1
|
Karami Y, Ehtiati S, Ghasemi H, Rafiee M, Zamani Sani M, Hosseini SE, Moradi Kazerouni H, Movahedpour A, Aiiashi S, Khatami SH. Non-coding RNA biosensors for early detection of brain cancer. Clin Chim Acta 2025; 566:120041. [PMID: 39561887 DOI: 10.1016/j.cca.2024.120041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Brain cancer remains a formidable challenge with limited treatment options. Non-coding RNAs (ncRNAs) have emerged as promising biomarkers due to their dysregulation in tumorigenesis. This review explores the potential of biosensors for early detection of brain cancer by targeting ncRNAs. We discuss the classification and functions of ncRNAs, emphasizing their involvement in key cancer-related processes. Additionally, we delve into recent advancements in biosensor technology, focusing on their ability to accurately detect specific ncRNA biomarkers associated with brain cancer. Our findings underscore the potential of biosensors to revolutionize brain cancer diagnosis, enabling personalized medicine and improving patient outcomes. Future research should focus on refining biosensor technology and expanding their clinical application.
Collapse
Affiliation(s)
- Yousof Karami
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences University of Wyoming 1174 Snowy Range Road Laramie, WY 82070, USA
| | - Maryam Zamani Sani
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Edris Hosseini
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | | | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhan Y, Tian F, Fan W, Li X, Wang X, Zhang H, Hong X, Wang X, Cai L, Song Y, Xing Y. Targeting piRNA-137463 Inhibits Tumor Progression and Boosts Sensitivity to Immune Checkpoint Blockade via De Novo Cholesterol Biosynthesis in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2414100. [PMID: 39692168 DOI: 10.1002/advs.202414100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Indexed: 12/19/2024]
Abstract
The important role of PIWI-interacting RNAs (piRNAs) in tumors has garnered increasing attention. However, research on their role in lung adenocarcinoma (LUAD) remains limited. Elevated levels of piRNA-137463 have been linked to poor prognosis in LUAD patients. Inhibition of piRNA-137463 curbed the proliferation, migration, and invasion of LUAD cells, enhanced T cell cytotoxicity through increased IFN-γ secretion, disrupted cholesterol metabolism, and reduced intracellular cholesterol, lipid raft content, and PD-L1 expression in LUAD cells. Bioinformatic prediction identified a potential interaction between piRNA-137463 and lncRNA LOC100128494. Inhibiting piRNA-137463 increased the stability and expression of LOC100128494, which further modulated insulin-induced gene 1 protein (INSIG1) levels via a competitive endogenous RNA network involving LOC100128494 and miR-24-3p. Notably, the effect of piRNA-137463 in LUAD cells is dependent on the expression of LOC100128494 and INSIG1. Inhibiting the expression of piRNA-137463 with AntagopiRNA-137463 suppressed tumor growth and metastasis via LOC100128494 in nude mice and enhanced the response of LUAD to anti-PD-1 therapy in immune-competent mice. In summary, this study elucidates the role of piRNA-137463 in the reprogramming of cholesterol metabolism, which drives the progression of LUAD, thereby identifying a new target for the comprehensive clinical management of LUAD.
Collapse
Affiliation(s)
- Yuning Zhan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xin Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xiangyu Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Hongxia Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xin Hong
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Yang Song
- The Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| |
Collapse
|
3
|
Limanówka P, Ochman B, Świętochowska E. Mechanisms Behind the Impact of PIWI Proteins on Cancer Cells: Literature Review. Int J Mol Sci 2024; 25:12217. [PMID: 39596284 PMCID: PMC11594409 DOI: 10.3390/ijms252212217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The P-Element-induced wimpy testis (PIWI) group of proteins plays a key role in RNA interference, particularly in the regulation of small non-coding RNAs. However, in recent years, PIWIs have gained attention in several diseases, mainly cancer. Therefore, the aim of this review was to evaluate current knowledge about the impact of PIWI proteins on cancer cells. PIWIs alter a number of pathways within cells, resulting in significant changes in cell behavior. Basic processes of cancer cells have been shown to be altered by either overexpression or inhibition of PIWIs. Regulation of apoptosis, metastasis, invasion, or proliferation of cancerous cells by these proteins proves their involvement in the progression of the malignancy. It has been revealed that PIWIs are also connected with cancer stem cells (CSCs), which proves their ability to become a therapeutic target. However, research on this topic is still fairly limited, and with significant differences between cancer types, it is necessary to refrain from making any decisive conclusions.
