128-3p and sh-NTRK3 as well as anti-miR-128-3p and NTRK3(+) appeared to function synergistically in producing malignant progression. Moreover, there were possible to have counteracted effects for pre-miR-128-3p and NTRK3(+) in malignant progression. These findings established that miR-128-3p can function as a tumor suppressor by inhibiting carcinogenesis of the oncogene, NTRK3. Collectively, miR-128-3p and NTRK3 genes participate in modulating the malignant behavior of MM, and may represent new therapeutic targets for MM.
Collapse
Affiliation(s)
- Xinxin Zhou
- Academy of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiayuan He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Qingyuan Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
35
|
Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, Li P, Wang K. The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021; 17:134-150. [PMID: 33390839 PMCID: PMC7757044 DOI: 10.7150/ijbs.50773] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved catabolic process involving the degradation and recycling of damaged biomacromolecules or organelles through lysosomal-dependent pathways and plays a crucial role in maintaining cell homeostasis. Consequently, abnormal autophagy is associated with multiple diseases, such as infectious diseases, neurodegenerative diseases and cancer. Currently, autophagy is considered to be a dual regulator in cancer, functioning as a suppressor in the early stage while supporting the growth and metastasis of cancer cells in the later stage and may also produce therapeutic resistance. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by silencing targeted mRNA. MiRNAs have great regulatory potential for several fundamental biological processes, including autophagy. In recent years, an increasing number of studies have linked miRNA dysfunction to the growth, metabolism, migration, metastasis, and responses of cancer cells to therapy. Therefore, the study of autophagy-related miRNAs in cancer will provide insights into cancer biology and lead to the development of novel anti-cancer strategies. In the present review, we summarise the current knowledge of miRNA dysregulation during autophagy in cancer, focusing on the relationship between autophagy and miRNAs, and discuss their involvement in cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hongjing Cai
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiaodan Hao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yinfeng Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhixia Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinmin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
36
|
Loureiro JB, Abrantes M, Oliveira PA, Saraiva L. P53 in skin cancer: From a master player to a privileged target for prevention and therapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188438. [PMID: 32980466 DOI: 10.1016/j.bbcan.2020.188438] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
The increasing incidence of skin cancer (SC) is a global health concern. The commonly reported side effects and resistance mechanisms have imposed the pursuit for new therapeutic alternatives. Moreover, additional preventive strategies should be adopted to strengthen prevention and reduce the rising number of newly SC cases. This review provides relevant insights on the role of p53 tumour suppressor protein in melanoma and non-melanoma skin carcinogenesis, also highlighting the therapeutic potential of p53-targeting drugs against SC. In fact, several evidences are provided demonstrating the encouraging outcomes achieved with p53-activating drugs, alone and in combination with currently available therapies in SC. Another pertinent perspective falls on targeting p53 mutations, as molecular signatures in premature phases of photocarcinogenesis, in future SC preventive approaches. Overall, this review affords a critical and timely discussion of relevant issues related to SC prevention and therapy. Importantly, it paves the way to future studies that may boost the clinical translation of p53-activating agents, making them new effective alternatives in precision medicine of SC therapy and prevention.
Collapse
Affiliation(s)
- J B Loureiro
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Clinical Academic Center of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - P A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - L Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
37
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
38
|
Yan Y, Wu R, Bo Y, Zhang M, Chen Y, Wang X, Huang M, Liu B, Zhang L. Induced pluripotent stem cells-derived microvesicles accelerate deep second-degree burn wound healing in mice through miR-16-5p-mediated promotion of keratinocytes migration. Am J Cancer Res 2020; 10:9970-9983. [PMID: 32929328 PMCID: PMC7481429 DOI: 10.7150/thno.46639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Induced pluripotent stem cells (iPSCs) have emerged as a promising treatment paradigm for skin wounds. Extracellular vesicles are now recognized as key mediators of beneficial stem cells paracrine effects. In this study, we investigated the effect of iPSCs-derived microvesicles (iPSCs-MVs) on deep second-degree burn wound healing and explored the underlying mechanism. Methods: iPSCs-MVs were isolated and purified from conditioned medium of iPSCs and confirmed by electron micrograph and size distribution. In deep second-degree burn model, iPSCs-MVs were injected subcutaneously around wound sites and the efficacy was assessed by measuring wound closure areas, histological examination and immunohistochemistry staining. In vitro, CCK-8, EdU staining and scratch assays were used to assess the effects of iPSCs-MVs on proliferation and migration of keratinocytes. Next, we explored the underlying mechanisms by high-throughput microRNA sequencing. The roles of the miR-16-5p in regulation of keratinocytes function induced by iPSCs-MVs were assessed. Moreover, the target gene which mediated the biological effects of miR-16-5p in keratinocytes was also been detected. Finally, we examined the effect of local miR-16-5p treatment on deep second degree-burns wound healing in mice. Results: The local transplantation of iPSCs-MVs into the burn wound bed resulted in accelerated wound closure including the increased re-epithelialization. In vitro, iPSCs-MVs could promote the migration of keratinocytes. We also found that miR-16-5p is a critical factor in iPSCs-MVs-induced promotion of keratinocytes migration in vitro through activating p38/MARK pathway by targeting Desmoglein 3 (Dsg3). Finally, we confirmed that local miR-16-5p treatment could boost re-epithelialization during burn wound healing. Conclusion: Therefore, our results indicate that iPSCs-MVs-derived miR-16-5p may be a novel therapeutic approach for deep second-degree burn wound healing.
