1
|
Stern NB, Shrestha B, Porter T. A Facile Approach to Producing Liposomal J-Aggregates of Indocyanine Green with Diagnostic and Therapeutic Potential. ADVANCED THERAPEUTICS 2024; 7:2400042. [PMID: 39132131 PMCID: PMC11308451 DOI: 10.1002/adtp.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 08/13/2024]
Abstract
Liposomal J-Aggregates of Indocyanine Green (L-JA) can serve as a biocompatible and biodegradable nanoparticle for photoacoustic imaging and photothermal therapy. When compared to monomeric IcG, L-JA are characterized by longer circulation, improved photostability, elevated absorption at longer wavelengths, and increased photoacoustic signal generation. However, the documented methods for production of L-JA vary widely. We developed an approach to efficiently form IcG J-aggregates (IcG-JA) directly in liposomes at elevated temperatures. Aggregating within fully formed liposomes ensures particle uniformity and allows for control of J-aggregate size. L-JA have unique properties compared to IcG. L-JA provide significant contrast enhancement in photoacoustic images for up to 24 hours after injection, while IcG and unencapsulated IcG-JA are cleared within an hour. L-JA allow for more accurate photoacoustic-based sO2 estimation and particle tracking compared to IcG. Furthermore, photothermal heating of L-JA with an 852nm laser is demonstrated to be more effective at lower laser powers than conventional 808nm lasers for the first time. The presented technique offers an avenue for formulating a multi-faceted contrast agent for photoacoustic imaging and photothermal therapy that offers significant advantages over other conventional agents.
Collapse
|
2
|
Wang X, Lu H, Luo F, Wang D, Wang A, Wang X, Feng W, Wang X, Su J, Liu M, Xia G. Lipid-like gemcitabine diester-loaded liposomes for improved chemotherapy of pancreatic cancer. J Control Release 2024; 365:112-131. [PMID: 37981050 DOI: 10.1016/j.jconrel.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Gemcitabine (GEM) is a non-selective chemotherapeutic agent used in the treatment of pancreatic cancer. Its antitumor efficacy is limited by a short plasma half-life and severe adverse reactions. To overcome these shortcomings, four novel lipid-like GEM diesters were synthesized and encapsulated into liposomes. Through optimization, dimyristoyl GEM (dmGEM)-loaded liposomes (LipodmGEM) were successfully obtained with an almost complete encapsulation efficiency. Compared to free GEM, LipodmGEM showed enhanced cellular uptake and cell apoptosis, improved inhibition of cell migration on AsPC-1 cells and a greatly extended half-life (7.22 vs. 1.78 h). LipodmGEM succeeded in enriching the drug in the tumor (5.28 vs. 0.03 μmol/g at 8 h), overcoming a major shortcoming of GEM, showed excellent anticancer efficacy in vivo and negligible systemic toxicity, superior to GEM. Attractive as well, suspensions of LipodmGEM remained stable at 2-10 °C away from light for no <2 years. Our results suggest that LipodmGEM might become of high interest for treating pancreatic cancer while the simple strategy we reported might be explored as well for converting other antitumor drugs with high water-solubility and short plasma half-life into attractive nanomedicines.
Collapse
Affiliation(s)
- Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Fang Luo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
3
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Wang Z, Li J, Lin G, He Z, Wang Y. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J Control Release 2022; 348:1066-1088. [PMID: 35718211 DOI: 10.1016/j.jconrel.2022.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/09/2022] [Indexed: 12/17/2022]
Abstract
Metal complexes are of increasing interest as pharmaceutical agents in cancer diagnostics and therapeutics, while some of them suffer from issues such as limited water solubility and severe systemic toxicity. These drawbacks severely hampered their efficacy and clinical applications. Liposomes hold promise as delivery vehicles for constructing metal complex-based liposomes to maximize the therapeutic efficacy and minimize the side effects of metal complexes. This review provides an overview on the latest advances of metal complex-based liposomal delivery systems. First, the development of metal complex-mediated liposomal encapsulation is briefly introduced. Next, applications of metal complex-based liposomes in a variety of fields are overviewed, where drug delivery, cancer imaging (single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI)), and cancer therapy (chemotherapy, phototherapy, and radiotherapy) were involved. Moreover, the potential toxicity, action of toxic mechanisms, immunological effects of metal complexes as well as the advantages of metal complex-liposomes in this content are also discussed. In the end, the future expectations and challenges of metal complex-based liposomes in clinical cancer therapy are tentatively proposed.
