1
|
Sagar S, Khan D, Sivasankar KV, Kumar R. New PET Tracers for Symptomatic Myeloma. PET Clin 2024; 19:515-524. [PMID: 39025753 DOI: 10.1016/j.cpet.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the clonal proliferation of plasma cells within the bone marrow. Accurate staging and monitoring of disease progression are crucial for effective management. PET imaging has emerged as a powerful tool in the diagnosis and management of MM, with radiotracers like 18F-fluorodeoxyglucose and novel agents playing a pivotal role. This review explores the current state of PET imaging in multiple myeloma, focusing on its role in initial staging, response assessment, and prognosis prediction, with an emphasis on recent advancements.
Collapse
Affiliation(s)
- Sambit Sagar
- Diagnostic Nuclear Medicine Division, Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Dikhra Khan
- Diagnostic Nuclear Medicine Division, Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | - Rakesh Kumar
- Diagnostic Nuclear Medicine Division, Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, India.
| |
Collapse
|
2
|
Schloetelburg W, Hartrampf PE, Kosmala A, Serfling SE, Dreher N, Schirbel A, Fassnacht M, Buck AK, Werner RA, Hahner S. Predictive value of C-X-C motif chemokine receptor 4-directed molecular imaging in patients with advanced adrenocortical carcinoma. Eur J Nucl Med Mol Imaging 2024; 51:3643-3650. [PMID: 38896128 PMCID: PMC11445370 DOI: 10.1007/s00259-024-06800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND In patients affected with adrenocortical carcinoma (ACC), C-X-C motif chemokine receptor 4 (CXCR4) is highly expressed in sites of disease in an ex-vivo setting. We aimed to determine the predictive value of CXCR4-targeting [68Ga]Ga-PentixaFor PET/CT for outcome when compared to clinical parameters. METHODS We identified 41 metastasized ACC patients imaged with [68Ga]Ga-PentixaFor PET/CT. Scans were assessed visually and on a quantitative level by manually segmenting the tumor burden (providing tumor volume [TV], peak/mean/maximum standardized uptake values [SUV] and tumor chemokine receptor binding on the cell surface [TRB], defined as SUVmean multiplied by tumor volume). Clinical parameters included sex, previous therapies, age, Weiss-Score, and Ki67 index. Following imaging, overall survival (OS) was recorded. RESULTS After [68Ga]Ga-PentixaFor PET/CT, median OS was 9 months (range, 1-96 months). On univariable analysis, only higher TRB (per 10 ml, HR 1.004, 95%CI: 1.0001-1.007, P = 0.005) and presence of CXCR4-positive peritoneal metastases (PM) were associated with shorter OS (HR 2.03, 95%CI: 1.03-4.02, P = 0.04). Presence of CXCR4-positive liver metastases (LM) trended towards significance (HR 1.85, 0.9-4.1, P = 0.11), while all other parameters failed to predict survival. On multivariable analysis, only TRB was an independent predictor for OS (HR 1.0, 95%CI: 1.00-1.001, P = 0.02). On Kaplan-Meier analysis, TRB above median (13.3 months vs. below median, 6.4 months) and presence of CXCR4-positive PM (6.4 months, vs. no PM, 11.4 months) were associated with shorter survival (P < 0.05, respectively). Presence of LM, however, was also linked to less favorable outcome (8.5 months vs. no LM, 18.1 months), without reaching significance (P = 0.07). CONCLUSIONS In advanced ACC, elevated tumor chemokine receptor binding on the tumor cell surface detected through [68Ga]Ga-PentixaFor PET/CT is an independent predictor for OS, while other imaging and clinical parameters failed to provide relevant prognostic information.
Collapse
Affiliation(s)
- Wiebke Schloetelburg
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital, University of Würzburg, Wurzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Stefanie Hahner
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital, University of Würzburg, Wurzburg, Germany
| |
Collapse
|
3
|
Yang Q, Zhang F, Hao Z, Zhuang J, Huo L. Chemokine Receptor 4-Targeted PET/CT with [ 68Ga]pentixather in Newly Diagnosed Multiple Myeloma: a Comparative Study with [ 68Ga]pentixafor PET/CT. Mol Imaging Biol 2024:10.1007/s11307-024-01953-7. [PMID: 39304574 DOI: 10.1007/s11307-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE This study aimed to compare the detection rate of [68Ga]pentixather PET/CT and [68Ga]pentixafor PET/CT in newly diagnosed multiple myeloma (NDMM) patients, and to explore the value of [68Ga]pentixather PET/CT for tumor load assessment. METHODS Nineteen NDMM Patients were prospectively recruited and underwent both [68Ga]pentixather PET/CT and [68Ga]pentixafor PET/CT. A positive PET scan was defined as the presence of PET-positive focal bone lesions, paraskeletal disease, extramedullary plasmacytoma, or diffuse bone marrow uptake. Lesion numbers, SUVmax and PET-related tumor burden values were compared. The correlations between PET-related tumor burden and clinical risk stratification were analyzed. RESULTS [68Ga]pentixather PET/CT showed a tendency of higher positive rate compared with [68Ga]pentixafor PET/CT [94.7% (18/19) vs. 78.9% (15/19), p > 0.05]. Among 14 patients with 151 matched focal bone lesions, [68Ga]pentixather PET detected more or equal number of lesions in 13 patients, and demonstrated higher uptake value than 68 Ga-pentixafor PET [SUVmax, 16.8 (9.0, 23.8) vs. 13.4 (6.5, 20.4), p < 0.001]. For PET related-tumor burden, positive correlations of total bone marrow uptake (TBmU) (r = 0.9540, p < 0.0001) and SUVmean of total bone marrow (r = 0.9632, p < 0.0001) in two PET scans were observed. Higher TBmU [7864.9 (5549.2, 11,616.2) vs. 5383.4(4102.7, 11,041.8), p < 0.001], SUVmean of total bone marrow [1.4 (1.1, 2.2) vs. 1.1 (0.7, 2.1), p < 0.001] were demonstrated on [68Ga]pentixather PET than [68Ga]pentixafor PET. And the level of TBmU in [68Ga]pentixather PET and [68Ga]pentixafor PET were both elevated in Durie-Salmon Staging (DSS) III than DSS I (p < 0.01). CONCLUSIONS [68Ga]pentixather PET/CT performed a non-inferior capability for tumor detection compared to [68Ga]pentixafor PET/CT in NDMM patients. [68Ga]pentixather PET/CT can assess tumor load in MM patients and depict a significantly higher PET-related total tumor burden than [68Ga]pentixafor PET/CT.
Collapse
Affiliation(s)
- Qiao Yang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Fujing Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Zhixin Hao
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
4
|
Chavoshi M, Mirshahvalad SA, Kohan A, Ortega C, Metser U, Farag A, Kridel R, Hodgson D, Bhella S, Kukreti V, Veit-Haibach P. CXCR4-Targeted PET Imaging in Hematologic Malignancies: A Systematic Review and Meta-analysis. Clin Nucl Med 2024:00003072-990000000-01269. [PMID: 39259697 DOI: 10.1097/rlu.0000000000005426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE The aims of this study were to perform a comprehensive review and meta-analyses and to report pooled diagnostic results on CXCR4-targeted PET, particularly considering detection, visualization, and prognostication. PATIENTS AND METHODS This study followed PRISMA-DTA. A systematic search was conducted on major medical literature databases up to March 1, 2024. The search strategy was designed to include CXCR4 PET studies in hematologic malignancies. A random-effects model combined sensitivity values derived from 2-by-2 contingency tables. Pooled means for SUVmax were computed. Analyses were performed by R software. RESULTS The initial search resulted in a total of 1428 studies. Ultimately, 18 were eligible for systematic review and meta-analytic calculations. Twelve studies (320 patients) included B-cell lymphoma. The pooled detection rate of CXCR4 PET was 99.4% (95% confidence interval [CI]: 88.3%-100%). Marginal zone lymphoma was investigated in 5 studies (209 patients), with a pooled sensitivity of 97.6% (95% CI: 79.7%-99.8%). In studies on central nervous system lymphoma, CXCR4 PET demonstrated 100% accuracy at both patient and lesion levels. Also, it demonstrated a significantly higher tumor-to-background ratio than 18F-FDG PET. For multiple myeloma, 5 studies (116 patients) showed a patient-level pooled sensitivity of 77.8% (95% CI: 64.4%-87.2%), whereas 18F-FDG PET had 65.0% (95% CI: 55.2%-73.7%). The pooled SUVmax for CXCR4 PET was 13.6 (95% CI: 9.3-17.8) versus 9.0 (95% CI: 6.3-11.7) for 18F-FDG PET. Additionally, CXCR4 PET-derived parameters were significant predictors of survival in multiple myeloma. CONCLUSIONS CXCR4 PET can be a helpful imaging tool for evaluating hematologic malignancies, particularly in B-cell lymphoma and multiple myeloma patients. In specific clinical scenarios, it appears to be superior compared with the current standard-of-care imaging.
Collapse
Affiliation(s)
- Mohammadreza Chavoshi
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Seyed Ali Mirshahvalad
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andres Kohan
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Claudia Ortega
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ur Metser
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adam Farag
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Robert Kridel
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Hodgson
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sita Bhella
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vishal Kukreti
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Patrick Veit-Haibach
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Ma J, Zhang S, Yang N, Shang J, Gao X, Chen J, Wei H, Li Y, Zeng H, Xu H, Wang J, Liang SH, Wang R, Hu K, Wang L. Discovery of a highly specific radiolabeled antibody targeting B-cell maturation antigen: Applications in PET imaging of multiple myeloma. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06907-3. [PMID: 39259226 DOI: 10.1007/s00259-024-06907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE Multiple myeloma (MM) is characterized by the uncontrolled proliferation of monoclonal plasma cells (PC) in the bone marrow (BM). B-cell maturation antigen (BCMA) is predominantly expressed in malignant plasma cells, and associated with the proliferation, survival, and progression of various myeloma cells. Given these important roles, BCMA emerges as an ideal target antigen for MM therapy. However, effective stratification of patients who may benefit from targeted BCMA therapy and real-time monitoring the therapeutic efficacy poses significant clinical challenge. This study aims to develop a BCMA targeted diagnostic modality, and preliminarily explore its potential value in the radio-immunotherapy of MM. EXPERIMENTAL DESIGN Using zirconium-89 (89Zr, t1/2 = 78.4 h) for labeling the BCMA-specific antibody, the BCMA-targeting PET tracer [89Zr]Zr-DFO-BCMAh230430 was prepared. The EC50 values of BCMAh230430 and DFO-BCMAh230430 were determined by ELISA assay. BCMA expression was assessed in four different tumor cell lines (MM.1S, RPMI 8226, BxPC-3, and KYSE520) through Western blot and flow cytometry. In vitro binding affinity was determined by cell uptake studies of [89Zr]Zr-DFO-BCMAh230430 in these tumor cell lines. For in vivo evaluation, PET imaging and ex vivo biodistribution studies were conducted in tumor-bearing mice to evaluate imaging performance and systemic distribution of [89Zr]Zr-DFO-BCMAh230430. Immunochemistry analysis was performed to detect BCMA expression in tumor tissues, confirming the specificity of our probe. Furthermore, we explored the anti-tumor efficacy of Lutetium-177 labeled BCMA antibody, [177Lu]Lu-DTPA-BCMAh230430, in tumor bearing-mice to validate its radioimmunotherapy potential. RESULTS The radiolabeling of [89Zr]Zr-DFO-BCMAh230430 and [177Lu]Lu-DTPA-BCMAh230430 showed satisfactory radiocharacteristics, with a radiochemical purity exceeding 99%. ELISA assay results revealed closely aligned EC50 values for BCMAh230430 and DFO-BCMAh230430, which are 57 pM and 67 pM, respectively. Western blot and flow cytometry analyses confirmed the highest BCMA expression level. Cell uptake data indicated that MM.1S cells had a total cellular uptake (the sum of internalization and surface binding) of 38.3% ± 1.53% for [89Zr]Zr-DFO-BCMAh230430 at 12 h. PET imaging of [89Zr]Zr-DFO-BCMAh230430 displayed radioactive uptake of 7.71 ± 0.67%ID/g in MM.1S tumors and 4.13 ± 1.21%ID/g in KYSE520 tumors at 168 h post-injection (n = 4) (P < 0.05), consistent with ex vivo biodistribution studies. Immunohistochemical analysis of tumor tissues confirmed higher BCMA expression in MM.1S tumors xenograft compared to KYSE520 tumors. Notably, [177Lu]Lu-DTPA-BCMAh230430 showed some anti-tumor efficacy, evidenced by slowed tumor growth. Furthermore, no significant difference in body weight was observed in MM.1S tumor-bearing mice over 14 days of administration with or without [177Lu]Lu-DTPA-BCMAh230430. CONCLUSIONS Our study has successfully validated the essential role of [89Zr]Zr-DFO-BCMAh230430 in non-invasively monitoring BCMA status in MM tumors, showing favorable tumor uptake and specific binding affinity to MM tumors. Furthermore, our research revealed, as a proof-of-concept, the effectiveness of [177Lu]Lu-DTPA-BCMAh230430 in radioimmunotherapy for MM tumors. In conclusion, we present a novel BCMA antibody-based radiotheranostic modality that holds promise for achieving efficient and precise MM diagnostic and therapy.