Collapse
|
39
|
Ma Y, Zhao HX, Shi YJ, Cheng MG. MicroRNA-532-5p is a prognostic marker and inhibits the aggressive phenotypes of osteosarcoma through targeting CXCL2. Kaohsiung J Med Sci 2020; 36:885-894. [PMID: 32643867 DOI: 10.1002/kjm2.12261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/16/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of miR-532-5p is involved in the development of several cancers. Nevertheless, the roles of miR-532-5p in osteosarcoma (OS) have yet to be illuminated. In the present study, we found that miR-532-5p was significantly downregulated in both OS tissues and cell lines. The low level of miR-532-5p was associated with advance clinical stage and poor overall survival in patient with OS. The functional experiments implied that upregulation of miR-532-5p restrained OS U2OS cell growth and metastatic ability in vitro; induced apoptosis, and impaired OS cell growth in vivo. Mechanistically, chemokine (C-X-C Motif) ligand 2 (CXCL2) was proved as a target gene of miR-532-5p. The inhibitory effects of miR-532-5p on OS cell were rescued by CXCL2 overexpression. Altogether, we demonstrated that miR-532-5p exerted tumor-inhibitory functions in OS cell via regulating CXCL2.
Collapse
Affiliation(s)
- Yong Ma
- Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Hai-Xia Zhao
- Internal Medicine-Neurology, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Yin-Ju Shi
- Nursing Department, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Ming-Guo Cheng
- Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| |
Collapse
|
40
|
Zhu Q, Zhang Q, Gu M, Zhang K, Xia T, Zhang S, Chen W, Yin H, Yao H, Fan Y, Pan S, Xie H, Liu H, Cheng T, Zhang P, Zhang T, You B, You Y. MIR106A-5p upregulation suppresses autophagy and accelerates malignant phenotype in nasopharyngeal carcinoma. Autophagy 2020; 17:1667-1683. [PMID: 32627648 PMCID: PMC8354606 DOI: 10.1080/15548627.2020.1781368] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dysregulated microRNAs (miRNAs) are involved in carcinoma progression, metastasis, and poor prognosis. We demonstrated that in nasopharyngeal carcinoma (NPC), transactivated MIR106A-5p promotes a malignant phenotype by functioning as a macroautophagy/autophagy suppressor by targeting BTG3 (BTG anti-proliferation factor 3) and activating autophagy-regulating MAPK signaling. MIR106A-5p expression was markedly increased in NPC cases based on quantitative real-time PCR, miRNA microarray, and TCGA database analysis findings. Moreover, MIR106A-5p was correlated with advanced stage, recurrence, and poor clinical outcomes in NPC patients. In addition to three-dimensional cell culture assays, zebrafish and BALB/c mouse tumor models revealed that overexpressed MIR106A-5p targeted BTG3 and accelerated the NPC malignant phenotype by inhibiting autophagy. BTG3 promoted autophagy, and its expression was correlated with poor prognosis in NPC. Attenuation of autophagy, mediated by the MIR106A-5p-BTG3 axis, occurred because of MAPK pathway activation. MIR106A-5p overexpression in NPC was due to increased transactivation by EGR1 and SOX9. Our findings may lead to novel insights into the pathogenesis of NPC. Abbreviations: ACTB: actin beta; ATG: autophagy-related; ATG5: autophagy related 5; BLI: bioluminescence; BTG3: BTG anti-proliferation factor 3; CASP3: caspase 3; ChIP: chromatin immunoprecipitation; CQ: chloroquine; Ct: threshold cycle; DAPI: 4ʹ,6-diamidino-2-phenylindole; DiL: 1,1ʹ-dioctadecyl-3,3,3ʹ,3ʹ-tetramethylindocarbocyanine perchlorate; EBSS: Earle’s balanced salt solution; EGR1: early growth response 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: Gene Expression Omnibus; GFP: green fluorescent protein; IF: immunofluorescence; IHC: immunohistochemistry; ISH: in situ hybridization; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MIR106A-5p: microRNA 106a-5p; miRNAs: microRNAs; MKI67: marker of proliferation ki-67; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NPC: nasopharyngeal carcinoma; qRT-PCR: quantitative real-time PCR; siRNA: small interfering RNA; SOX9: SRY-box transcription factor 9; SQSTM1: sequestosome 1; TCGA: The Cancer Genome Atlas; WB: western blot.