Collapse
Affiliation(s)
| | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (P.L.); (B.O.)
| |
Collapse
|
4
|
Wang J, Huang W, Chai S, Gan J, Zeng Y, Long P, Pang L. A comprehensive analysis of CEBPA on prognosis and function in uterine corpus endometrial carcinoma. Sci Rep 2024; 14:23773. [PMID: 39390018 PMCID: PMC11467350 DOI: 10.1038/s41598-024-74242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common tumours of the female reproductive system. CCAAT enhancer-binding protein alpha (CEBPA) is a member of the transcription factor family involved in regulating processes such as cell proliferation, differentiation, metabolism, and the immune response. However, the role of CEBPA in UCEC has not been clarified. Here, we performed a comprehensive analysis to explore the expression level, prognostic value, immune infiltration and biological function of CEBPA in UCEC. In this study, we found that CEBPA expression was upregulated and associated with poor prognosis in UCEC patients. KEGG and GO analyses revealed that the genes positively correlated with CEBPA were enriched primarily in immune regulation and oxidative phosphorylation. Immune infiltration analysis revealed that CEBPA is strongly correlated with immune cell infiltration in UCEC. RT-qPCR indicated that CEBPA may regulate the OXPHOS level in Ishikawa cells. CCK-8, cell cycle, Transwell and scratch wound healing assays revealed that CEBPA promoted Ishikawa cell proliferation, invasion and migration. In addition, PPI and survival analyses suggested that CEBPG may be a potential target of CEBPA in UCEC. These results demonstrated that CEBPA may be a potential therapeutic target in UCEC.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China
- National Health Commission Key Laboratory of Thalassemia Medicine (Guangxi Medical University), Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Weiyu Huang
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shiwei Chai
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Jiayi Gan
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Yulu Zeng
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Ping Long
- Department of Laboratory Medicine, Guizhou Qiannan People's Hospital, Duyun, Guizhou, China.
| | - Lihong Pang
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China.
- National Health Commission Key Laboratory of Thalassemia Medicine (Guangxi Medical University), Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Peng Q, Chen Y, Xie T, Pu D, Ho VWS, Sun J, Liu K, Chan RCK, Ding X, Teoh JYC, Wang X, Chiu PKF, Ng CF. PiRNA-4447944 promotes castration-resistant growth and metastasis of prostate cancer by inhibiting NEFH expression through forming the piRNA-4447944-PIWIL2-NEFH complex. Int J Biol Sci 2024; 20:3638-3655. [PMID: 38993562 PMCID: PMC11234203 DOI: 10.7150/ijbs.96173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the leading cause of prostate cancer (PCa)-related death in males, which occurs after the failure of androgen deprivation therapy (ADT). PIWI-interacting RNAs (piRNAs) are crucial regulators in many human cancers, but their expression patterns and roles in CRPC remain unknown. In this study, we performed small RNA sequencing to explore CRPC-associated piRNAs using 10 benign prostate tissues, and 9 paired hormone-sensitive PCa (HSPCa) and CRPC tissues from the same patients. PiRNA-4447944 (piR-4447944) was discovered to be highly expressed in CRPC group compared with HSPCa and benign groups. Functional analyses revealed that piR-4447944 overexpression endowed PCa cells with castration resistance ability in vitro and in vivo, whereas knockdown of piR-4447944 using anti-sense RNA suppressed the proliferation, migration and invasion of CRPC cells. Additionally, enforced piR-4447944 expression promoted in vitro migration and invasion of PCa cells, and reduced cell apoptosis. Mechanistically, piR-4447944 bound to PIWIL2 to form a piR-4447944/PIWIL2 complex and inhibited tumor suppressor NEFH through direct interaction at the post-transcriptional level. Collectively, our study indicates that piR-4447944 is essential for prostate tumor-propagating cells and mediates androgen-independent growth of PCa, which extends current understanding of piRNAs in cancer biology and provides a potential approach for CRPC treatment.