Collapse
Affiliation(s)
- Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nianhui Yang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research On Chronic Disease, Guangzhou, 510630, China
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- The Guangzhou Key Laboratory of Basic and Translational Research On Chronic Disease, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Liu M, Chen X, Ding H, Shu Q, Zheng Y, Chen Y, Cai L. Comparison of [ 18F]FDG and [ 68 Ga]pentixafor PET/CT in Nasopharyngeal Carcinoma. Mol Imaging Biol 2024; 26:658-667. [PMID: 38627276 DOI: 10.1007/s11307-024-01913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE This study aimed to explore the feasibility of [68 Ga]pentixafor positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma (NPC). PROCEDURES This prospective study included patients with NPC who underwent [68 Ga]pentixafor PET/CT and 2-[18F]fuoro-2-deoxy-D-glucose ([18F]FDG) PET/CT within one week between November 2022 and March 2023. The [68 Ga]pentixafor and [18F]FDG uptakes in primary and metastatic lesions were measured and compared. RESULTS Twenty-five participants (21 patients for initial stage and four patients for recurrence detection) were enrolled in our study. The participants underwent [18F]FDG PET/CT and [68 Ga]pentixafor PET/CT. [68 Ga]pentixafor PET/CT had the same detection rate as [18F]FDG for primary tumor (96% vs. 96%). The [68 Ga]pentixafor maximum standard uptake value (SUVmax) and target-to-background ratio (TBR) of primary tumors were lower than those of [18F]FDG (SUVmax: 8.13 ± 2.78 vs. 14.25 ± 6.45; P < 0.01; TBR: 5.17 ± 2.14 vs. 9.81 ± 5.30, P < 0.01). The difference between tumor volume of [68 Ga]pentixafor (TVpentixafor) and tumor volume of [18F]FDG (TVFDG) showed no significance (median: 16.01 vs. 9.56, P = 0.332). In the detection of suspected metastatic cervical lymph nodes (CLNs), [68 Ga]pentixafor PET possessed a lower SUVmax than [18F]FDG PET/CT (SUVmax: 6.86 ± 2.63 vs. 10.39 ± 5.28, P < 0.01), but there was no significant difference in the detection rate between [68 Ga]pentixafor and [18F]FDG PET/CT (96 vs. 98, P = 0.613). CONCLUSIONS [68 Ga]pentixafor is a promising imaging tracer for detecting primary and metastatic NPC. [68 Ga]pentixafor PET/CT is comparable to [18F]FDG PET/CT in the detection rate of primary tumors and metastatic cervical lymph nodes in nasopharyngeal carcinoma, but [68 Ga]pentixafor uptake was heterogeneous. [68 Ga]pentixafor PET/CT may help select patients most likely to benefit from CXCR4-directed endoradiotherapy. CLINICAL TRIAL REGISTRATION NO ChiCTR2200065902.
Collapse
Affiliation(s)
- Mengna Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Haoyuan Ding
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiaoqiao Shu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yun Zheng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Liang Cai
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China.
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Mahajan S, Gavane S, Pandit-Taskar N. Targeted Radiopharmaceutical Therapy for Bone Metastases. Semin Nucl Med 2024; 54:497-512. [PMID: 38937221 DOI: 10.1053/j.semnuclmed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Radiopharmaceutical approaches for targeting bone metastasis have traditionally focused on palliation of pain. Several agents have been clinically used over the last several decades and have proven value in pain palliation providing pain relief and improving quality of life. The role is well established across several malignancies, most commonly used in osteoblastic prostate cancer patients. These agents have primarily based on targeting and uptake in bone matrix and have mostly included beta emitting isotopes. The advent alpha emitter and FDA approval of 223Ra-dichloride has created a paradigm shift in clinical approach from application for pain palliation to treatment of bone metastasis. The approval of 223Ra-dichloride given the survival benefit in metastatic prostate cancer patients, led to predominant use of this alpha emitter in prostate cancer patients. With rapid development of radiopharmaceutical therapies and approval of other targeted agents such as 177Lu-PSMA the approach to treatment of bone metastasis has further evolved and combination treatments have increasingly been applied. Novel approaches are needed to improve and expand the use of such therapies for treatment of bone metastasis. Combination therapies with different targeting mechanisms, combining chemotherapies and cocktail of alpha and beta emitters need further exploration.
Collapse
Affiliation(s)
- Sonia Mahajan
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Somali Gavane
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
8
|
Yang Q, Zhang F, Hao Z, Zhuang J, Huo L. Chemokine Receptor 4-Targeted PET/CT With 68 Ga-Pentixather Detects More Lesions Than 68 Ga-Pentixafor PET/CT in Multiple Myeloma. Clin Nucl Med 2024; 49:592-593. [PMID: 38630995 DOI: 10.1097/rlu.0000000000005194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
ABSTRACT An 83-year-old woman with newly diagnosed multiple myeloma (MM) was enrolled in our 68 Ga-pentixather and 68 Ga-pentixafor PET/CT trial for evaluation of tumor burden. 68 Ga-pentixather PET/CT detected more focal bone lesions, and the uptake levels of focal bone lesions on 68 Ga-pentixather PET/CT were higher than those on 68 Ga-pentixafor PET/CT. This suggests that 68 Ga-pentixather PET/CT may be an alternative imaging modality and more sensitive in detecting MM lesions than 68 Ga-pentixafor PET/CT.
Collapse
Affiliation(s)
- Qiao Yang
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fujing Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixin Hao
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Huo
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Lawal IO, Abubakar SO, Ndlovu H, Mokoala KMG, More SS, Sathekge MM. Advances in Radioligand Theranostics in Oncology. Mol Diagn Ther 2024; 28:265-289. [PMID: 38555542 DOI: 10.1007/s40291-024-00702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Theranostics with radioligands (radiotheranostics) has played a pivotal role in oncology. Radiotheranostics explores the molecular targets expressed on tumor cells to target them for imaging and therapy. In this way, radiotheranostics entails non-invasive demonstration of the in vivo expression of a molecular target of interest through imaging followed by the administration of therapeutic radioligand targeting the tumor-expressed molecular target. Therefore, radiotheranostics ensures that only patients with a high likelihood of response are treated with a particular radiotheranostic agent, ensuring the delivery of personalized care to cancer patients. Within the last decades, a couple of radiotheranostics agents, including Lutetium-177 DOTATATE (177Lu-DOTATATE) and Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA), were shown to prolong the survival of cancer patients compared to the current standard of care leading to the regulatory approval of these agents for routine use in oncology care. This recent string of successful approvals has broadened the interest in the development of different radiotheranostic agents and their investigation for clinical translation. In this work, we present an updated appraisal of the literature, reviewing the recent advances in the use of established radiotheranostic agents such as radioiodine for differentiated thyroid carcinoma and Iodine-131-labeled meta-iodobenzylguanidine therapy of tumors of the sympathoadrenal axis as well as the recently approved 177Lu-DOTATATE and 177Lu-PSMA for differentiated neuroendocrine tumors and advanced prostate cancer, respectively. We also discuss the radiotheranostic agents that have been comprehensively characterized in preclinical studies and have shown some clinical evidence supporting their safety and efficacy, especially those targeting fibroblast activation protein (FAP) and chemokine receptor 4 (CXCR4) and those still being investigated in preclinical studies such as those targeting poly (ADP-ribose) polymerase (PARP) and epidermal growth factor receptor 2.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, NE, Atlanta, GA, 30322, USA.
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.
| | - Sofiullah O Abubakar
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat, Oman
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Stuart S More
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| |
Collapse
|
10
|
Bauckneht M, Filippi L. Pentixather: paving the way for radioligand therapy in oncohematology. Expert Rev Anticancer Ther 2024; 24:205-209. [PMID: 38593347 DOI: 10.1080/14737140.2024.2341728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
11
|
Spahn MA, Luyten K, Van Loy T, Sathekge M, Deroose CM, Koole M, Schols D, Vanduffel W, De Vos K, Annaert P, Bormans G, Cleeren F. Second generation Al 18F-labeled D-amino acid peptide for CXCR4 targeted molecular imaging. Nucl Med Biol 2024; 132-133:108906. [PMID: 38518400 DOI: 10.1016/j.nucmedbio.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [68Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation Al18F-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging. METHODS We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an Al18F-labeled ligand, [18F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans. RESULTS The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [18F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 μM AMD3100. In naïve mice, [18F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUVmean (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUVmean 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [18F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [18F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [18F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor. CONCLUSION The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [18F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.
Collapse
Affiliation(s)
- Muriel Aline Spahn
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Luyten
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Leuven, Belgium
| | - Kristof De Vos
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Waheed A, Singh B, Watts A, Kaur H, Singh H, Dhingra K, Ahuja C, Madan R, Singh A, Radotra BD. 68 Ga-Pentixafor PET/CT for In Vivo Imaging of CXCR4 Receptors in Glioma Demonstrating a Potential for Response Assessment to Radiochemotherapy: Preliminary Results. Clin Nucl Med 2024; 49:e141-e148. [PMID: 38350065 DOI: 10.1097/rlu.0000000000005073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
PURPOSE The aim of this study was to evaluate the diagnostic potential of 68 Ga-pentixafor PET/CT for in vivo CXCR4 receptors imaging in glioma and its possible role in response assessment to radiochemotherapy (R-CT). METHODS Nineteen (12 men, 7 women) patients with glioblastoma multiforme (GBM) underwent 68 Ga-pentixafor PET/CT, contrast-enhanced MR, and MR spectroscopy. Patients were divided in to 2 groups, that is, group I was the presurgical (n = 9) group in which the scanning was done before surgery, and PET findings were correlated with CXCR4 receptors' density. The group II was the postsurgical (n = 10) group in which the scanning was done before and after R-CT and used for treatment response evaluation. The quantitative analysis of 68 Ga-pentixafor PET/CT evaluated the mean SUV max , SUV mean , SUV peak , and T/B values. MR spectroscopy data evaluated the ratios of tumor metabolites (choline, NAA, creatine). RESULTS 68 Ga-Pentixafor uptake was noted in all (n = 19) the patients. In the group I, the mean SUV max , SUV mean , SUV peak , and T/B values were found to be 4.5 ± 1.6, 0.60 ± 0.26, 1.95 ± 0.8, and 6.9 ± 4.6, respectively. A significant correlation ( P < 0.005) was found between SUV mean and choline/NAA ratio. Immunohistochemistry performed in 7/9 showed CXCR4 receptors' positivity (intensity 3 + ; stained cells >50.0%). In the group II, the mean SUV max at baseline was 4.6 ± 2.1 and did not differ (4.4 ± 1.6) significantly from the value noted at post-R-CT follow-up PET/CT imaging. At 6 months' clinical follow-up, 4 patients showed stable disease. SUV max and T/B ratios at follow-up imaging were lower (3.70 ± 0.90, 2.64 ± 1.35) than the corresponding values (4.40 ± 2.8; 2.91 ± 0.93) noted at baseline. Six (6/10) patients showed disease progression, and the mean SUV max , and T/B ratio in these patients were significantly ( P < 0.05) higher than the corresponding values at baseline and also higher than that noted in the stable patients. CONCLUSIONS 68 Ga-Pentixafor PET/CT can be used for in vivo mapping of CXCR4 receptors in GBM. The technique after validation in a large cohort of patients may have added diagnostic value for the early detection of GBM recurrence and for treatment response evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bishan D Radotra
- Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Dreher N, Hahner S, Fuß CT, Schlötelburg W, Hartrampf PE, Serfling SE, Schirbel A, Samnick S, Higuchi T, Weich A, Lapa C, Rosenwald A, Buck AK, Kircher S, Werner RA. CXCR4-directed PET/CT with [ 68 Ga]Ga-pentixafor in solid tumors-a comprehensive analysis of imaging findings and comparison with histopathology. Eur J Nucl Med Mol Imaging 2024; 51:1383-1394. [PMID: 38082196 PMCID: PMC10957681 DOI: 10.1007/s00259-023-06547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/26/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND C-X-C motif chemokine receptor 4 (CXCR4) is overexpressed in various solid cancers and can be targeted by CXCR4-directed molecular imaging. We aimed to characterize the in-vivo CXCR4 expression in patients affected with solid tumors, along with a comparison to ex-vivo findings. METHODS A total 142 patients with 23 different histologically proven solid tumors were imaged with CXCR4-directed PET/CT using [68 Ga]Ga-pentixafor (total number of scans, 152). A semi-quantitative analysis of the CXCR4-positive tumor burden including maximum standardized uptake values (SUVmax) and target-to-background ratios (TBR) using blood pool was conducted. In addition, we performed histopathological staining to determine the immuno-reactive score (IRS) from patients' tumor tissue and investigated possible correlations with SUVmax (by providing Spearman's rho ρ). Based on imaging, we also assessed the eligibility for CXCR4-targeted radioligand therapy or non-radioactive CXCR4 inhibitory treatment (defined as more than five CXCR4-avid target lesions [TL] with SUVmax above 10). RESULTS One hundred three of 152 (67.8%) scans showed discernible uptake above blood pool (TBR > 1) in 462 lesions (52 primary tumors and 410 metastases). Median TBR was 4.4 (1.05-24.98), thereby indicating high image contrast. The highest SUVmax was observed in ovarian cancer, followed by small cell lung cancer, desmoplastic small round cell tumor, and adrenocortical carcinoma. When comparing radiotracer accumulation between primary tumors and metastases for the entire cohort, comparable SUVmax was recorded (P > 0.999), except for pulmonal findings (P = 0.013), indicative for uniform CXCR4 expression among TL. For higher IRS, a weak, but statistically significant correlation with increased SUVmax was observed (ρ = 0.328; P = 0.018). In 42/103 (40.8%) scans, more than five TL were recorded, with 12/42 (28.6%) exhibiting SUVmax above 10, suggesting eligibility for CXCR4-targeted treatment in this subcohort. CONCLUSIONS In a whole-body tumor read-out, a substantial portion of prevalent solid tumors demonstrated increased and uniform [68 Ga]Ga-pentixafor uptake, along with high image contrast. We also observed a respective link between in- and ex-vivo CXCR4 expression, suggesting high specificity of the PET agent. Last, a fraction of patients with [68 Ga]Ga-pentixafor-positive tumor burden were rendered potentially suitable for CXCR4-directed therapy.