Collapse
Affiliation(s)
- Qingwen Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tian Xia
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wenhui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haimeng Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hui Yao
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yue Fan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Si Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Huiting Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tianyi Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Panpan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ting Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
41
|
Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding. Mech Ageing Dev 2020; 190:111309. [PMID: 32634442 DOI: 10.1016/j.mad.2020.111309] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Autophagy is a major self-degradative intracellular process required for the maintenance of homeostasis and promotion of survival in response to starvation. It plays critical roles in a large variety of physiological and pathological processes. On the other hand, aberrant regulation of autophagy can lead to various cancers and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Crohn's disease. Emerging evidence strongly supports that epigenetic signatures, related non-coding RNA profiles, and their cross-talking are significantly associated with the control of autophagic responses. Therefore, it may be helpful and promising to manage autophagic processes by finding valuable markers and therapeutic approaches. Although there is a great deal of information on the components of autophagy in the cytoplasm, the molecular basis of the epigenetic regulation of autophagy has not been completely elucidated. In this review, we highlight recent research on epigenetic changes through the expression of autophagy-related genes (ATGs), which regulate autophagy, DNA methylation, histone modifications as well as non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and their relationship with human diseases, that play key roles in causing autophagy-related diseases.
Collapse
Affiliation(s)
- Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Daghagh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Ȍzkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Yuan Z, Ye M, Qie J, Ye T. FOXA1 Promotes Cell Proliferation and Suppresses Apoptosis in HCC by Directly Regulating miR-212-3p/FOXA1/AGR2 Signaling Pathway. Onco Targets Ther 2020; 13:5231-5240. [PMID: 32606743 PMCID: PMC7293390 DOI: 10.2147/ott.s252890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background Forkhead box protein A1 (FOXA1), acting as a transcriptional activator for liver-specific transcripts, plays a vital part in proliferation, apoptosis and cell cycle. Methods The mRNA expression of FOXA1 in 90 HCC tissues and matched adjacent non-tumor tissues was determined by qRT-PCR. The downstream and upstream regulators of FOXA1 were identified by bioinformatics analysis and experimental confirmation. Results We found out that the expression of FOXA1 was obviously higher in hepatocellular carcinoma (HCC) tissues than that in matched non-tumor tissues. Similarly, FOXA1 is also highly expressed in HCC cell lines as compared with normal human hepatic cell line L02. Clinical association analysis indicated that high expression of FOXA1 was prominently correlated with high HBV level, large tumor size, high venous infiltration, high Edmondson-Steiner grading, and advanced tumor-node-metastasis tumor stage. Furthermore, the in vitro tests showed that ectopic expression of FOXA1 promoted HepG2 cell proliferation and suppressed apoptosis. In contrast, the downregulation of FOXA1 inhibited cell proliferation, and induced apoptosis in Hep3B cells. To investigate the functional mechanism of FOXA1, anterior gradient 2 (AGR2), an executor in proliferation and apoptosis, was identified as the direct target gene of FOXA1. Meanwhile, we also found the expression of FOXA1 could be inhibited by miR-212-3p, which working as a tumor suppressor downregulated in HCC. Conclusion We revealed that FOXA1 exerted its biological function by regulating AGR2 expression, and its ectopic expression may be blamed for low expression of miR-212-3p.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Mu Ye
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jingbo Qie
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tao Ye
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
43
|
Wu G, Long Y, Lu Y, Feng Y, Yang X, Xu X, Yao D. Kindlin‑2 suppresses cervical cancer cell migration through AKT/mTOR‑mediated autophagy induction. Oncol Rep 2020; 44:69-76. [PMID: 32377753 PMCID: PMC7251777 DOI: 10.3892/or.2020.7603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Kindlin‑2 plays a carcinogenic or tumor‑suppressor role in various tumors. However, its role in cervical cancer remains unclear. In the present study, kindlin‑2 expression was first analyzed using public expression data and clinical specimens. It was revealed that kindlin‑2 was downregulated in cervical cancer tissues, and low expression of kindlin‑2 was associated with poor disease‑free survival. In addition, kindlin‑2 was overexpressed and knocked down in two cell lines to study its effect in cervical cancer cells. The results revealed that kindlin‑2 promoted cell autophagy and inactivated AKT/mTOR signaling. Rescue experiments indicated that the regulation of autophagy by kindlin‑2 was dependent on the AKT/mTOR signaling pathway. Furthermore, it was revealed that kindlin‑2 inhibited cell migration, and autophagy was required for this process. Collectively, these findings revealed the role and mechanism of kindlin‑2 in the autophagy and migration of cervical cancer cells.