Collapse
Affiliation(s)
- Zhaomeng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jinbo Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Guimei Lin
- School of Pharmacy, Shandong University, Jinan 250000, PR China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
5
|
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Musielak M, Potoczny J, Boś-Liedke A, Kozak M. The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging-A Review. Int J Mol Sci 2021; 22:6229. [PMID: 34207682 PMCID: PMC8229649 DOI: 10.3390/ijms22126229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology has introduced a new quality and has definitely developed the possibilities of treating and diagnosing various diseases. One of the scientists' interests is liposomes and metallic nanoparticles (LipoMNPs)-the combination of which has introduced new properties and applications. However, the field of creating hybrid nanostructures consisting of liposomes and metallic nanoparticles is relatively little understood. The purpose of this review was to compile the latest reports in the field of treatment and medical imaging using of LipoMNPs. The authors focused on presenting this issue in the direction of improving the used conventional treatment and imaging methods. Most of all, the nature of bio-interactions between nanostructures and cells is not sufficiently taken into account. As a result, overcoming the existing limitations in the implementation of such solutions in the clinic is difficult. We concluded that hybrid nanostructures are used in a very wide range, especially in the treatment of cancer and magnetic resonance imaging. There were also solutions that combine treatments with simultaneous imaging, creating a theragnostic approach. In the future, researchers should focus on the description of the biological interactions and the long-term effects of the nanostructures to use LipoMNPs in the treatment of patients.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Jakub Potoczny
- Heliodor Swiecicki Clinical Hospital in Poznan, 60-355 Poznań, Poland;
| | - Agnieszka Boś-Liedke
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| |
Collapse
|
7
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
8
|
Kozlovskaya V, Alford A, Dolmat M, Ducharme M, Caviedes R, Radford L, Lapi SE, Kharlampieva E. Multilayer Microcapsules with Shell-Chelated 89Zr for PET Imaging and Controlled Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56792-56804. [PMID: 33306342 DOI: 10.1021/acsami.0c17456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Radionuclide-functionalized drug delivery vehicles capable of being imaged via positron emission tomography (PET) are of increasing interest in the biomedical field as they can reveal the in vivo behavior of encapsulated therapeutics with high sensitivity. However, the majority of current PET-guided theranostic agents suffer from poor retention of radiometal over time, low drug loading capacities, and time-limited PET imaging capability. To overcome these challenges, we have developed hollow microcapsules with a thin (<100 nm) multilayer shell as advanced theranostic delivery systems for multiday PET tracking in vivo. The 3 μm capsules were fabricated via the aqueous multilayer assembly of a natural antioxidant, tannic acid (TA), and a poly(N-vinylpyrrolidone) (PVPON) copolymer containing monomer units functionalized with deferoxamine (DFO) to chelate the 89Zr radionuclide, which has a half-life of 3.3 days. We have found using radiochromatography that (TA/PVPON-DFO)6 capsules retained on average 17% more 89Zr than their (TA/PVPON)6 counterparts, which suggests that the covalent attachment of the DFO to PVPON provides stable 89Zr chelation. In vivo PET imaging studies performed in mice demonstrated that excellent stability and imaging contrast were still present 7 days postinjection. Animal biodistribution analyses showed that capsules primarily accumulated in the spleen, liver, and lungs with negligible accumulation in the femur, with the latter confirming the stable binding of the radiotracer to the capsule walls. The application of therapeutic ultrasound (US) (60 s of 20 kHz US at 120 W cm-2) to Zr-functionalized capsules could release the hydrophilic anticancer drug doxorubicin from the capsules in the therapeutic amounts. Polymeric capsules with the capability of extended in vivo PET-based tracking and US-induced drug release provide an advanced platform for development of precision-targeted therapeutic carriers and could aid in the development of more effective drug delivery systems.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Racquel Caviedes