Collapse
Affiliation(s)
- Niklas Dreher
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Stefanie Hahner
- Department of Internal Medicine I, Endocrinology, University Hospital Würzburg, Würzburg, Germany
| | - Carmina T Fuß
- Department of Internal Medicine I, Endocrinology, University Hospital Würzburg, Würzburg, Germany
| | - Wiebke Schlötelburg
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Alexander Weich
- Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Division of Nuclear Medicine, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| |
Collapse
|
14
|
Murtazaliev S, Rowe SP, Sheikhbahaei S, Werner RA, Sólnes LB. Positron Emission Tomography/Computed Tomography Transformation of Oncology: Multiple Myeloma. PET Clin 2024; 19:249-260. [PMID: 38199914 DOI: 10.1016/j.cpet.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This article provides a comprehensive review of the role of 2-deoxy-2-[18F]fluoro-d-glucose (18F FDG) positron emission tomography/computed tomography (PET/CT) in multiple myeloma (MM) and related plasma cell disorders. MM is a hematologic malignancy characterized by the neoplastic proliferation of plasma cells. 18F FDG PET/CT integrates metabolic and anatomic information, allowing for accurate localization of metabolically active disease. The article discusses the use of 18F FDG PET/CT in initial diagnosis, staging, prognostication, and assessing treatment response. Additionally, it provides valuable insights into the novel imaging targets including chemokine receptor C-X-C motif 4 and CD38.
Collapse
Affiliation(s)
- Salikh Murtazaliev
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science at Johns Hopkins Hospital, 601 North Caroline St., JHOC 3, Baltimore, MD 21287, USA
| | - Steven P Rowe
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science at Johns Hopkins Hospital, 601 North Caroline St., JHOC 3, Baltimore, MD 21287, USA
| | - Sara Sheikhbahaei
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science at Johns Hopkins Hospital, 601 North Caroline St., JHOC 3, Baltimore, MD 21287, USA
| | - Rudolf A Werner
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science at Johns Hopkins Hospital, 601 North Caroline St., JHOC 3, Baltimore, MD 21287, USA; Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Lilja B Sólnes
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science at Johns Hopkins Hospital, 601 North Caroline St., JHOC 3, Baltimore, MD 21287, USA.
| |
Collapse
|
15
|
Jena SR, Watts A, Aggarwal P, Bachhal V, Kaur H, Dhingra K, Singh H, Bal A, Singh B. 68 Ga-Pentixafor PET/CT for in-vivo mapping of CXCR4 receptors as potential radiotheranostic targets in soft tissue and bone sarcoma: preliminary results. Nucl Med Commun 2024; 45:229-235. [PMID: 38165171 DOI: 10.1097/mnm.0000000000001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To evaluate the diagnostic utility of 68 Ga-Pentixafor PET/CT for in vivo imaging of CXCR4 receptors in soft tissue/bone sarcoma. METHODS Ten (7M: 3F; mean age = 24.7 ± 14.2 years) consecutive patients with clinical and radiological evidence of bone/soft tissue sarcoma were recruited prospectively whole body 68 Ga-Pentixafor PET/CT imaging was performed at 60-min after tracer administration. After performing standard CT, PET acquisition from head to toe was done (3 min/bed position) in a caudocranial direction. PET/CT data was reconstructed and SUV max , SUV mean values, target-to-background ratio (TBR) and active tumor volume (cc) were computed for the tracer avid lesions. Histopathological and IHC analysis was performed on the surgically excised primary tumors. CXCR4 receptors' intensity was evaluated by visual scoring. RESULTS The mean SUV max and SUV mean values in the primary tumors were 4.80 ± 1.0 (3.9-7.7) and 2.40 ± 0.60 (0.9-4.0). The mean TBR and tumor volume (cc) were 1.84 ± 1.3 and 312.2 ± 285. Diagnosis of osteosarcoma in 7, chondrosarcoma, leiomyosarcoma and synovial sarcoma in 1 patient each was confirmed on HP analysis. Distant metastatic lesions were seen in 3/10 patients. Nuclear CXCR4 receptors' positivity was seen in 5, cytoplasmic in 4 and both pattern seen in 1 patient. The mean CXCR4 receptors' intensity was found to be 7.6 ± 2. The highest SUV max value of 7.7 was observed in the patient having both cytoplasmic and nuclear CXCR4 expression. SUV max was found to be poorly correlated ( r = 0.441) with CXCR4 expression. CONCLUSION 68 Ga-Pentixafor PET/CT detects CXCR4 receptors over-expressed in sarcoma, its radio-theranostics potential needs detailed evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amanjit Bal
- Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | | |
Collapse
|
16
|
Dreher N, Dörrler AL, Kraus S, Higuchi T, Serfling SE, Samnick S, Einsele H, Grigoleit GU, Buck AK, Werner RA. C-X-C Motif Chemokine Receptor 4-Targeted Radioligand Therapy in Hematological Malignancies-Myeloablative Effects, Antilymphoma Activity, and Safety Profile. Clin Nucl Med 2024; 49:146-151. [PMID: 38081189 PMCID: PMC11441726 DOI: 10.1097/rlu.0000000000004974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND After C-X-C motif chemokine receptor 4 (CXCR4)-directed radioligand therapy (RLT), lymphoma patients are scheduled for conditioning therapy (CON) followed by hematopoietic stem cell transplantation (HSCT). We aimed to determine whether CXCR4-RLT can achieve bone marrow ablation and direct antilymphoma activity independent from CON/HSCT and also evaluated the safety profile of this theranostic approach in an acute setting. PATIENTS AND METHODS After CXCR4-directed 68 Ga-pentixafor PET/CT, 21 heavily pretreated patients with hematological malignancies underwent CXCR4-directed RLT using 90 Y-pentixather. The extent of myeloablative efficacy was determined by investigating hematologic laboratory parameters before RLT (day -1), at the day of RLT (day 0), 2 days after RLT (day 2), and before CON (median day 10). Serving as surrogate marker of antilymphoma activity, lactate dehydrogenase (LDH) levels were also assessed until CON. We also screened for laboratory-defined tumor lysis syndrome after the Cairo-Bishop definition and recorded acute laboratory adverse events using the Common Terminology Criteria for Adverse Events version 5.0. RESULTS After RLT, we observed a significant decline of leukocyte levels by 79.4% ± 18.7% till CON (granulocytes, drop by 70.3% ± 21%; platelets, reduction by 43.1% ± 36%; P ≤ 0.0005 vs day 0, respectively). After RLT, LDH levels already reached a peak at day 2, which was followed by a rapid decline thereafter (peak vs day of CON, P = 0.0006), indicating that 90 Y-pentixather exhibits direct antilymphoma activity. At day of CON, LDH levels were also significantly lower when compared with day -1 ( P = 0.04), suggestive for durable response mediated by RLT. No patient fulfilled the criteria of tumor lysis syndrome, whereas 25 laboratory adverse events attributable to CXCR4-directed treatment were identified (≥grade 3 in 2/25 [8%]). During further treatment course, all patients (100%) received HSCT. CONCLUSIONS CXCR4-directed RLT causes effective myeloablation, which allows for HSCT. In addition, it also exerts direct antilymphoma activity independent of subsequent therapeutic steps, whereas safety profile was acceptable.
Collapse
Affiliation(s)
| | | | - Sabrina Kraus
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg
| | | | | | | | - Hermann Einsele
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg
| | - Götz Ulrich Grigoleit
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg
- Helios Klinikum Duisburg, Duisburg, Germany
| | | | - Rudolf A. Werner
- From the Department of Nuclear Medicine
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Enke JS, Reitsam NG, Grosser B, Kircher M, Dierks A, Bundschuh RA, Wienand G, Uhrmacher L, Trepel M, Schottelius M, Lapa C, Pfob CH. C-X-C Motif Chemokine Receptor 4-Directed Scintigraphy of Multiple Myeloma Using [ 99mTc]Tc-PentixaTec. J Nucl Med 2024; 65:163-164. [PMID: 37709537 DOI: 10.2967/jnumed.123.266305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Johanna S Enke
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Nic G Reitsam
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Bianca Grosser
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ralph A Bundschuh
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Bavarian Center for Cancer Research (BKFZ), Erlangen, Germany
| | - Georgine Wienand
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Luise Uhrmacher
- Hematology and Oncology, Faculty of Medicine, University of Augsburg, Augsburg, Germany; and
| | - Martin Trepel
- Hematology and Oncology, Faculty of Medicine, University of Augsburg, Augsburg, Germany; and
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany;
- Bavarian Center for Cancer Research (BKFZ), Erlangen, Germany
| | - Christian H Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
18
|
Duell J, Buck AK, Hartrampf PE, Schlötelburg W, Schneid S, Weich A, Dreher N, Lapa C, Kircher M, Higuchi T, Samnick S, Serfling SE, Raderer M, Rasche L, Einsele H, Topp MS, Kosmala A, Werner RA. Chemokine Receptor PET/CT Provides Relevant Staging and Management Changes in Marginal Zone Lymphoma. J Nucl Med 2023; 64:1889-1894. [PMID: 37797975 DOI: 10.2967/jnumed.123.266074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Because of gastral and extranodal manifestations, guideline-compatible diagnostic work-up of marginal zone lymphoma is challenging. We aimed to determine the diagnostic performance of C-X-C motif chemokine receptor 4 (CXCR4)-directed PET/CT compared with routine diagnostics, along with PET/CT-based retrospective changes in therapeutic management. The predictive potential of the PET signal was also investigated, and the number of patients eligible for CXCR4-directed radioligand therapy in a theranostic setting was determined. Methods: For this study, 100 marginal zone lymphoma patients underwent CXCR4-directed PET/CT. We compared staging results and treatment decisions from molecular imaging with respective results from guideline-compatible work-up (CT, esophagogastroduodenoscopy, and bone marrow-derived biopsy). Prognostic performance of the in vivo CXCR4 PET signal for progression-free survival (PFS) was evaluated (using log-rank test and Kaplan-Meier curves). Results: Relative to CT, CXCR4-directed imaging led to Ann Arbor (AA) staging changes for 27 of 100 patients (27.0%). Among those, clinically relevant upstaging from AA I or AA II to AA III or AA IV was observed for 23 patients (85.2%), along with respective changes in therapeutic management (escalation, 6/23 [26.1%]; deescalation, 17/23 [73.9%]). CXCR4 PET/CT yielded diagnostic accuracy of 94.0% relative to esophagogastroduodenoscopy and 76.8% relative to bone marrow-derived biopsy. An increased CXCR4 PET signal was linked to shorter PFS (707 d vs. median PFS not reached; hazard ratio, 3.18; 95% CI, 1.37-7.35; P = 0.01). CXCR4-directed radioligand therapy would have been feasible for 18 of 100 patients (18.0%). Conclusion: Relative to CT, CXCR4-directed PET/CT led to AA changes for 27 of 100 patients. Chemokine receptor PET/CT may improve current diagnostic algorithms and influence management relative to CT alone, potentially obviating some biopsies.
Collapse
Affiliation(s)
- Johannes Duell
- Medical Department II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Wiebke Schlötelburg
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Simone Schneid
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Weich
- Medical Department II, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Markus Raderer
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Leo Rasche
- Medical Department II, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany; and
| | - Hermann Einsele
- Medical Department II, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany; and
| | - Max S Topp
- Medical Department II, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany; and
| | - Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany;
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Konrad M, Rinscheid A, Wienand G, Nittbaur B, Wester HJ, Janzen T, Lapa C, Pfob CH, Schottelius M. [ 99mTc]Tc-PentixaTec: development, extensive pre-clinical evaluation, and first human experience. Eur J Nucl Med Mol Imaging 2023; 50:3937-3948. [PMID: 37597009 PMCID: PMC10611619 DOI: 10.1007/s00259-023-06395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE The clinical success non-invasive imaging of CXCR4 expression using [68 Ga]Ga-PentixaFor-PET warrants an expansion of the targeting concept towards conventional scintigraphy/SPECT with their lower cost and general availability. To this aim, we developed and comparatively evaluated a series of 99mTc-labeled cyclic pentapeptides based on the PentixaFor scaffold. METHODS Six mas3-conjugated CPCR4 analogs with different 4-aminobenzoic acid (Abz)-D-Ala-D-Arg-aa3 linkers (L1-L6) as well as the corresponding HYNIC- and N4-analogs of L6-CPCR4 were synthesized via standard SPPS. Competitive binding studies (IC50 and IC50inv) were carried out using Jurkat T cell lymphoma cells and [125I]FC-131 as radioligand. Internalization kinetics were investigated using hCXCR4-overexpressing Chem-1 cells. Biodistribution studies and small animal SPECT/CT imaging (1 h p.i.) were carried out using Jurkat xenograft bearing CB17/SCID mice. Based on the preclinical results, [99mTc]Tc-N4-L6-CPCR4 ([99mTc]Tc-PentixaTec) was selected for an early translation to the human setting. Five patients with hematologic malignancies underwent [99mTc]Tc-N4-L6-CPCR4 SPECT/planar imaging with individual dosimetry. RESULTS Of the six mas3-conjugated peptides, mas3-L6-CPCR4 (mas3-dap-r-a-Abz-CPCR4) showed the highest CXCR4 affinity (IC50 = 5.0 ± 1.3 nM). Conjugation with N4 (N4-L6-CPCR4) further improved hCXCR4 affinity to 0.6 ± 0.1 nM. [99mTc]Tc-N4-L6-CPCR4 also showed the most efficient internalization (97% of total cellular activity at 2 h) and the highest tumor accumulation (8.6 ± 1.3% iD/g, 1 h p.i.) of the compounds investigated. Therefore, [99mTc]Tc-N4-L6-CPCR4 (termed [99mTc]Tc-PentixaTec) was selected for first-in-human application. [99mTc]Tc-PentixaTec was well tolerated, exhibits a favorable biodistribution and dosimetry profile (2.1-3.4 mSv per 500 MBq) and excellent tumor/background ratios in SPECT and planar imaging. CONCLUSION The successive optimization of the amino acid composition of the linker structure and the N-terminal 99mTc-labeling strategies (mas3 vs HYNIC vs N4) has provided [99mTc]Tc-PentixaTec as a novel, highly promising CXCR4-targeted SPECT agent for clinical application. With its excellent CXCR4 affinity, efficient internalization, high uptake in CXCR4-expressing tissues, suitable clearance/biodistribution characteristics, and favorable human dosimetry, it holds great potential for further clinical use.