Collapse
Affiliation(s)
- Guangteng Wu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ying Long
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Lu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yiming Feng
- Guangxi Medical University Graduate School, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xinmei Yang
- Guangxi Medical University Graduate School, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xun Xu
- Guangxi Medical University Graduate School, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
44
|
Hartman ML. Non-Apoptotic Cell Death Signaling Pathways in Melanoma. Int J Mol Sci 2020; 21:E2980. [PMID: 32340261 PMCID: PMC7215321 DOI: 10.3390/ijms21082980] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Resisting cell death is a hallmark of cancer. Disturbances in the execution of cell death programs promote carcinogenesis and survival of cancer cells under unfavorable conditions, including exposition to anti-cancer therapies. Specific modalities of regulated cell death (RCD) have been classified based on different criteria, including morphological features, biochemical alterations and immunological consequences. Although melanoma cells are broadly equipped with the anti-apoptotic machinery and recurrent genetic alterations in the components of the RAS/RAF/MEK/ERK signaling markedly contribute to the pro-survival phenotype of melanoma, the roles of autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and parthanatos have recently gained great interest. These signaling cascades are involved in melanoma cell response and resistance to the therapeutics used in the clinic, including inhibitors of BRAFmut and MEK1/2, and immunotherapy. In addition, the relationships between sensitivity to non-apoptotic cell death routes and specific cell phenotypes have been demonstrated, suggesting that plasticity of melanoma cells can be exploited to modulate response of these cells to different cell death stimuli. In this review, the current knowledge on the non-apoptotic cell death signaling pathways in melanoma cell biology and response to anti-cancer drugs has been discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
45
|
Li K, Tang M, Tong S, Wang C, Sun Q, Lv M, Sun X, Wang T, Jin S. BRAFi induced demethylation of miR-152-5p regulates phenotype switching by targeting TXNIP in cutaneous melanoma. Apoptosis 2020; 25:179-191. [PMID: 32056038 DOI: 10.1007/s10495-019-01586-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Treatment of advanced BRAFV600-mutant melanoma using BRAF inhibitors (BRAFi) eventually leads to drug resistance and selects for highly metastatic tumor cells. We compared the most differentially dysregulated miRNA expression profiles of vemurafenib-resistant and highly-metastatic melanoma cell lines obtained from GEO DataSets. We discovered miR-152-5p was a potential regulator mediating melanoma drug resistance and metastasis. Functionally, knockdown of miR-152-5p significantly compromised the metastatic ability of BRAFi-resistant melanoma cells and overexpression of miR-152-5p promoted the formation of slow-cycling phenotype. Furthermore, we explored the cause of how and why miR-152-5p affected metastasis in depth. Mechanistically, miR-152-5p targeted TXNIP which affected metastasis and BRAFi altered the methylation status of MIR152 promoter. Our study highlights the crucial role of miR-152-5p on melanoma metastasis after BRAFi treatment and holds significant implying that discontinuous dosing strategy may improve the benefit of advanced BRAFV600-mutant melanoma patients.
Collapse
Affiliation(s)
- Kezhu Li
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Mingrui Tang
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Shuang Tong
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Chenchao Wang
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Qiang Sun
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Xu Sun
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Ting Wang
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Shifeng Jin
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China.
| |
Collapse
|
46
|
Targeting cancer stem cells by melatonin: Effective therapy for cancer treatment. Pathol Res Pract 2020; 216:152919. [PMID: 32171553 DOI: 10.1016/j.prp.2020.152919] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Melatonin is a physiological hormone produced by the pineal gland. In recent decades, enormous investigations showed that melatonin can prompt apoptosis in cancer cells and inhibit tumor metastasis and angiogenesis in variety of malignancies such as ovarian, melanoma, colon, and breast cancer; therefore, its possible therapeutic usage in cancer treatment was confirmed. CSCs, which has received much attention from researchers in past decades, are major challenges in the treatment of cancer. Because CSCs are resistant to chemotherapeutic drugs and cause recurrence of cancer and also have the ability to be regenerated; they can cause serious problems in the treatment of various cancers. For these reasons, the researchers are trying to find a solution to destroy these cells within the tumor mass. In recent years, the effect of melatonin on CSCs has been investigated in some cancers. Given the importance of CSCs in the process of cancer treatment, this article reviewed the studies conducted on the effect of melatonin on CSCs as a solution to the problems caused by CSCs in the treatment of various cancers.