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Lauren Radford
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
9
|
Capriotti G, Varani M, Lauri C, Franchi G, Pizzichini P, Signore A. Copper-64 labeled nanoparticles for positron emission tomography imaging: a review of the recent literature. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:346-355. [PMID: 33073558 DOI: 10.23736/s1824-4785.20.03315-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Nuclear medicine plays a crucial role for personalized therapy, mainly in oncology. Chemotherapy and radiotherapy present some disadvantages and research is shifting toward nanotechnology with significant improvements in therapy and diagnosis of several cancers. Indeed, nanoparticles can be tagged with different radioisotopes for single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging and for therapy. This review describes the current state of the art of 64Copper-labeled nanoparticles for PET imaging of cancer. EVIDENCE ACQUISITION We performed a systematic analysis of literature using the terms "64CuCl<inf>2</inf>," "64Cu," "Copper" AND "nanoparticle" AND "PET" in online databases: i.e. PubMed/MEDLINE and Scopus. The search was limited to English papers and original articles. We excluded articles not in English language, abstracts, case reports, review articles and meeting presentations. EVIDENCE SYNTHESIS Amongst the 116 articles retrieved, 88 were excluded because reviews, or not in English, or only in-vitro studies or meeting presentations. We considered only 28 original papers. The most used nanoparticles are liposomes and they are mainly used in breast cancer although other animal models of cancer have been also investigated. CONCLUSIONS The results showed that nanoparticles can be considered a promising radiopharmaceutical for PET imaging of different type of cancer.
Collapse
Affiliation(s)
- Gabriela Capriotti
- Unit of Nuclear Medicine, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University, Rome, Italy - .,Unit of Nuclear Medicine, Sant'Andrea University Hospital, Rome, Italy -
| | - Michela Varani
- Unit of Nuclear Medicine, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University, Rome, Italy
| | - Chiara Lauri
- Unit of Nuclear Medicine, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University, Rome, Italy
| | - Gabriele Franchi
- Unit of Nuclear Medicine, Sant'Andrea University Hospital, Rome, Italy
| | | | - Alberto Signore
- Unit of Nuclear Medicine, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University, Rome, Italy.,Unit of Nuclear Medicine, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
10
|
Novy Z, Lobaz V, Vlk M, Kozempel J, Stepanek P, Popper M, Vrbkova J, Hajduch M, Hruby M, Petrik M. Head-To-Head Comparison of Biological Behavior of Biocompatible Polymers Poly(Ethylene Oxide), Poly(2-Ethyl-2-Oxazoline) and Poly[N-(2-Hydroxypropyl)Methacrylamide] as Coating Materials for Hydroxyapatite Nanoparticles in Animal Solid Tumor Model. NANOMATERIALS 2020; 10:nano10091690. [PMID: 32867391 PMCID: PMC7558523 DOI: 10.3390/nano10091690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023]
Abstract
Nanoparticles (NPs) represent an emerging platform for diagnosis and treatment of various diseases such as cancer, where they can take advantage of enhanced permeability and retention (EPR) effect for solid tumor accumulation. To improve their colloidal stability, prolong their blood circulation time and avoid premature entrapment into reticuloendothelial system, coating with hydrophilic biocompatible polymers is often essential. Most studies, however, employ just one type of coating polymer. The main purpose of this study is to head-to-head compare biological behavior of three leading polymers commonly used as “stealth” coating materials for biocompatibilization of NPs poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly[N-(2-hydroxypropyl)methacrylamide] in an in vivo animal solid tumor model. We used radiolabeled biodegradable hydroxyapatite NPs as a model nanoparticle core within this study and we anchored the polymers to the NPs core by hydroxybisphosphonate end groups. The general suitability of polymers for coating of NPs intended for solid tumor accumulation is that poly(2-ethyl-2-oxazoline) and poly(ethylene oxide) gave comparably similar very good results, while poly[N-(2-hydroxypropyl)methacrylamide] was significantly worse. We did not observe a strong effect of molecular weight of the coating polymers on tumor and organ accumulation, blood circulation time, biodistribution and biodegradation of the NPs.