Collapse
Affiliation(s)
- Matthias Konrad
- Chair for Pharmaceutical Radiochemistry, Faculties of Chemistry and Medicine, Technische Universität München, 85748, Garching, Germany
| | - Andreas Rinscheid
- Medical Physics and Radiation Protection, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Georgine Wienand
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Bernd Nittbaur
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Hans-Jürgen Wester
- Chair for Pharmaceutical Radiochemistry, Faculties of Chemistry and Medicine, Technische Universität München, 85748, Garching, Germany
| | - Tilman Janzen
- Medical Physics and Radiation Protection, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Christian Helmut Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany.
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, CH-1011, Lausanne, Switzerland.
- AGORA, Pôle de Recherche Sur Le Cancer, 1011, Lausanne, Switzerland.
- SCCL Swiss Cancer Center Leman, 1011, Lausanne, Switzerland.
| |
Collapse
|
20
|
Zhi Y, Werner RA, Schirbel A, Higuchi T, Buck AK, Kosmala A, Bley TA, Hagen R, Hackenberg S, Rosenwald A, Scherzad A, Gerhard-Hartmann E, Serfling SE. Diagnostic efficacy of C-X-C motif chemokine receptor 4-directed PET/CT in newly diagnosed head and neck squamous cell carcinoma - a head-to-head comparison with [ 18F]FDG. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:208-216. [PMID: 38023816 PMCID: PMC10656626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The aim of this study was to determine the read-out capabilities of the novel C-X-C motif chemokine receptor 4 (CXCR4)-targeting radiotracer [68Ga]Ga-PentixaFor compared to the reference radiotracer [18F]FDG in untreated individuals with head and neck squamous cell carcinoma (HNSCC). MATERIAL AND METHODS 12 patients with histologically confirmed HNSCC were scheduled for [18F]FDG and [68Ga]Ga-PentixaFor PET/CT. Maximum standardized uptake values (SUVmax) and target-to-background ratios (TBR) were applied with vena cava superior serving as reference. In addition, we compared [68Ga]Ga-PentixaFor-PET findings with immunohistochemical (IHC) results of CXCR4 expression. RESULTS On visual assessment, [18F]FDG identified more sites of disease, with increased detection rates for both the primary tumor ([18F]FDG, 12/12 [100%] vs. [68Ga]Ga-PentixaFor, 10/12 [83%]) and LN metastases ([18F]FDG, 9/12 [75%] vs. [68Ga]Ga-PentixaFor, 8/12 [67%]). Indicative for improved image contrast using [18F]FDG, quantification showed a higher TBR for the latter radiotracer, when compared to [68Ga]Ga-PentixaFor for all lesions ([18F]FDG, 11.7 ± 8.5 vs. [68Ga]Ga-PentixaFor, 4.3 ± 1.3; P=0.03), primary tumors ([18F]FDG, 13.6 ± 8.7 vs. [68Ga]Ga-PentixaFor, 4.4 ± 1.4; P<0.01), and LN lesions ([18F]FDG, 9.3 ± 10.6 vs. [68Ga]Ga-PentixaFor, 4.7 ± 1.5; P=0.3). IHC showed variable CXCR4 expression in the primary and LN, along with no associations between ex-vivo CXCR4 upregulation and [68Ga]Ga-PentixaFor-based TBR (R=0.33, P=0.39) or SUVmax (R=0.44, P=0.2). Of note, IHC also revealed heterogeneous expression of CXCR4 in immune cells in the tumor microenvironment and in germinal centers, indicative for inflammatory reactions. CONCLUSIONS In HNSCC, [18F]FDG demonstrated superior diagnostic performance relative to [68Ga]Ga-PentixaFor, in particular for assessment of the primary. Based on the IHC analyses, these findings may be explained by CXCR4 upregulation not only by tumor but also by immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Yingjun Zhi
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital WürzburgWürzburg 97080, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital WürzburgWürzburg 97080, Germany
- Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimore, MD 21205, USA
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital WürzburgWürzburg 97080, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital WürzburgWürzburg 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayama 700-8530, Japan
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital WürzburgWürzburg 97080, Germany
| | - Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital WürzburgWürzburg 97080, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital WürzburgWürzburg 97080, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital WürzburgWürzburg 97080, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology - Head and Neck Surgery, RWTH Aachen UniversityAachen 52074, Germany
| | - Andreas Rosenwald
- Department of Pathology and Comprehensive Cancer Center Mainfranken, Julius-Maximilian University of WürzburgWürzburg 97080, Germany
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital WürzburgWürzburg 97080, Germany
| | - Elena Gerhard-Hartmann
- Department of Pathology and Comprehensive Cancer Center Mainfranken, Julius-Maximilian University of WürzburgWürzburg 97080, Germany
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital WürzburgWürzburg 97080, Germany
| |
Collapse
|
21
|
Wang Y, Gao F. Research Progress of CXCR4-Targeting Radioligands for Oncologic Imaging. Korean J Radiol 2023; 24:871-889. [PMID: 37634642 PMCID: PMC10462898 DOI: 10.3348/kjr.2023.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) plays a key role in various physiological functions, such as immune processes and disease development, and can influence angiogenesis, proliferation, and distant metastasis in tumors. Recently, several radioligands, including peptides, small molecules, and nanoclusters, have been developed to target CXCR4 for diagnostic purposes, thereby providing new diagnostic strategies based on CXCR4. Herein, we focus on the recent research progress of CXCR4-targeting radioligands for tumor diagnosis. We discuss their application in the diagnosis of hematological tumors, such as lymphomas, multiple myelomas, chronic lymphocytic leukemias, and myeloproliferative tumors, as well as nonhematological tumors, including tumors of the esophagus, breast, and central nervous system. Additionally, we explored the theranostic applications of CXCR4-targeting radioligands in tumors. Targeting CXCR4 using nuclear medicine shows promise as a method for tumor diagnosis, and further research is warranted to enhance its clinical applicability.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
22
|
Yu J, Zhou X, Shen L. CXCR4-Targeted Radiopharmaceuticals for the Imaging and Therapy of Malignant Tumors. Molecules 2023; 28:4707. [PMID: 37375261 DOI: 10.3390/molecules28124707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is a 7-transmembrane helix G-protein-coupled receptor that is encoded by the CXCR4 gene. Involved in various physiological processes, CXCR4 could form an interaction with its endogenous partner, chemokine ligand 12 (CXCL12), which is also named SDF-1. In the past several decades, the CXCR4/CXCL12 couple has attracted a large amount of research interest due to its critical functions in the occurrence and development of refractory diseases, such as HIV infection, inflammatory diseases, and metastatic cancer, including breast cancer, gastric cancer, and non-small cell lung cancer. Furthermore, overexpression of CXCR4 in tumor tissues was shown to have a high correlation with tumor aggressiveness and elevated risks of metastasis and recurrence. The pivotal roles of CXCR4 have encouraged an effort around the world to investigate CXCR4-targeted imaging and therapeutics. In this review, we would like to summarize the implementation of CXCR4-targeted radiopharmaceuticals in the field of various kinds of carcinomas. The nomenclature, structure, properties, and functions of chemokines and chemokine receptors are briefly introduced. Radiopharmaceuticals that could target CXCR4 will be described in detail according to their structure, such as pentapeptide-based structures, heptapeptide-based structures, nonapeptide-based structures, etc. To make this review a comprehensive and informative article, we would also like to provide the predictive prospects for the CXCR4-targeted species in future clinical development.
Collapse
Affiliation(s)
- Jingjing Yu
- HTA Co., Ltd., Beijing 102413, China
- Department of Nuclear Technology Application, China Institute of Atomic Energy, Beijing 102413, China
| | - Xu Zhou
- HTA Co., Ltd., Beijing 102413, China
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
23
|
Buck AK, Serfling SE, Kraus S, Samnick S, Dreher N, Higuchi T, Rasche L, Einsele H, Werner RA. Theranostics in Hematooncology. J Nucl Med 2023:jnumed.122.265199. [PMID: 37290799 DOI: 10.2967/jnumed.122.265199] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the early 2000s, major clinical trials provided evidence of a favorable outcome from antibody-mediated radioimmunotherapy for hematologic neoplasms, which then led to Food and Drug Administration approval. For instance, the theranostic armamentarium for the referring hematooncologist now includes 90Y-ibritumomab tiuxetan for refractory low-grade follicular lymphoma or transformed B-cell non-Hodgkin lymphoma, as well as 131I-tositumomab for rituximab-refractory follicular lymphoma. Moreover, the first interim results of the SIERRA phase III trial reported beneficial effects from the use of 131I-anti-CD45 antibodies (Iomab-B) in refractory or relapsed acute myeloid leukemia. During the last decade, the concept of theranostics in hematooncology has been further expanded by C-X-C motif chemokine receptor 4-directed molecular imaging. Beyond improved detection rates of putative sites of disease, C-X-C motif chemokine receptor 4-directed PET/CT also selects candidates for radioligand therapy using β-emitting radioisotopes targeting the identical chemokine receptor on the lymphoma cell surface. Such image-piloted therapeutic strategies provided robust antilymphoma efficacy, along with desired eradication of the bone marrow niche, such as in patients with T- or B-cell lymphoma. As an integral part of the treatment plan, such radioligand therapy-mediated myeloablation also allows one to line up patients for stem cell transplantation, which leads to successful engraftment during the further treatment course. In this continuing education article, we provide an overview of the current advent of theranostics in hematooncology and highlight emerging clinical applications.
Collapse
Affiliation(s)
- Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany;
| | | | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; and
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; and
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; and
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Kosmala A, Seifert S, Schneid S, Dreher N, Higuchi T, Weich A, Serfling SE, Hartrampf PE, Einsele H, Buck AK, Topp MS, Duell J, Werner RA. Lymphoma-Sink Effect in Marginal Zone Lymphoma Based on CXCR4-Targeted Molecular Imaging. Mol Imaging Biol 2023:10.1007/s11307-023-01830-9. [PMID: 37286923 DOI: 10.1007/s11307-023-01830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE Recent studies investigating a tumor-sink effect in solid tumors reported on decreasing uptake in normal organs in patients with higher tumor burden. This phenomenon, however, has not been evaluated yet for theranostic radiotracers applied to hematological neoplasms. As such, we aimed to determine a potential "lymphoma-sink effect" in patients with marginal zone lymphoma (MZL) imaged with C-X-C motif chemokine receptor (CXCR) 4-directed PET/CTs. PROCEDURES We retrospectively analyzed 73 patients with MZL who underwent CXCR4-directed [68Ga]Ga-PentixaFor PET/CT. Normal unaffected organ uptake (heart, liver, spleen, bone marrow, kidneys) was quantified using volumes of interests (VOIs) and mean standardized uptake values (SUVmean) were derived. MZL manifestations were also segmented to determine the maximum and peak standardized uptake values SUV (SUVmax/peak) and volumetric parameters, including lymphoma volume (LV), and fractional lymphoma activity (FLA, defined as LV*SUVmean of lymphoma burden). This approach resulted in 666 VOIs to capture the entire MZL manifestation load. We used Spearman's rank correlations to determine associations between organ uptake and CXCR4-expressing lymphoma lesions. RESULTS We recorded the following median SUVmean in normal organs: heart, 1.82 (range, 0.78-4.11); liver, 1.35 (range, 0.72-2.99); bone marrow, 2.36 (range, 1.12-4.83); kidneys, 3.04 (range, 2.01-6.37); spleen, 5.79 (range, 2.07-10.5). No relevant associations between organ radiotracer uptake and MZL manifestation were observed, neither for SUVmax (ρ ≤ 0.21, P ≥ 0.07), SUVpeak (ρ ≤ 0.20, P ≥ 0.09), LV (ρ ≤ 0.13, P ≥ 0.27), nor FLA (ρ ≤ 0.15, P ≥ 0.33). CONCLUSIONS Investigating a lymphoma-sink effect in patients with hematological neoplasms, we observed no relevant associations between lymphoma burden and uptake in normal organs. Those observations may have therapeutic implications, e.g., for "cold" SDF1-pathway disrupting or "hot," CXCR4-directed radiolabeled drugs, as with higher lymphoma load, normal organ uptake seems to remain stable.
Collapse
Affiliation(s)
- Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Simone Seifert
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Simone Schneid
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Alexander Weich
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Max S Topp
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Duell
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.
- Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Sciences, Baltimore, MD, USA.
| |
Collapse
|
25
|
Martin S, Viertl D, Janz A, Habringer S, Keller U, Schottelius M. Influence of corticosteroid treatment on CXCR4 expression in DLBCL. EJNMMI Res 2023; 13:40. [PMID: 37162652 PMCID: PMC10172459 DOI: 10.1186/s13550-023-00993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND CXCR4-targeted radioligand therapy (RLT) with [177Lu]Lu/[90Y]Y-PentixaTher has recently evolved as a promising therapeutic option for patients with advanced hematological cancers. Given their advanced disease stage, most patients scheduled for PentixaTher RLT require concomitant or bridging chemotherapy to prevent intermittent tumor progression. These (mostly combination) therapies may cause significant downregulation of tumoral CXCR4 expression, challenging the applicability of PentixaTher RLT. This study therefore aimed at investigating the influence of corticosteroids, a central component of these chemotherapies, on CXCR4 regulation in diffuse large B cell lymphoma (DLBCL). METHODS Different DLBCL cell lines (Daudi, OCI-LY1, SUDHL-4, -5-, -6 and -8) as well as the human T-cell lymphoma cell line Jurkat were incubated with Dexamethasone (Dex; 0.5 and 5 µM, respectively) and Prednisolone (Pred; 5 and 50 µM, respectively) for different time points (2 h, 24 h). Treatment-induced modulation of cellular CXCR4 surface expression was assessed via flow cytometry (FC) and compared to untreated cells. A radioligand binding assay with [125I]CPCR4.3 was performed in parallel using the same cells. To quantify potential corticosteroid treatment effects on tumoral CXCR4 expression in vivo, OCI-LY1 bearing NSG mice were injected 50 µg Dex/mouse i.p. (daily for 6 days). Then, a biodistribution study (1 h p.i.) using [68Ga]PentixaTher was performed, and tracer biodistribution in treated (n = 5) vs untreated mice (n = 5) was compared. RESULTS In the in vitro experiments, a strongly cell line-dependent upregulation of CXCR4 was observed for both Dex and Pred treatment, with negligible differences between the high and low dose. While in Jurkat, Daudi and SUDHL-8 cells, CXCR4 expression remained unchanged, a 1.5- to 3.5-fold increase in CXCR4 cell surface expression was observed for SUDHL-5 < SUDHL-4 /-6 < OCI-LY1 via FC compared to untreated cells. This increase in CXCR4 expression was also reflected in correspondingly enhanced [125I]CPCR4.3 accumulation in treated cells, with a linear correlation between FC and radioligand binding data. In vivo, Dex treatment led to a general increase of [68Ga]PentixaTher uptake in all organs compared to untreated animals, as a result of a higher tracer concentration in blood. However, we observed an overproportionally enhanced [68Ga]PentixaTher uptake in the OCI-LY1 tumors in treated (21.0 ± 5.5%iD/g) vs untreated (9.2 ± 2.8%iD/g) mice, resulting in higher tumor-to-background ratios in the treatment group. CONCLUSION Overall, corticosteroid treatment (Dex/Pred) consistently induced an upregulation of CXCR4 expression DBLCL cells in vitro, albeit in a very cell line-dependent manner. For the cell line with the most pronounced Dex-induced CXCR4 upregulation, OCI-LY1, the in vitro findings were corroborated by an in vivo biodistribution study. This confirms that at least the corticosteroid component of stabilizing chemotherapy regimens in DLBCL patients prior to [177Lu]Lu-PentixaTher RLT does not lead to downregulation of the molecular target CXCR4 and may even have a beneficiary effect. However, further studies are needed to investigate if and to what extent the other commonly used chemotherapeutic agents affect CXCR4 expression on DLBCL to ensure the choice of an appropriate treatment regimen prior to [177Lu]Lu/[90Y]Y-PentixaTher RLT.
Collapse
Affiliation(s)
- Sebastian Martin
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, CH-1011, Lausanne, Switzerland
- AGORA, Pôle de Recherche Sur Le Cancer, 1011, Lausanne, Switzerland
- SCCL Swiss Cancer Center Leman, 1011, Lausanne, Switzerland
| | - David Viertl
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, CH-1011, Lausanne, Switzerland
- AGORA, Pôle de Recherche Sur Le Cancer, 1011, Lausanne, Switzerland
- SCCL Swiss Cancer Center Leman, 1011, Lausanne, Switzerland
| | - Anna Janz
- PentixaPharm GmbH, 97080, Würzburg, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Max Delbrück Center (MDC), 13092, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Max Delbrück Center (MDC), 13092, Berlin, Germany
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, CH-1011, Lausanne, Switzerland.
- AGORA, Pôle de Recherche Sur Le Cancer, 1011, Lausanne, Switzerland.
- SCCL Swiss Cancer Center Leman, 1011, Lausanne, Switzerland.
| |
Collapse
|
26
|
Nanni C, Kobe C, Baeßler B, Baues C, Boellaard R, Borchmann P, Buck A, Buvat I, Chapuy B, Cheson BD, Chrzan R, Cottereau AS, Dührsen U, Eikenes L, Hutchings M, Jurczak W, Kraeber-Bodéré F, Lopci E, Luminari S, MacLennan S, Mikhaeel NG, Nijland M, Rodríguez-Otero P, Treglia G, Withofs N, Zamagni E, Zinzani PL, Zijlstra JM, Herrmann K, Kunikowska J. European Association of Nuclear Medicine (EANM) Focus 4 consensus recommendations: molecular imaging and therapy in haematological tumours. Lancet Haematol 2023; 10:e367-e381. [PMID: 37142345 DOI: 10.1016/s2352-3026(23)00030-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 05/06/2023]
Abstract
Given the paucity of high-certainty evidence, and differences in opinion on the use of nuclear medicine for hematological malignancies, we embarked on a consensus process involving key experts in this area. We aimed to assess consensus within a panel of experts on issues related to patient eligibility, imaging techniques, staging and response assessment, follow-up, and treatment decision-making, and to provide interim guidance by our expert consensus. We used a three-stage consensus process. First, we systematically reviewed and appraised the quality of existing evidence. Second, we generated a list of 153 statements based on the literature review to be agreed or disagreed with, with an additional statement added after the first round. Third, the 154 statements were scored by a panel of 26 experts purposively sampled from authors of published research on haematological tumours on a 1 (strongly disagree) to 9 (strongly agree) Likert scale in a two-round electronic Delphi review. The RAND and University of California Los Angeles appropriateness method was used for analysis. Between one and 14 systematic reviews were identified on each topic. All were rated as low to moderate quality. After two rounds of voting, there was consensus on 139 (90%) of 154 of the statements. There was consensus on most statements concerning the use of PET in non-Hodgkin and Hodgkin lymphoma. In multiple myeloma, more studies are required to define the optimal sequence for treatment assessment. Furthermore, nuclear medicine physicians and haematologists are awaiting consistent literature to introduce volumetric parameters, artificial intelligence, machine learning, and radiomics into routine practice.
Collapse
Affiliation(s)
- Cristina Nanni
- Medicina Nucleare, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bettina Baeßler
- Institute of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Baues
- Department of Radiooncology, Radiotherapy and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Ronald Boellaard
- Radiology & Nuclear Medicine, Amsterdam UMC, VUMC Cancer Center Amsterdam, Amsterdam, Netherlands; Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter Borchmann
- Department of Haematology and Oncology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Irène Buvat
- Laboratory of Translational Imaging in Oncology, Institut Curie, Inserm, PSL University, Orsay, France
| | - Björn Chapuy
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medical Center Berlin, Benjamin Franklin Campus, Berlin, Germany
| | | | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Ulrich Dührsen
- Klinik für Hämatologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Hutchings
- Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wojciech Jurczak
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Françoise Kraeber-Bodéré
- Service de Médecine Nucléaire, University Hospital Hôtel-Dieu, Nantes, France; CRCI2NA, INSERM, CNRS, Université d'Angers, Nantes Université, Nantes, France
| | - Egesta Lopci
- Nuclear Medicine, IRCCS-Humanitas Research Hospital, Milan, Italy
| | - Stefano Luminari
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine Department, University of Modena and Reggio Emilia, Reggio Emilia, Italy; Hematology Unit, Azienda USL IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Steven MacLennan
- Academic Urology Unit, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - N George Mikhaeel
- Department of Clinical Oncology, Guy's Cancer Centre, Guy's and St Thomas' NHS Trust, London, UK; School of Cancer & Pharmaceutical Sciences, King's College, University of London, London, UK
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Giorgio Treglia
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical sciences, Università della Svizzera italiana, Lugano, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Liege, Belgium; GIGA-CRC In Vivo Imaging, University of Liege, Liege, Belgium
| | - Elena Zamagni
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Josée M Zijlstra
- Department of Hematology, Amsterdam UMC, VUMC Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Polyak A, Képes Z, Trencsényi G. Implant Imaging: Perspectives of Nuclear Imaging in Implant, Biomaterial, and Stem Cell Research. Bioengineering (Basel) 2023; 10:bioengineering10050521. [PMID: 37237591 DOI: 10.3390/bioengineering10050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Until now, very few efforts have been made to specifically trace, monitor, and visualize implantations, artificial organs, and bioengineered scaffolds for tissue engineering in vivo. While mainly X-Ray, CT, and MRI methods have been used for this purpose, the applications of more sensitive, quantitative, specific, radiotracer-based nuclear imaging techniques remain a challenge. As the need for biomaterials increases, so does the need for research tools to evaluate host responses. PET (positron emission tomography) and SPECT (single photon emission computer tomography) techniques are promising tools for the clinical translation of such regenerative medicine and tissue engineering efforts. These tracer-based methods offer unique and inevitable support, providing specific, quantitative, visual, non-invasive feedback on implanted biomaterials, devices, or transplanted cells. PET and SPECT can improve and accelerate these studies through biocompatibility, inertivity, and immune-response evaluations over long investigational periods at high sensitivities with low limits of detection. The wide range of radiopharmaceuticals, the newly developed specific bacteria, and the inflammation of specific or fibrosis-specific tracers as well as labeled individual nanomaterials can represent new, valuable tools for implant research. This review aims to summarize the opportunities of nuclear-imaging-supported implant research, including bone, fibrosis, bacteria, nanoparticle, and cell imaging, as well as the latest cutting-edge pretargeting methods.
Collapse
Affiliation(s)
- Andras Polyak
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
28
|
Th17.1 cell driven sarcoidosis-like inflammation after anti-BCMA CAR T cells in multiple myeloma. Leukemia 2023; 37:650-658. [PMID: 36720972 PMCID: PMC9888347 DOI: 10.1038/s41375-023-01824-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Pseudo-progression and flare-up phenomena constitute a novel diagnostic challenge in the follow-up of patients treated with immune-oncology drugs. We present a case study on pulmonary flare-up after Idecabtagen Vicleucel (Ide-cel), a BCMA targeting CAR T-cell therapy, and used single-cell RNA-seq (scRNA-seq) to identify a Th17.1 driven autoimmune mechanism as the biological underpinning of this phenomenon. By integrating datasets of various lung pathological conditions, we revealed transcriptomic similarities between post CAR T pulmonary lesions and sarcoidosis. Furthermore, we explored a noninvasive PET based diagnostic approach and showed that tracers binding to CXCR4 complement FDG PET imaging in this setting, allowing discrimination between immune-mediated changes and true relapse after CAR T-cell treatment. In conclusion, our study highlights a Th17.1 driven autoimmune phenomenon after CAR T, which may be misinterpreted as disease relapse, and that imaging with multiple PET tracers and scRNA-seq could help in this diagnostic dilemma.
Collapse
|
29
|
Watts A, Singh B, Singh H, Bal A, Kaur H, Dhanota N, Arora SK, Mittal BR, Behera D. [ 68Ga]Ga-Pentixafor PET/CT imaging for in vivo CXCR4 receptor mapping in different lung cancer histologic sub-types: correlation with quantitative receptors' density by immunochemistry techniques. Eur J Nucl Med Mol Imaging 2023; 50:1216-1227. [PMID: 36482077 DOI: 10.1007/s00259-022-06059-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE In vivo CXCR4 receptor quantification in different lung cancer (LC) sub-types using [68Ga]Ga-Pentixafor PET/CT and to study correlation with quantitative CXCR4 receptors' tissue density by immunochemistry analyses. METHODS [68Ga]Ga-Pentixafor PET/CT imaging was performed prospectively in 94 (77 M: 17F, mean age 60.1 ± 10.1 years) LC patients. CXCR4 receptors' expression on lung mass in all the patients was estimated by immunohistochemistry (IHC) and fluorescence-activated cell sorting (FACS) analyses. SUVmax on PET, intensity score on IHC, and mean fluorescence index (MFI) on FACS analyses were measured. RESULTS A total of 75/94 (79.8%) cases had non-small cell lung cancer (NSCLC), 14 (14.9%) had small cell lung cancer (SCLC), and 5 (5.3%) had lung neuroendocrine neoplasm (NEN). All LC types showed increased CXCR4 expression on PET (SUVmax) and FACS (MFI). However, both these parameters (mean SUVmax = 10.3 ± 5.0; mean MFI = 349.0 ± 99.0) were significantly (p = 0.005) higher in SCLC as compared to those in NSCLC and lung NEN. The mean SUVmax in adenocarcinoma (n = 16) was 8.0 ± 1.9 which was significantly (p = 0.003) higher than in squamous cell carcinoma (n = 54; 6.2 ± 2.1) and in not-otherwise specified (NOS) sub-types (n = 5; 5.8 ± 1.5) of NSCLC. A significant correlation (r = 0.697; p = 001) was seen between SUVmax and MFI values in squamous cell NSCLC as well as in NSCLC adenocarcinoma (r = 0.538, p = 0.031) which supports the specific in vivo uptake of [68Ga]Ga-Pentixafor by CXCR4 receptors. However, this correlation was not significant in SCLC (r = 0.435, p = 0.121) and NEN (r = 0.747, p = 0.147) which may be due to the small sample size. [68Ga]Ga-Pentixafor PET/CT provided good sensitivity (85.7%) and specificity (78.1%) for differentiating SCLC from NSCLC (ROC cutoff SUVmax = 7.2). This technique presented similar sensitivity (87.5%) and specificity (71.4%) (ROC cutoff SUVmax = 6.7) for differentiating adenocarcinoma and squamous cell variants of NSCLC. CONCLUSION The high sensitivity and specificity of [68Ga]Ga-Pentixafor PET/CT for in vivo targeting of CXCR4 receptors in lung cancer can thus be used effectively for the response assessment and development of CXCR4-based radioligand therapies in LC.