Collapse
Affiliation(s)
- Qiang Peng
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
- HitGen Inc., Building 6, No.8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, Sichuan, China
| | - Tingting Xie
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dandan Pu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincy Wing-Sze Ho
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingkai Sun
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Kang Liu
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Cheong-Kin Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofan Ding
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jeremy Yuen-Chun Teoh
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter Ka-Fung Chiu
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Garcia-Borja E, Siegl F, Mateu R, Slaby O, Sedo A, Busek P, Sana J. Critical appraisal of the piRNA-PIWI axis in cancer and cancer stem cells. Biomark Res 2024; 12:15. [PMID: 38303021 PMCID: PMC10836005 DOI: 10.1186/s40364-024-00563-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Small noncoding RNAs play an important role in various disease states, including cancer. PIWI proteins, a subfamily of Argonaute proteins, and PIWI-interacting RNAs (piRNAs) were originally described as germline-specific molecules that inhibit the deleterious activity of transposable elements. However, several studies have suggested a role for the piRNA-PIWI axis in somatic cells, including somatic stem cells. Dysregulated expression of piRNAs and PIWI proteins in human tumors implies that, analogously to their roles in undifferentiated cells under physiological conditions, these molecules may be important for cancer stem cells and thus contribute to cancer progression. We provide an overview of piRNA biogenesis and critically review the evidence for the role of piRNA-PIWI axis in cancer stem cells. In addition, we examine the potential of piRNAs and PIWI proteins to become biomarkers in cancer.
Collapse
Affiliation(s)
- Elena Garcia-Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Frantisek Siegl
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic.
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Pathology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
8
|
Jiang W, Hu Y, Wang X, Zhang Q, Guo X, Cheng S, Chen L, Ying J, Zhang L, Jiang B. miR-125b-5p-MAPK1-C/EBPα feedback loop regulates all-trans retinoic acid resistance in acute promyelocytic leukemia. Gene 2023; 889:147806. [PMID: 37717613 DOI: 10.1016/j.gene.2023.147806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Various studies have highlighted the significance of miR-125b-5p in tumour chemotherapy resistance; However, whether miR-125b-5p is associated with all-trans retinoic acid (ATRA) resistance in acute promyelocytic leukemia (APL) has not been reported. METHODS Drug-resistance-related factors in APL were predicted using the DRESIS database. The expression levels of miR-125b-5p in ATRA-sensitive and ATRA-resistant APL cells were determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR). A nitrotetrazolium blue (NBT) reduction assay and flow cytometry (FCM) were used to detect the effect of miR-125b-5p on ATRA resistance in APL cells. An APL xenograft tumour mouse model was established to determine the effect of miR-125b-5p on ATRA resistance. A dual-luciferase gene reporter assay, qRT-PCR, and western blotting verified the regulation by miR-125b-5p of its target gene, MAPK1, and the MAPK1 downstream factor, C/EBPα. An NBT reduction assay and FCM were used to detect the effect of C/EBPα on ATRA resistance in APL cells. Western blotting and qRT-PCR were used to assess the regulation of miR-125b-5p and MAPK1 by C/EBPα. RESULTS miR-125b-5p expression levels were dramatically increased in ATRA-resistant APL cells. Both in vitro and in vivo experiments revealed that miR-125b-5p overexpression enhanced ATRA resistance in APL. miR-125b-5p promoted ATRA resistance by sponging MAPK1. C/EBPα was negatively regulated by miR-125b-5p, which in addition, regulated ATRA resistance in APL cells. C/EBPα also regulated the miR-125b-5p-MAPK1 axis. CONCLUSION The findings of this study indicate that the miR-125b-5p-MAPK1-C/EBPα feedback loop regulated ATRA resistance in APL. Thus, miR-125b-5p may be a promising target for treating ATRA resistance in APL.