Collapse
Affiliation(s)
- Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry AS CR, Heyrovskeho namesti 1888/2, 162 06 Prague 6, Czech Republic; (V.L.); (P.S.)
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 115 19 Prague 1, Czech Republic; (M.V.); (J.K.)
| | - Jan Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 115 19 Prague 1, Czech Republic; (M.V.); (J.K.)
| | - Petr Stepanek
- Institute of Macromolecular Chemistry AS CR, Heyrovskeho namesti 1888/2, 162 06 Prague 6, Czech Republic; (V.L.); (P.S.)
| | - Miroslav Popper
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
| | - Jana Vrbkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
| | - Martin Hruby
- Institute of Macromolecular Chemistry AS CR, Heyrovskeho namesti 1888/2, 162 06 Prague 6, Czech Republic; (V.L.); (P.S.)
- Correspondence: (M.H.); (M.P.); Tel.: + 420-296-809-130 (M.H.); + 420-585-632-126 (M.P.)
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
- Correspondence: (M.H.); (M.P.); Tel.: + 420-296-809-130 (M.H.); + 420-585-632-126 (M.P.)
| |
Collapse
|
11
|
Xia Y, Xu C, Zhang X, Ning P, Wang Z, Tian J, Chen X. Liposome-based probes for molecular imaging: from basic research to the bedside. NANOSCALE 2019; 11:5822-5838. [PMID: 30888379 DOI: 10.1039/c9nr00207c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Molecular imaging is very important in disease diagnosis and prognosis. Liposomes are excellent carriers for different types of molecular imaging probes. In this work, we summarize current developments in liposome-based probes used for molecular imaging and their applications in image-guided drug delivery and tumour surgery, including computed tomography (CT), ultrasound imaging (USI), magnetic resonance imaging (MRI), positron emission tomography (PET), fluorescence imaging (FLI) and photoacoustic imaging (PAI). We also summarized liposome-based multimodal imaging probes and new targeting strategies for liposomes. This work will offer guidance for the design of liposome-based imaging probes for future clinical applications.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019; 143:134-160. [PMID: 31170428 PMCID: PMC6866902 DOI: 10.1016/j.addr.2019.05.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
The integration of nuclear imaging with nanomedicine is a powerful tool for efficient development and clinical translation of liposomal drug delivery systems. Furthermore, it may allow highly efficient imaging-guided personalised treatments. In this article, we critically review methods available for radiolabelling liposomes. We discuss the influence that the radiolabelling methods can have on their biodistribution and highlight the often-overlooked possibility of misinterpretation of results due to decomposition in vivo. We stress the need for knowing the biodistribution/pharmacokinetics of both the radiolabelled liposomal components and free radionuclides in order to confidently evaluate the images, as they often share excretion pathways with intact liposomes (e.g. phospholipids, metallic radionuclides) and even show significant tumour uptake by themselves (e.g. some radionuclides). Finally, we describe preclinical and clinical studies using radiolabelled liposomes and discuss their impact in supporting liposomal drug development and clinical translation in several diseases, including personalised nanomedicine approaches.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Peter J Gawne
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand Campus, London WC2R 2LS, United Kingdom.