Collapse
Affiliation(s)
- Ankit Watts
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Baljinder Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| | - Harmandeep Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Harneet Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Ninjit Dhanota
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Sunil K Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Bhagwant R Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Digambar Behera
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
30
|
Aboagye EO, Barwick TD, Haberkorn U. Radiotheranostics in oncology: Making precision medicine possible. CA Cancer J Clin 2023; 73:255-274. [PMID: 36622841 DOI: 10.3322/caac.21768] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 01/10/2023] Open
Abstract
A quintessential setting for precision medicine, theranostics refers to a rapidly evolving field of medicine in which disease is diagnosed followed by treatment of disease-positive patients using tools for the therapy identical or similar to those used for the diagnosis. Against the backdrop of only-treat-when-visualized, the goal is a high therapeutic index with efficacy markedly surpassing toxicity. Oncology leads the way in theranostics innovation, where the approach has become possible with the identification of unique proteins and other factors selectively expressed in cancer versus healthy tissue, advances in imaging technology able to report these tissue factors, and major understanding of targeting chemicals and nanodevices together with methods to attach labels or warheads for imaging and therapy. Radiotheranostics-using radiopharmaceuticals-is becoming routine in patients with prostate cancer and neuroendocrine tumors who express the proteins PSMA (prostate-specific membrane antigen) and SSTR2 (somatostatin receptor 2), respectively, on their cancer. The palpable excitement in the field stems from the finding that a proportion of patients with large metastatic burden show complete and partial responses, and this outcome is catalyzing the search for more radiotheranostics approaches. Not every patient will benefit from radiotheranostics; but, for those who cross the target-detected line, the likelihood of response is very high.
Collapse
Affiliation(s)
- Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Tara D Barwick
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Imaging, Imperial College Healthcare National Health Service Trust, Hammersmith Hospital, London, UK
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
31
|
Predicting Microenvironment in CXCR4- and FAP-Positive Solid Tumors-A Pan-Cancer Machine Learning Workflow for Theranostic Target Structures. Cancers (Basel) 2023; 15:cancers15020392. [PMID: 36672341 PMCID: PMC9856808 DOI: 10.3390/cancers15020392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
(1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database-representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets.
Collapse
|
32
|
Buck AK, Grigoleit GU, Kraus S, Schirbel A, Heinsch M, Dreher N, Higuchi T, Lapa C, Hänscheid H, Samnick S, Einsele H, Serfling SE, Werner RA. C-X-C Motif Chemokine Receptor 4-Targeted Radioligand Therapy in Patients with Advanced T-Cell Lymphoma. J Nucl Med 2023; 64:34-39. [PMID: 35738903 PMCID: PMC9841250 DOI: 10.2967/jnumed.122.264207] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 01/28/2023] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4)-targeted radioligand therapy (RLT) has already been applied to advanced blood cancers, such as multiple myeloma or diffuse large B-cell lymphoma. We present a series of patients with advanced T-cell lymphoma (TCL) who were scheduled for CXCR4-directed therapy as a conditioning regimen, followed by hematopoietic stem cell transplantation (HSCT). Methods: Four patients with advanced, heavily pretreated, and relapsed TCL (2 men, 2 women; median age, 50 y) without suitable alternative therapeutic options underwent CXCR4-directed PET and pretherapeutic dosimetry. We then conducted CXCR4-targeted RLT in combination with allogeneic (3/4, 75%) or autologous (1/4, 25%) HSCT. One patient also underwent radioimmunotherapy targeting CD66 to enhance therapeutic efficacy. We investigated safety, best response, progression-free survival, and overall survival. Results: Pretherapeutic dosimetry indicated lymphoma-absorbed doses of up to 33.2 Gy from CXCR4-targeted RLT. Except for 1 patient who developed tumor lysis syndrome along with transient grade 3 kidney failure, no acute toxicity, allergic reactions, or other adverse events were recorded during therapy. One patient developed septicemia and subsequently died 16 d after RLT, whereas engraftment was achieved in the remaining 3 patients (75%). During follow-up, a partial response was recorded in 1 of 3 patients (33.3%) and a complete metabolic response in the other two (66.7%, with 1 patient also receiving additional radioimmunotherapy). Median progression-free survival was 7 mo (range, 4-25 mo). After a median follow-up of 54 mo (range, 4-56 mo), 3 patients were still alive at the date of censoring. Conclusion: For advanced, heavily pretreated TCL, CXCR4-directed RLT may serve as an effective conditioning therapy before HSCT and can cause substantial antilymphoma activity, leading to a remarkable response in selected cases.
Collapse
Affiliation(s)
- Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Götz Ulrich Grigoleit
- Helios Klinikum Duisburg, Duisburg, Germany;,Hematology and Oncology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Kraus
- Hematology and Oncology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany;,Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; and
| | - Heribert Hänscheid
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Hematology and Oncology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany;,Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Kraus S, Klassen P, Kircher M, Dierks A, Habringer S, Gäble A, Kortüm KM, Weinhold N, Ademaj-Kospiri V, Werner RA, Schirbel A, Buck AK, Herhaus P, Wester HJ, Rosenwald A, Weber WA, Einsele H, Keller U, Rasche L, Lapa C. Reduced splenic uptake on 68Ga-Pentixafor-PET/CT imaging in multiple myeloma - a potential imaging biomarker for disease prognosis. Am J Cancer Res 2022; 12:5986-5994. [PMID: 35966583 PMCID: PMC9373803 DOI: 10.7150/thno.75847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Beyond being a key factor for tumor growth and metastasis in human cancer, C-X-C motif chemokine receptor 4 (CXCR4) is also highly expressed by a number of immune cells, allowing for non-invasive read-out of inflammatory activity. With two recent studies reporting on prognostic implications of the spleen signal in diffusion-weighted magnetic resonance imaging in patients with plasma cell dyscrasias, the aim of this study was to correlate splenic 68Ga-Pentixafor uptake in multiple myeloma (MM) with clinical parameters and to evaluate its prognostic impact. Methods: Eighty-seven MM patients underwent molecular imaging with 68Ga-Pentixafor-PET/CT. Splenic CXCR4 expression was semi-quantitatively assessed by peak standardized uptake values (SUVpeak) and corresponding spleen-to-bloodpool ratios (TBR) and correlated with clinical and prognostic features as well as survival parameters. Results:68Ga-Pentixafor-PET/CT was visually positive in all MM patients with markedly heterogeneous tracer uptake in the spleen. CXCR4 expression determined by 68Ga-Pentixafor-PET/CT corresponded with advanced disease and was inversely associated with the number of previous treatment lines as compared to controls or untreated smouldering multiple myeloma patients (SUVpeakSpleen 4.06 ± 1.43 vs. 6.02 ± 1.16 vs. 7.33 ± 1.40; P < 0.001). Moreover, reduced splenic 68Ga-Pentixafor uptake was linked to unfavorable clinical outcome. Patients with a low SUVpeakSpleen (<3.35) experienced a significantly shorter overall survival of 5 months as compared to 62 months in patients with a high SUVpeakSpleen >5.79 (P < 0.001). Multivariate Cox analysis confirmed SUVpeakSpleen as an independent predictor of survival (HR 0.75; P = 0.009). Conclusion: These data suggest that splenic 68Ga-Pentixafor uptake might provide prognostic information in pre-treated MM patients similar to what was reported for diffusion-weighted magnetic resonance imaging. Further research to elucidate the underlying biologic implications is warranted.
Collapse
Affiliation(s)
- Sabrina Kraus
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Philipp Klassen
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Gäble
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Klaus Martin Kortüm
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Valëza Ademaj-Kospiri
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Peter Herhaus
- Technical University Munich, School of Medicine, Klinikum rechts der Isar, Clinic and Policlinic for Internal Medicine III, Munich, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University of Munich, Munich, Germany
| | | | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
34
|
Shekhawat AS, Singh B, Malhotra P, Watts A, Basher R, Kaur H, Hooda M, Radotra BD. Imaging CXCR4 receptors expression for staging multiple myeloma by using 68Ga-Pentixafor PET/CT: comparison with 18F-FDG PET/CT. Br J Radiol 2022; 95:20211272. [PMID: 35731811 PMCID: PMC10162067 DOI: 10.1259/bjr.20211272] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES 68Ga-Pentixafor positron emission tomography (PET) imaging targets CXCR4 expression which is overexpressed in multiple myeloma (MM). In this study, we evaluated the diagnostic utility of 68Ga-Pentixafor PET/CT for imaging CXCR4 expression in MM and compared results with 18F-fluorodeoxyglucose (18F-FDG) PET/CT. METHODS 34 (21M; 13F; median age = 57.5 years) treatment naive multiple myeloma patients were recruited. All the patients underwent 18F-FDG PET/CT and 68Ga-Pentixafor PET/CT imaging. Freshly prepared 68Ga-Pentixafor (148-185 MBq) was injected intravenously and whole-body PET/CT (low-dose CT) was acquired at 1 h post-injection. The pattern of uptake (diffuse, focal or mixed) and the mean SUVmax value of all the lesions (when lesions were ≤5) or of the five most tracer avid lesions (when lesions was >5) were evaluated. Tumor to background ratio (TBRmax) was calculated for both the tracers. Durie Salmon plus staging (DSPS) was used for disease staging on PET and the results were compared with International staging system (ISS). RESULTS 68Ga-Pentixafor PET/CT showed higher disease extent than seen on 18F-FDG PET/CT in 23/34 patients (68.0%), lesser disease extent in 2/34 (6%) and similar disease extent in 9/34 (26%) patients. Significantly (p < 0.001) higher TBRmax values (5.7; IQR 8.8) were observed on 68Ga-Pentixafor PET/CT as compared to 18F-FDG PET/CT values (2.9; IQR = 4.0). Both the techniques detected extramedullary lesions in six patients. On the other hand, 68Ga-Pentixafor detected medullary lesions in five, whereas, 18F-FDG PET in three patients. Further, only 68Ga-Pentixafor TBRmax correlated significantly (ρ = 0.421; 0.013) with bone marrow plasma cell percentage. 68Ga-Pentixafor PET upstaged more number (9/29) of patients as compared to (4/29) 18F-FDG PET imaging. On the other hand, 18F-FDG PET down-staged 9/29, whereas 68Ga-Pentixafor PET downstaged only 3/29 patients. CONCLUSION 68Ga-Pentixafor PET/CT evaluated the whole-body disease burden of CXCR4 receptors non-invasively which is not possible by tissue sampling methods. This novel PET tracer has also implication for disease staging. Dual 68Ga-Pentixafor/18F-FDG PET/CT imaging may help in determining the tumor heterogeneity in MM. ADVANCES IN KNOWLEDGE This CXCR4 targeting PET tracer has a promising role in the development of CXCR4 targeting theranostics and also for response assessment to these therapies including the conventional treatment.
Collapse
Affiliation(s)
- Amit Singh Shekhawat
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Baljinder Singh
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Haematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankit Watts
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajender Basher
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harneet Kaur
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Monika Hooda
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan D Radotra
- Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
35
|
Caers J, Duray E, Vrancken L, Marcion G, Bocuzzi V, De Veirman K, Krasniqi A, Lejeune M, Withofs N, Devoogdt N, Dumoulin M, Karlström AE, D’Huyvetter M. Radiotheranostic Agents in Hematological Malignancies. Front Immunol 2022; 13:911080. [PMID: 35865548 PMCID: PMC9294596 DOI: 10.3389/fimmu.2022.911080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Radioimmunotherapy (RIT) is a cancer treatment that combines radiation therapy with tumor-directed monoclonal antibodies (Abs). Although RIT had been introduced for the treatment of CD20 positive non-Hodgkin lymphoma decades ago, it never found a broad clinical application. In recent years, researchers have developed theranostic agents based on Ab fragments or small Ab mimetics such as peptides, affibodies or single-chain Abs with improved tumor-targeting capacities. Theranostics combine diagnostic and therapeutic capabilities into a single pharmaceutical agent; this dual application can be easily achieved after conjugation to radionuclides. The past decade has seen a trend to increased specificity, fastened pharmacokinetics, and personalized medicine. In this review, we discuss the different strategies introduced for the noninvasive detection and treatment of hematological malignancies by radiopharmaceuticals. We also discuss the future applications of these radiotheranostic agents.
Collapse
Affiliation(s)
- Jo Caers
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
- *Correspondence: Jo Caers,
| | - Elodie Duray
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Louise Vrancken
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Valentina Bocuzzi
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Margaux Lejeune
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Nick Devoogdt
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mireille Dumoulin
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias D’Huyvetter
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
36
|
Abstract
A growing body of literature reports on the upregulation of C-X-C motif chemokine receptor 4 (CXCR4) in a variety of cancer entities, rendering this receptor as suitable target for molecular imaging and endoradiotherapy in a theranostic setting. For instance, the CXCR4-targeting positron emission tomography (PET) agent [68 Ga]PentixaFor has been proven useful for a comprehensive assessment of the current status quo of solid tumors, including adrenocortical carcinoma or small-cell lung cancer. In addition, [68 Ga]PentixaFor has also provided an excellent readout for hematological malignancies, such as multiple myeloma, marginal zone lymphoma, or mantle cell lymphoma. PET-based quantification of the CXCR4 capacities in vivo allows for selecting candidates that would be suitable for treatment using the theranostic equivalent [177Lu]/[90Y]PentixaTher. This CXCR4-directed theranostic concept has been used as a conditioning regimen prior to hematopoietic stem cell transplantation and to achieve sufficient anti-lymphoma/-tumor activity in particular for malignant tissues that are highly sensitive to radiation, such as the hematological system. Increasing the safety margin, pretherapeutic dosimetry is routinely performed to determine the optimal activity to enhance therapeutic efficacy and to reduce off-target adverse events. The present review will provide an overview of current applications for CXCR4-directed molecular imaging and will introduce the CXCR4-targeted theranostic concept for advanced hematological malignancies.