Collapse
Affiliation(s)
- Wenjuan Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongkang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinlong Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Siyu Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Langqun Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiahui Ying
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Baoping Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Chu J, Liu W, Hu X, Zhang H, Jiang J. P2RY13 is a prognostic biomarker and associated with immune infiltrates in renal clear cell carcinoma: A comprehensive bioinformatic study. Health Sci Rep 2023; 6:e1646. [PMID: 38045624 PMCID: PMC10691167 DOI: 10.1002/hsr2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023] Open
Abstract
Background and Aims Clear cell renal cell carcinoma (ccRCC) is a common and aggressive form of cancer with a high incidence globally. This study aimed to investigate the role of P2RY13 in the progression of ccRCC and elucidate its mechanism of action. Methods Gene Expression Omnibus and The Cancer Genome Atlas databases were used to extract gene expression profiles of ccRCC. These profiles were annotated and visualized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, as well as Gene Set Enrichment Analysis (GSEA). The STRING database was used to establish a protein-protein interaction network and to analyze the functional similarity. The GEPIA2 database was used to predict survival associated with hub genes. Meanwhile, the TIMER2.0 database was used to assess immune cell infiltration and its link with the hub genes. Immunohistochemistry (IHC) was used to determine the difference between ccRCC and adjacent normal tissue. Results We identified 272 differentially expressed genes (DEGs). GO and KEGG analyses suggested that DEGs were primarily involved in lymphocyte activation, inflammatory response, immunological effector mechanism pathways. By cytohubba, the 20 highest-scoring hub genes were screened to identify critical genes in the protein-protein interaction network linked with ccRCC. Resting dendritic cells, CD8 T cells, and activated mast cells all showed a significant positive correlation with these hub genes. Moreover, a higher immune score was associated with increased prognostic risk scores, which in turn correlated with a poorer prognosis. IHC revealed that P2RY13 was expressed at higher levels in ccRCC compared to para-cancer tissues. Conclusion Identifying the DEGs will aid in the understanding of the causes and molecular mechanisms involved in ccRCC. P2RY13 may play a pivotal role in the progression and prognosis of ccRCC, potentially driving carcinogenesis though immune system mechanisms.
Collapse
Affiliation(s)
- Jie Chu
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Wei Liu
- Department of General Family MedicineThe First People's Hospital of NeiJiangNeiJiangChina
| | - Xinyue Hu
- Department of Clinical Laboratory, Kunming First People's HospitalKunming Medical UniversityKunmingChina
| | - Huiling Zhang
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Jiudong Jiang
- Department of SurgeryThe First People's Hospital of ZiYangZiyangChina
| |
Collapse
|
10
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metab Brain Dis 2023; 38:1801-1829. [PMID: 37249862 PMCID: PMC10227410 DOI: 10.1007/s11011-023-01234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The survival period of GBM patients is only 12-15 months. Therefore, novel treatment modalities for GBM treatment are urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression, the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for managing GBM. Studies have highlighted the role of Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials. Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM. Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India.
| | - Kowsalya Adusumilli
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Sahiti Chamarthy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Hari Sai Ram Angirekula
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
12
|
Taverna S, Masucci A, Cammarata G. PIWI-RNAs Small Noncoding RNAs with Smart Functions: Potential Theranostic Applications in Cancer. Cancers (Basel) 2023; 15:3912. [PMID: 37568728 PMCID: PMC10417041 DOI: 10.3390/cancers15153912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a new class of small noncoding RNAs (ncRNAs) that bind components of the PIWI protein family. piRNAs are specifically expressed in different human tissues and regulate important signaling pathways. Aberrant expressions of piRNAs and PIWI proteins have been associated with tumorigenesis and cancer progression. Recent studies reported that piRNAs are contained in extracellular vesicles (EVs), nanosized lipid particles, with key roles in cell-cell communication. EVs contain several bioactive molecules, such as proteins, lipids, and nucleic acids, including emerging ncRNAs. EVs are one of the components of liquid biopsy (LB) a non-invasive method for detecting specific molecular biomarkers in liquid samples. LB could become a crucial tool for cancer diagnosis with piRNAs as biomarkers in a precision oncology approach. This review summarizes the current findings on the roles of piRNAs in different cancer types, focusing on potential theranostic applications of piRNAs contained in EVs (EV-piRNAs). Their roles as non-invasive diagnostic and prognostic biomarkers and as new therapeutic options have been also discussed.