| |
Collapse
|
13
|
Wei W, Rosenkrans ZT, Luo QY, Lan X, Cai W. Exploiting Nanomaterial-mediated Autophagy for Cancer Therapy. SMALL METHODS 2019; 3:1800365. [PMID: 31355327 PMCID: PMC6660170 DOI: 10.1002/smtd.201800365] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 05/14/2023]
Abstract
Autophagy is a conserved process that is critical for sequestering and degrading proteins, damaged or aged organelles, and for maintaining cellular homeostasis under stress conditions. Despite its dichotomous role in health and diseases, autophagy usually promotes growth and progression of advanced cancers. In this context, clinical trials using chloroquine and hydroxychloroquine as autophagy inhibitors have suggested that autophagy inhibition is a promising approach for treating advanced malignancies and/or overcoming drug resistance of small molecule therapeutics (i.e., chemotherapy and molecularly targeted therapy). Efficient delivery of autophagy inhibitors may further enhance the therapeutic effect, reduce systemic toxicity, and prevent drug resistance. As such, nanocarriers-based drug delivery systems have several distinct advantages over free autophagy inhibitors that include increased circulation of the drugs, reduced off-target systemic toxicity, increased drug delivery efficiency, and increased solubility and stability of the encapsulated drugs. With their versatile drug encapsulation and surface-functionalization capabilities, nanocarriers can be engineered to deliver autophagy inhibitors to tumor sites in a context-specific and/or tissue-specific manner. This review focuses on the role of nanomaterials utilizing autophagy inhibitors for cancer therapy, with a focus on their applications in different cancer types.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
| | - Zachary T. Rosenkrans
- School of Pharmacy, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
- School of Pharmacy, University of Wisconsin - Madison, Madison, Wisconsin 53705, United States
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin 53705, United State
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
14
|
Krajewska JB, Bartoszek A, Fichna J. New Trends in Liposome-based Drug Delivery in Colorectal Cancer. Mini Rev Med Chem 2018; 19:3-11. [DOI: 10.2174/1389557518666180903150928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in both men and women. Approximately
one-third of patients do not survive five years from diagnosis, which indicates the need for
treatment improvement, also through new ways of drug delivery. A possible strategy to increase treatment
efficacy is the use of liposomal formulation, which allows delivering both hydrophobic and hydrophilic
compounds with better biocompatibility and reduced side-effects. Liposomal formulations
showed better antitumor activity, longer drug accumulation and no cytotoxic effect on normal cells
when compared to free drugs. In this review, we will present liposomal preparations studied in CRC in
vitro and in vivo. We will focus on the advantages of liposomal delivery over conventional therapy as
well as modifications which increase specificity, drug accumulation and efficacy. Moreover, we will
discuss formulations investigated in clinical trials. Liposomal delivery has a great potential in overcoming
current limitations of cancer therapy and development of this system gives new perspectives in
CRC treatment.
Collapse
Affiliation(s)
- Julia B. Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| |
Collapse
|
15
|
Molecular Imaging with 68Ga Radio-Nanomaterials: Shedding Light on Nanoparticles. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Zhang L, Cui H. HAase-sensitive dual-targeting irinotecan liposomes enhance the therapeutic efficacy of lung cancer in animals. Nanotheranostics 2018; 2:280-294. [PMID: 29977740 PMCID: PMC6030771 DOI: 10.7150/ntno.25555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022] Open
Abstract
Among all cancers, lung cancer is one of the most common and serious types of cancer. It is challenging for site-specific delivery of anticancer therapeutics to tumor cells. Herein, we developed a novel“smart” dual-targeting liposomal platform to respond to the highly expressed hyaluronidase (HAase) in the tumor microenvironment and improve tumor targeting and antitumor efficacy. Methods: In our design, the HA was used as a sensitive linker between a liposomal lipid and long chain PEG block to synthesize three functional conjugates in order to prepare“smart” liposomal platform modified with epidermal growth factor receptor (EGFR) antibody (GE11) and cell-penetrating peptide (TATp). Using irinotecan as a model therapeutic, evaluations were performed on the human lung adenocarcinoma A549 cells as well as the xenografted A549 cancer cells in nude mice. Results: The GE11/HA/TATp-irinotecan liposomes evidently increased the uptake of irinotecan and showed significant antitumor efficacy in the xenografted A549 cancer cells in nude mice by intravenous administration. The mechanisms were defined to be two aspects: GE11 exhibits high affinity for EGFR binding and the degradation of the HA by HAase results in the long-chain PEG removal and exposure of the previously hidden surface-attached TATp to enhance the target cell internalization. Conclusion: Our findings suggest that this functional liposomal platform may provide a novel strategy for treating lung cancers because of effective intracellular delivery.
Collapse
Affiliation(s)
- Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.,Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.,Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|