Collapse
|
37
|
Watts A, Singh B, Singh H, Kaur H, Bal A, Vohra M, Arora SK, Behera D. Gallium-68-Pentixafor PET/CT demonstrating in vivo CXCR4 receptors' overexpression in rare lung malignancies: Correlation with the histological and histochemical findings. J Nucl Med Technol 2022; 50:278-281. [PMID: 35610039 DOI: 10.2967/jnmt.122.264141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: Gallium-68 [68Ga] Pentixafor PET/CT imaging allows non-invasive assessment of CXCR4 expression in various malignancies, but its use in rare lung cancer variants is not reported. Methods: [68Ga] Pentixafor PET/CT imaging was performed in 6 patients (3M:3F; mean age=57.0±16.80 years) with suspected lung masses. Whole-body PET/CT images were acquired at 1-h after the i.v. injection of 148.0-185.0 MBq of the tracer. PET/CT images were reconstructed and analysed. The image findings were correlated with histopathological and quantitative (CXCR4-receptors) FACS analysis. Results: Histopathological diagnosis of haemangioendothelioma, sarcomatoid carcinoma and hemangiopericytoma was confirmed in 1-patient each. Lung metastasis was diagnosed in the remaining 3/6 patients with primary sarcoma (n = 1), RCC (n = 1) and unknown primary (n = 1). Increased tracer uptake in the primary lung mass with SUVmax values of 3.0, 6.3 and 13.0 were noted in hemangiopericytoma, sarcomatoid carcinoma and haemangioendothelioma cases respectively. The mean values of SUVmax, MFI and % stained cells were highest in haemangioendothelioma. Among 3 patients with lung metastases, the highest SUVmax value of 9.5 was observed in primary sarcoma patient. Conclusion: [68Ga] Pentixafor selectively targets the in vivo whole-body disease burden of CXCR4 receptors. This approach thus holds good promise for developing suitable radio-theranostics in lung cancers expressing these targets.
Collapse
Affiliation(s)
- Ankit Watts
- Department of Nuclear Medicine, PGIMER, India
| | | | | | | | | | - Mehak Vohra
- Department of Immunopathology, PGIMER, India
| | | | | |
Collapse
|
38
|
Serfling SE, Lapa C, Dreher N, Hartrampf PE, Rowe SP, Higuchi T, Schirbel A, Weich A, Hahner S, Fassnacht M, Buck AK, Werner RA. Impact of Tumor Burden on Normal Organ Distribution in Patients Imaged with CXCR4-Targeted [68Ga]Ga-PentixaFor PET/CT. Mol Imaging Biol 2022; 24:659-665. [PMID: 35312939 PMCID: PMC9296404 DOI: 10.1007/s11307-022-01717-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022]
Abstract
Abstract
Background
CXCR4-directed positron emission tomography/computed tomography (PET/CT) has been used as a diagnostic tool in patients with solid tumors. We aimed to determine a potential correlation between tumor burden and radiotracer accumulation in normal organs.
Methods
Ninety patients with histologically proven solid cancers underwent CXCR4-targeted [68Ga]Ga-PentixaFor PET/CT. Volumes of interest (VOIs) were placed in normal organs (heart, liver, spleen, bone marrow, and kidneys) and tumor lesions. Mean standardized uptake values (SUVmean) for normal organs were determined. For CXCR4-positive tumor burden, maximum SUV (SUVmax), tumor volume (TV), and fractional tumor activity (FTA, defined as SUVmean x TV), were calculated. We used a Spearman's rank correlation coefficient (ρ) to derive correlative indices between normal organ uptake and tumor burden.
Results
Median SUVmean in unaffected organs was 5.2 for the spleen (range, 2.44 – 10.55), 3.27 for the kidneys (range, 1.52 – 17.4), followed by bone marrow (1.76, range, 0.84 – 3.98), heart (1.66, range, 0.88 – 2.89), and liver (1.28, range, 0.73 – 2.45). No significant correlation between SUVmax in tumor lesions (ρ ≤ 0.189, P ≥ 0.07), TV (ρ ≥ -0.204, P ≥ 0.06) or FTA (ρ ≥ -0.142, P ≥ 0.18) with the investigated organs was found.
Conclusions
In patients with solid tumors imaged with [68Ga]Ga-PentixaFor PET/CT, no relevant tumor sink effect was noted. This observation may be of relevance for therapies with radioactive and non-radioactive CXCR4-directed drugs, as with increasing tumor burden, the dose to normal organs may remain unchanged.
Collapse
|
39
|
von Hinten J, Kircher M, Dierks A, Pfob CH, Higuchi T, Pomper MG, Rowe SP, Buck AK, Samnick S, Werner RA, Lapa C. Molecular Imaging in Multiple Myeloma-Novel PET Radiotracers Improve Patient Management and Guide Therapy. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:801792. [PMID: 39354963 PMCID: PMC11440847 DOI: 10.3389/fnume.2022.801792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/01/2022] [Indexed: 10/03/2024]
Abstract
Due to its proven value in imaging of multiple myeloma (MM), including staging, prognostication, and assessment of therapy response, 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) is utilized extensively in the clinic. However, its accuracy is hampered by imperfect sensitivity (e.g., so-called FDG-negative MM) as well as specificity (e.g., inflammatory processes), with common pitfalls including fractures and degenerative changes. Novel approaches providing a read-out of increased protein or lipid membrane syntheses, such as [11C]methionine and [11C]choline or the C-X-C motif chemokine receptor 4-targeting radiotracer [68Ga]Pentixafor, have already been shown to be suitable adjuncts or alternatives to FDG. In the present focused review, those imaging agents along with their theranostic potential in the context of MM are highlighted.
Collapse
Affiliation(s)
- Johannes von Hinten
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christian H. Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
40
|
Mena E, Turkbey EB, Lindenberg L. Modern radiographic imaging in multiple myeloma, what is the minimum requirement? Semin Oncol 2022; 49:86-93. [PMID: 35190200 PMCID: PMC9149049 DOI: 10.1053/j.seminoncol.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/09/2022] [Indexed: 02/03/2023]
Abstract
Imaging innovations offer useful techniques applicable to many oncology specialties. Treatment advances in the field of multiple myeloma (MM) have increased the need for accurate diagnosis, particularly in the bone marrow, which is an essential component in myeloma-defining criteria. Modern imaging identifies osteolytic lesions, distinguishes solitary plasmacytoma from MM, and evaluates the presence of extramedullary disease. Furthermore, imaging is increasingly valuable in post-treatment response assessment. Detection of minimal residual disease after therapy carries prognostic implications and influences subsequent treatment planning. Whole-body low-dose Computed Tomography is now recommended over the conventional skeletal survey, and more sophisticated functional imaging methods, such as 18F-Fluorodeoxyglucose Positron Emission Tomography , and diffusion-weighted Magnetic Resonance Imaging are proving effective in the assessment and monitoring of MM disease. This review focuses on understanding indications and advantages of these imaging modalities for diagnosing and managing myeloma.
Collapse
Affiliation(s)
- Esther Mena
- Molecular Imaging Branch. National Cancer Institute, NIH, Bethesda, MD, USA
| | - Evrim B. Turkbey
- Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Liza Lindenberg
- Molecular Imaging Branch. National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
41
|
Chen Z, Xue Q, Huang C, Yao S, Miao W. Burkitt Lymphoma/Leukemia Presented on 68Ga-Pentixafor and 18F-FDG PET/CT. Clin Nucl Med 2022; 47:98-100. [PMID: 34115701 DOI: 10.1097/rlu.0000000000003750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT An 18-year-old man with newly diagnosed Burkitt lymphoma/leukemia was referred for 18F-FDG and 68Ga-Pentixafor PET/CT. 68Ga-Pentixafor PET/CT revealed similar radioactivity uptake pattern to the 18F-FDG PET/CT in superior phrenic lymph node, ascending colon, ileocecum, peritoneal, marrow, and spleen. This case highlighted that it might be interesting to further investigate the role of 68Ga-Pentixafor PET/CT imaging in staging, treatment evaluation, and especially the feasibility of CXCR4-directed radioligand therapy in Burkitt lymphoma with positive expression of CXCR4.
Collapse
|
42
|
Anzola Fuentes LK. Salivary gland scintigraphy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Barca C, Griessinger CM, Faust A, Depke D, Essler M, Windhorst AD, Devoogdt N, Brindle KM, Schäfers M, Zinnhardt B, Jacobs AH. Expanding Theranostic Radiopharmaceuticals for Tumor Diagnosis and Therapy. Pharmaceuticals (Basel) 2021; 15:13. [PMID: 35056071 PMCID: PMC8780589 DOI: 10.3390/ph15010013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Radioligand theranostics (RT) in oncology use cancer-type specific biomarkers and molecular imaging (MI), including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and planar scintigraphy, for patient diagnosis, therapy, and personalized management. While the definition of theranostics was initially restricted to a single compound allowing visualization and therapy simultaneously, the concept has been widened with the development of theranostic pairs and the combination of nuclear medicine with different types of cancer therapies. Here, we review the clinical applications of different theranostic radiopharmaceuticals in managing different tumor types (differentiated thyroid, neuroendocrine prostate, and breast cancer) that support the combination of innovative oncological therapies such as gene and cell-based therapies with RT.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Christoph M. Griessinger
- Roche Innovation Center, Early Clinical Development Oncology, Roche Pharmaceutical Research and Early Development, CH-4070 Basel, Switzerland;
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Dominic Depke
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, D-53127 Bonn, Germany;
| | - Albert D. Windhorst
- Department Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands;
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, B-1090 Brussel, Belgium;
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK;
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
- Biomarkers and Translational Technologies, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Geriatrics and Neurology, Johanniter Hospital, D-53113 Bonn, Germany
- Centre of Integrated Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| |
Collapse
|
44
|
Wei W, Zhang Y, Zhang D, Liu Q, An S, Chen Y, Huang G, Liu J. Annotating BCMA Expression in Multiple Myelomas. Mol Pharm 2021; 19:3492-3501. [PMID: 34843261 DOI: 10.1021/acs.molpharmaceut.1c00628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
B cell maturation antigen (BCMA) is a promising theranostic target for multiple myeloma (MM). BCMA-targeted therapeutics, such as antibody-drug conjugates and chimeric antigen receptor T-cell immunotherapies, are rapidly reshaping the treatment landscape of MM. Along with the progress, a critical challenge is to noninvasively visualize the dynamic change of BCMA for a better-personalized prescription of the above-mentioned therapeutics. We aim to develop immuno-positron emission tomography (immunoPET) imaging strategies to visualize BCMA expression and realize target-specific diagnosis of MM in the work. A series of BCMA-targeting nanobodies were produced and two of them were successfully labeled with gallium-68 (68Ga). MM models were established using MM.1S cell line and NOD-Prkdcem26Cd52Il2rgem26Cd22/Nju mice. The diagnostic efficacies of the developed probes (i.e., [68Ga]Ga-NOTA-MMBC2 and [68Ga]Ga-NOTA-MMBC3) were investigated in disseminated MM models by immunoPET imaging, region of interest analysis on PET images, biodistribution study, and histopathological staining study. [68Ga]Ga-NOTA-MMBC2 and [68Ga]Ga-NOTA-MMBC3 were developed with radiochemical purities of >99%. ImmunoPET imaging with either [68Ga]Ga-NOTA-MMBC2 or [68Ga]Ga-NOTA-MMBC3 precisely visualized BCMA expression and delineated MM lesions throughout the bone marrows. Moreover, [68Ga]Ga-NOTA-MMBC3 immunoPET successfully detected remnant MM after treatment with daratumumab, a prescription medicine used to treat MM. The immunoPET imaging data correlated well with the biodistribution and immunohistochemistry staining results. The work successfully developed two state-of-the-art BCMA-targeted radiotracers for annotating BCMA expression and diagnosing MM. Translational studies interpreting the diagnostic efficacies of the immunoPET radiotracers are warranted.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Chen
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
45
|
Schottelius M, Herrmann K, Lapa C. In Vivo Targeting of CXCR4-New Horizons. Cancers (Basel) 2021; 13:5920. [PMID: 34885030 PMCID: PMC8656854 DOI: 10.3390/cancers13235920] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/23/2023] Open
Abstract
Given its pre-eminent role in the context of tumor cell growth as well as metastasis, the C-X-C motif chemokine receptor 4 (CXCR4) has attracted a lot of interest in the field of nuclear oncology, and clinical evidence on the high potential of CXCR4-targeted theranostics is constantly accumulating. Additionally, since CXCR4 also represents a key player in the orchestration of inflammatory responses to inflammatory stimuli, based on its expression on a variety of pro- and anti-inflammatory immune cells (e.g., macrophages and T-cells), CXCR4-targeted inflammation imaging has recently gained considerable attention. Therefore, after briefly summarizing the current clinical status quo of CXCR4-targeted theranostics in cancer, this review primarily focuses on imaging of a broad spectrum of inflammatory diseases via the quantification of tissue infiltration with CXCR4-expressing immune cells. An up-to-date overview of the ongoing preclinical and clinical efforts to visualize inflammation and its resolution over time is provided, and the predictive value of the CXCR4-associated imaging signal for disease outcome is discussed. Since the sensitivity and specificity of CXCR4-targeted immune cell imaging greatly relies on the availability of suitable, tailored imaging probes, recent developments in the field of CXCR4-targeted imaging agents for various applications are also addressed.