Collapse
Affiliation(s)
- Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| | - Anna Masucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, Laboratory Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
13
|
Fan J, Han Y, Sun H, Sun S, Wang Y, Guo R, Guo J, Tian X, Wang J, Wang J. Mesenchymal stem cell-derived exosomal microRNA-367–3p alleviates experimental autoimmune encephalomyelitis via inhibition of microglial ferroptosis by targeting EZH2. Biomed Pharmacother 2023; 162:114593. [PMID: 37001184 DOI: 10.1016/j.biopha.2023.114593] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory demyelinating disorder of the central nervous system. Accumulating evidence has underscored the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (BMSC-Exos) containing bioactive compounds in MS. Herein, the current study sought to characterize the mechanism of BMSC-Exos harboring miR-367-3p both in BV2 microglia by Erastin-induced ferroptosis and in experimental autoimmune encephalomyelitis (EAE), a typical animal model of MS. Exosomes were firstly isolated from BMSCs and identified for further use. BV2 microglia were co-cultured with miR-367-3p-containing BMSC-Exos, followed by an assessment of cell ferroptosis. Mechanistic exploration was furthered by the interaction of miR-367-3p and its downstream regulators. Lastly, BMSC-Exos harboring miR-367-3p were injected into EAE mice for in vivo validation. BMSC-Exos carrying miR-367-3p restrained microglial ferroptosis in vitro. Mechanistically, miR-367-3p could bind to Enhancer of zeste homolog 2 (EZH2) and restrain EZH2 expression, leading to the over-expression of solute carrier family 7 member 11 (SLC7A11). Meanwhile, over-expression of SLC7A11 resulted in Glutathione Peroxidase 4 (GPX4) activation and ferroptosis suppression. Ectopic expression of EZH2 in vitro negated the protective effects of BMSC-Exos. Furthermore, BMSC-Exos containing miR-367-3p relieved the severity of EAE by suppressing ferroptosis and restraining EZH2 expression in vivo. Collectively, our findings suggest that BMSC-Exos carrying miR-367-3p brings about a significant decline in microglia ferroptosis by repressing EZH2 and alleviating the severity of EAE in vivo, suggesting a possible role of miR-367-3p overexpression in the treatment strategy of EAE. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
Collapse
|
14
|
Zhou J, Xie H, Liu J, Huang R, Xiang Y, Tian D, Bian E. PIWI-interacting RNAs: Critical roles and therapeutic targets in cancer. Cancer Lett 2023; 562:216189. [PMID: 37076042 DOI: 10.1016/j.canlet.2023.216189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a novel class of small regulatory RNAs (approximately 24-31 nucleotides in length) that often bind to members of the PIWI protein family. piRNAs regulate transposons in animal germ cells; piRNAs are also specifically expressed in many human tissues and regulate pivotal signaling pathways. Additionally, the abnormal expression of piRNAs and PIWI proteins has been associated with various malignant tumours, and multiple mechanisms of piRNA-mediated target gene dysregulation are involved in tumourigenesis and progression, suggesting that they have the potential to serve as new biomarkers and therapeutic targets for tumours. However, the functions and potential mechanisms of action of piRNAs in cancer have not yet been elucidated. This review summarises the current findings on the biogenesis, function, and mechanisms of piRNAs and PIWI proteins in cancer. We also discuss the clinical significance of piRNAs as diagnostic or prognostic biomarkers and therapeutic tools for cancer. Finally, we present some critical questions regarding piRNA research that need to be addressed to provide insight into the future development of the field.