Collapse
|
47
|
Zhou H, Rao Y, Sun Q, Liu Y, Zhou X, Chen Y, Chen J. MiR-4458/human antigen R (HuR) modulates PBX3 mRNA stability in melanoma tumorigenesis. Arch Dermatol Res 2020; 312:665-673. [PMID: 32157373 DOI: 10.1007/s00403-020-02051-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Melanoma, a malignancy of the melanocyte, is characterized as the most fatal skin cancer with an increasing incidence. Of note, in spite of great attempts made for better treatment, the therapeutic outcome is barely satisfactory. Abnormal expression of microRNAs (miRNAs) acting as oncogenes or tumor suppressor genes, is frequently implicated in multiple human cancers, including melanoma. Here, we found that miRNA-4458, a reportedly tumor-suppressive miRNA in several cancers, was downregulated in melanoma cells. Besides, our findings indicated that microRNA-4458 (miR-4458) hindered cell proliferation and migration, yet induced apoptosis in melanoma. Mechanical interaction of miR-4458 and PBX3 mRNA, thereby inhibiting PBX3 expression in melanoma cells, was also presented in this work. Human antigen R (HuR) was reported to be greatly upregulated in diverse cancers and HuR-dependent stabilization of target gene contributed a lot to tumor progression. In this study, it revealed the stabilization of PBX3 mRNA by HuR, thereby boosting PBX3 expression. Lastly, we concluded that miR-4458 and HuR modulated the expression of PBX3 in a competitive manner in melanoma tumorigenesis, which might yield a novel insight into the molecular pathogenesis of melanoma.
Collapse
Affiliation(s)
- Henghua Zhou
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, 200011, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, 200011, China
| | - Qilin Sun
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yang Liu
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaobo Zhou
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ying Chen
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, 200011, China.
| | - Jun Chen
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
48
|
Xiao Q, Ying J, Qiao Z, Yang Y, Dai X, Xu Z, Zhang C, Xiang L. Exogenous hydrogen sulfide inhibits human melanoma cell development via suppression of the PI3K/AKT/ mTOR pathway. J Dermatol Sci 2020; 98:26-34. [PMID: 32098704 DOI: 10.1016/j.jdermsci.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Melanoma is one of the most aggressive, therapy-resistant skin cancers in the world. Hydrogen sulfide (H2S), a newly discovered gasotransmitter, plays a crucial role in the progression and development of many types of cancers. However, the effect of H2S on human skin melanoma remains to be elucidated. OBJECTIVE We aimed to explore the effect of exogenous H2S on melanoma cells and its underlying mechanisms. METHODS In this study, human skin melanoma cell lines, including A375 and SK-MEL-28, were treated with a donor of H2S (NaHS). CCK-8, scratch assay, flow cytometric analysis, western blotting and transmission electron microscopy (TEM) were performed to explore the effects of H2S on cell behaviors. RESULTS Treatment with NaHS inhibited cell proliferation, migration and division, while it could induce cell apoptosis and autophagy in melanoma cell lines. Moreover, NaHS significantly decreased the expression of p-PI3K, p-Akt and mTOR proteins. Furthermore, insulin-like growth factor-1 (IGF-1), the activator of PI3K/AKT/mTOR pathway, could reverse the cell behaviors caused by NaHS. CONCLUSION Our results demonstrated that exogenous hydrogen sulfide could inhibit human melanoma cell development via suppression of the PI3K/AKT/mTOR pathway. Hydrogen sulfide might serve as a potential therapeutic option for melanoma.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jiayi Ying
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhuhui Qiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiaoxi Dai
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhongyi Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
49
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
50
|
Uitto J, Lu Q, Wang G. Meeting Report of the 4th Annual Meeting of the Chinese Society for Investigative Dermatology: Reflections on the Rise of Cutaneous Biology Research in China. J Invest Dermatol 2019; 140:729-732.e4. [PMID: 31862384 DOI: 10.1016/j.jid.2019.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology and the Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|