Collapse
Affiliation(s)
- Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Ken Herrmann
- Department of Nuclear Medicine, German Cancer Consortium (DKTK)-University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, 86156 Augsburg, Germany
| |
Collapse
|
46
|
Pan Q, Cao X, Luo Y, Li J, Li F. Semi-quantitative measurements of chemokine receptor 4-targeted 68Ga-pentixafor PET/CT in response assessment of Waldenström macroglobulinemia/lymphoplasmacytic lymphoma. EJNMMI Res 2021; 11:110. [PMID: 34714390 PMCID: PMC8556471 DOI: 10.1186/s13550-021-00852-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose 68Ga-pentixafor PET/CT was reported to have a high sensitivity in detecting tumor involvement of Waldenström macroglobulinemia/lymphoplasmacytic lymphoma (WM/LPL) in our previous study. We aimed to further investigate the semi-quantitative measurements of 68Ga-pentixafor PET/CT in response assessment in WM/LPL.
Methods Fifteen patients with WM/LPL were recruited in a prospective cohort study and underwent both 68Ga-pentixafor and 18F-FDG PET/CT at baseline and post-treatment. PET/CT-based responses were analyzed with semi-quantitative assessments of metabolic tumor volume (MTV) and total lesions glycolysis/uptake (TLGFDG and TLUCXCR4), and the correlation between PET/CT-based response and clinical response, monoclonal protein and IgM response was analyzed.
Results After chemotherapy, 5 patients had complete response or very good partial response, 8 had partial response or minimal response and 2 had progressive disease. In quantitative analysis, 68Ga-pentixafor PET/CT-based response (measured in ∆TLUCXCR4%, ∆MTVCXCR4%, ∆SUVpeak%) showed a significant direct correlation with clinical response, monoclonal protein and IgM response (p < 0.01). However, 18F-FDG PET/CT-based response was independent from clinical response (p > 0.05). Conclusions The semi-quantitative measurements of 68Ga-pentixafor PET/CT outperformed 18F-FDG PET/CT in response assessment of WM/LPL. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00852-0.
Collapse
Affiliation(s)
- Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Wangfujing, Dongcheng District, Beijing, 100730, People's Republic of China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| | - Xinxin Cao
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Wangfujing, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Wangfujing, Dongcheng District, Beijing, 100730, People's Republic of China. .,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China.
| | - Jian Li
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Wangfujing, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Wangfujing, Dongcheng District, Beijing, 100730, People's Republic of China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| |
Collapse
|
47
|
Kuyumcu S, Isik EG, Tiryaki TO, Has-Simsek D, Sanli Y, Buyukkaya F, Özkan ZG, Kalayoglu-Besisik S, Unal SN. Prognostic significance of 68Ga-Pentixafor PET/CT in multiple myeloma recurrence: a comparison to 18F-FDG PET/CT and laboratory results. Ann Nucl Med 2021; 35:1147-1156. [PMID: 34185263 DOI: 10.1007/s12149-021-01652-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE This study investigates the prognostic value of 68Ga-Pentixafor PET/CT using PET-derived quantitative in multiple myeloma (MM) patients with suspected recurrence in comparison to 18F-FDG PET/CT and clinical data. METHODS Twenty-four MM patients with suspicion for relapse who underwent 68Ga-Pentixafor and 18F-FDG PET/CT were retrospectively evaluated. Total bone marrow glycolysis for 18F-FDG (TBMFDG) and total bone marrow uptake for 68Ga-Pentixafor PET/CT (TBMCXCR4) were calculated using whole-body metabolic tumor burden obtained by dedicated software (MIM 7.0.6). The patients were followed for 19-24 months, and the association of PET-derived quantitative data with overall survival (OS) was analyzed. RESULTS 68Ga-Pentixafor PET/CT was positive in 17 patients, of which 13 were also positive on 18F-FDG PET/CT, whereas 7 patients were negative on both scans. The positive rate of 68Ga-Pentixafor and 18F-FDG PET/CT on a patient-based approach was 70.8% and 54.1%, respectively. 68Ga-Pentixafor positivity was significantly associated with OS (p = 0.009), and 18F-FDG positivity was at the margin of statistical significance (p = 0.056). TBMCXCR4 and TBMFDG were negatively correlated with OS (r = -0.457, p = 0.025 and r = -0.617, p = 0.001, respectively). The OS was negatively correlated with beta-2-microglobulin levels (r = -0.511, p = 0.01) and CRAB score (r = -0.592, p = 0.002) as an indicator of the end-organ disease, which confirmed these results. Serum beta-2-microglobulin levels and CRAB score were also correlated with TBMCXCR4 (r = 0.442, p = 0.039 and r = 0.573, p = 0.003, respectively) and TBMFDG (r = 0.543, p = 0.009 and r = -0.424, p = 0.003, respectively). CONCLUSION 68Ga-Pentixafor PET/CT positivity is a negative prognostic factor in the survival outcome of MM patients. Complementary 68Ga-Pentixafor PET/CT has the potential to overcome 18F-FDG PET/CT limitations and helps a more precise risk stratification.
Collapse
Affiliation(s)
- Serkan Kuyumcu
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey.
| | - Emine Goknur Isik
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Tarik Onur Tiryaki
- Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Duygu Has-Simsek
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Yasemin Sanli
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Fikret Buyukkaya
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Zeynep Gözde Özkan
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Sevgi Kalayoglu-Besisik
- Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Seher Nilgun Unal
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| |
Collapse
|
48
|
Anderson KC, Auclair D, Adam SJ, Agarwal A, Anderson M, Avet-Loiseau H, Bustoros M, Chapman J, Connors DE, Dash A, Di Bacco A, Du L, Facon T, Flores-Montero J, Gay F, Ghobrial IM, Gormley NJ, Gupta I, Higley H, Hillengass J, Kanapuru B, Kazandjian D, Kelloff GJ, Kirsch IR, Kremer B, Landgren O, Lightbody E, Lomas OC, Lonial S, Mateos MV, Montes de Oca R, Mukundan L, Munshi NC, O'Donnell EK, Orfao A, Paiva B, Patel R, Pugh TJ, Ramasamy K, Ray J, Roshal M, Ross JA, Sigman CC, Thoren KL, Trudel S, Ulaner G, Valente N, Weiss BM, Zamagni E, Kumar SK. Minimal Residual Disease in Myeloma: Application for Clinical Care and New Drug Registration. Clin Cancer Res 2021; 27:5195-5212. [PMID: 34321279 PMCID: PMC9662886 DOI: 10.1158/1078-0432.ccr-21-1059] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023]
Abstract
The development of novel agents has transformed the treatment paradigm for multiple myeloma, with minimal residual disease (MRD) negativity now achievable across the entire disease spectrum. Bone marrow-based technologies to assess MRD, including approaches using next-generation flow and next-generation sequencing, have provided real-time clinical tools for the sensitive detection and monitoring of MRD in patients with multiple myeloma. Complementary liquid biopsy-based assays are now quickly progressing with some, such as mass spectrometry methods, being very close to clinical use, while others utilizing nucleic acid-based technologies are still developing and will prove important to further our understanding of the biology of MRD. On the regulatory front, multiple retrospective individual patient and clinical trial level meta-analyses have already shown and will continue to assess the potential of MRD as a surrogate for patient outcome. Given all this progress, it is not surprising that a number of clinicians are now considering using MRD to inform real-world clinical care of patients across the spectrum from smoldering myeloma to relapsed refractory multiple myeloma, with each disease setting presenting key challenges and questions that will need to be addressed through clinical trials. The pace of advances in targeted and immune therapies in multiple myeloma is unprecedented, and novel MRD-driven biomarker strategies are essential to accelerate innovative clinical trials leading to regulatory approval of novel treatments and continued improvement in patient outcomes.
Collapse
Affiliation(s)
- Kenneth C. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Daniel Auclair
- Multiple Myeloma Research Foundation, Norwalk, Connecticut.,Corresponding Author: Daniel Auclair, Research, Multiple Myeloma Research Foundation, 383 Main Street, Norwalk, CT, 06851. E-mail:
| | - Stacey J. Adam
- Foundation for the National Institutes of Health, North Bethesda, Maryland
| | - Amit Agarwal
- US Medical Oncology, Bristol-Myers Squibb, Summit, New Jersey
| | | | - Hervé Avet-Loiseau
- Laboratoire d'Hématologie, Pôle Biologie, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Mark Bustoros
- Division of Hematology and Medical Oncology, Cornell University/New York Presbyterian Hospital, New York, New York
| | | | - Dana E. Connors
- Foundation for the National Institutes of Health, North Bethesda, Maryland
| | - Ajeeta Dash
- Takeda Pharmaceuticals, Cambridge, Massachusetts
| | | | - Ling Du
- GlaxoSmithKline, Collegeville, Pennsylvania
| | - Thierry Facon
- Department of Hematology, Lille University Hospital, Lille, France
| | - Juan Flores-Montero
- Cancer Research Center (IBMCC-CSIC/USAL-IBSAL); Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero Università Città della Salute e della Scienza, Torino, Italy
| | - Irene M. Ghobrial
- Preventative Cancer Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nicole J. Gormley
- Division of Hematologic Malignancies 2, Office of Oncologic Disease, Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | - Ira Gupta
- GlaxoSmithKline, Collegeville, Pennsylvania
| | | | - Jens Hillengass
- Division of Hematology and Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Bindu Kanapuru
- Division of Hematologic Malignancies 2, Office of Oncologic Disease, Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | - Dickran Kazandjian
- Myeloma Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Gary J. Kelloff
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Ilan R. Kirsch
- Translational Medicine, Adaptive Biotechnologies, Seattle, Washington
| | | | - Ola Landgren
- Myeloma Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Elizabeth Lightbody
- Preventative Cancer Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Oliver C. Lomas
- Preventative Cancer Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sagar Lonial
- Department of Hematology and Medical Oncology at Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | - Nikhil C. Munshi
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Alberto Orfao
- Cancer Research Center (IBMCC-CSIC/USAL-IBSAL); Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Reshma Patel
- Janssen Research & Development, Spring House, Pennsylvania
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Karthik Ramasamy
- Cancer and Haematology Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Jill Ray
- BioOncology, Genentech Inc., South San Francisco, California
| | - Mikhail Roshal
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeremy A. Ross
- Precision Medicine, Oncology, AbbVie, Inc., North Chicago, Illinois
| | | | | | - Suzanne Trudel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Nancy Valente
- BioOncology, Genentech Inc., South San Francisco, California
| | | | - Elena Zamagni
- Seragnoli Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Shaji K. Kumar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
49
|
Demirkol MO, Özkan A, Uçar B, Wester HJ, Ferhanoğlu B. Extramedullary Relapsed Multiple Myeloma Treatment With 177Lu-Labeled CXCR4 Endoradiotherapy and Dosimetric Results. Clin Nucl Med 2021; 46:656-658. [PMID: 34034308 DOI: 10.1097/rlu.0000000000003705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT We created our first national clinical protocol of 177Lu-CXCR4 therapy for patient who have failed to respond to current therapy options. We also calculated the kidney, liver, and tumor dosimetry. The kidney's mean absorbed dose was calculated to be 0.45 Gy/GBq, the calculated radiation absorbed dose of the liver was 0.63 Gy/GBq, and the radiation absorbed doses of the tumors vary between 9.2 and 82 Gy/GBq. 177Lu-CXCR4 therapy produced a promising clinical response in our patient in acceptable radiation dose limits as a treatment option in heavily pretreated patients with advanced multiple myeloma.
Collapse
Affiliation(s)
| | | | - Burcu Uçar
- Nuclear Medicine and Molecular Imaging Department, VKF American Hospital, Istanbul, Turkey
| | - Hans-Jürgen Wester
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Garching, Germany
| | | |
Collapse
|
50
|
Xu J, Yu N, Zhao P, Wang F, Huang J, Cui Y, Ding H, Yang Y, Gao Y, Pan L, Chang H, Wu Y, Xiang B, Gong Y, Shuai X, Hou L, Xie L, Niu T, Liu T, Zhang L, Liu W, Zhang W, Qu Y, Lin W, Zhu Y, Zhao S, Zheng Y. Intratumor Heterogeneity of MIF Expression Correlates With Extramedullary Involvement of Multiple Myeloma. Front Oncol 2021; 11:694331. [PMID: 34268123 PMCID: PMC8276700 DOI: 10.3389/fonc.2021.694331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been shown to promote disease progression in many malignancies, including multiple myeloma (MM). We previously reported that MIF regulates MM bone marrow homing and knockdown of MIF favors the extramedullary myeloma formation in mice. Here, based on MIF immunostaining of myeloma cells in paired intramedullary and extramedullary biopsies from 17 patients, we found lower MIF intensity in extramedullary MM (EMM) versus intramedullary MM (IMM). Flow cytometry and histology analysis in xenograft models showed a portion of inoculated human MM cells lost their MIF expression (MIFLow) in vivo. Of note, IMM had dominantly MIFHigh cells, while EMM showed a significantly increased ratio of MIFLow cells. Furthermore, we harvested the extramedullary human MM cells from a mouse and generated single-cell transcriptomic data. The developmental trajectories of MM cells from the MIFHigh to MIFLow state were indicated. The MIFHigh cells featured higher proliferation. The MIFLow ones were more quiescent and harbored abundant ribosomal protein genes. Our findings identified in vivo differential regulation of MIF expression in MM and suggested a potential pathogenic role of MIF in the extramedullary spread of disease.
Collapse
Affiliation(s)
- Juan Xu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Nanhui Yu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Provincial Key Lab of Emergency and Critical Care, Hunan Provincial People's Hospital, Changsha, China
| | - Pan Zhao
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fangfang Wang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingcao Huang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yushan Cui
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Ding
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Yang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhan Gao
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Pan
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Chang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Xiang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuping Gong
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Shuai
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Hou
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Xie
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Qu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Lin
- Hunan Provincial Key Lab of Emergency and Critical Care, Hunan Provincial People's Hospital, Changsha, China.,State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yimin Zhu
- Hunan Provincial Key Lab of Emergency and Critical Care, Hunan Provincial People's Hospital, Changsha, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhuan Zheng
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|