Collapse
Affiliation(s)
- Jialin Zhou
- Department of Clinical Medicine, The Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Ruixiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Yufei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
15
|
Downregulated miR-367-3p, miR-548aq-5p, and miR-4710 in Human Whole Blood: Potential Biomarkers for Breast Cancer With Axillary Lymph Node Metastasis. Clin Breast Cancer 2023; 23:189-198. [PMID: 36564279 DOI: 10.1016/j.clbc.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Increasing studies have shown that microRNAs (miRNAs) have great diagnostic value in cancer. Axillary lymph node metastasis (ALNM) is closely related to the prognosis of breast cancer. However, it remains unknown whether miRNAs in whole blood could be promising biomarkers in breast cancer ALNM. METHODS An miRNA microarray was used to screen potential differentially expressed miRNA candidates in whole blood of three breast cancer patients with ALNM and three without ALNM. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect candidate differentially expressed miRNAs in the whole blood of 109 breast cancer patients. Furthermore, bioinformatics analysis was carried to predict the potential targets and enriched pathway of miRNAs. RESULTS QRT-PCR validated the fact that miR-367-3p, miR-548aq-5p and miR-4710 are downregulated in breast cancer with ALNM compared to it without ALNM. Receiver operating characteristic (ROC) curve analysis revealed that miR-367-3p, miR-548aq-5p and miR-4710 have good diagnostic values. Notably, the three-miRNA signature showed better predictive value, with an area under ROC curve (AUC) of 0.7414. Bioinformatics analysis revealed that the miRNAs could participate in a complex network and thus be involved in cancer-related pathways. CONCLUSIONS Our findings support the potential of miR-367-3p, miR-548aq-5p and miR-4710 and the three-miRNA signature as biomarkers for breast cancer with ALNM.
Collapse
|
16
|
Wang X, Li X, Zhou Y, Huang X, Jiang X. Long non-coding RNA OIP5-AS1 inhibition upregulates microRNA-129-5p to repress resistance to temozolomide in glioblastoma cells via downregulating IGF2BP2. Cell Biol Toxicol 2022; 38:963-977. [PMID: 34132932 DOI: 10.1007/s10565-021-09614-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/27/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) and miRNAs (miRNAs) participate in tumors, while the effects of lncRNA OIP5 antisense RNA 1 (OIP5-AS1) and miR-129-5p on glioblastoma (GBM) remain to be further studied. We aim to explore the role of OIP5-AS1/miR-129-5p/insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) axis in GBM progression. METHODS OIP5-AS1, miR-129-5p and IGF2BP2 expression in tissues was determined. Temozolomide (TMZ)-resistant GBM cells were established and transfected with relative plasmid to alter OIP5-AS1, IGF2BP2 or miR-129-5p expression. Then, the viability, proliferation, apoptosis and in vivo tumor growth were assessed. The subcellular localization of OIP5-AS1 was determined, and the binding relationships between OIP5-AS1 and miR-129-5p, and between miR-129-5p and IGF2BP2 were confirmed. RESULTS OIP5-AS1 and IGF2BP2 were upregulated whereas miR-129-5p was downregulated in GBM. OIP5-AS1 silencing or miR-129-5p overexpression inhibited GBM cell chemoresistance to TMZ and proliferation, and promoted cell apoptosis. MiR-129-5p downregulation or IGF2BP2 upregulation reversed the role of OIP5-AS1 silencing on GBM cells. OIP5-AS1 sponged miR-129-5p and miR-129-5p targeted IGF2BP2. CONCLUSION OIP5-AS1 inhibition upregulated miR-129-5p to repress resistance to TMZ in GBM cells via downregulating IGF2BP2.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, 430022, Hubei, China
| | - Xudong Li
- Department of Neurosurgery, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, 430022, Hubei, China
| | - Yan Zhou
- Department of Neurosurgery, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, 430022, Hubei, China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, 430022, Hubei, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, 430022, Hubei, China.
| |
Collapse
|
17
|
[miR-367-3p Regulates Cells Proliferation and Invasion in NSCLC by Targeting ZEB2]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:782-788. [PMID: 36419391 PMCID: PMC9720678 DOI: 10.3779/j.issn.1009-3419.2022.101.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND microRNAs play an important role in the development and biological phenotype of lung cancer. The present study was to investigate miR-367-3p level in non-small cell lung cancer (NSCLC) patients and its biological function of NSCLC cells. METHODS Twenty-two patients with NSCLC (13 cases of adenocarcinoma and 9 cases of squamous carcinoma) admitted to our hospital and treated by surgery were included. During the operation, cancer tissue, paracancerous tissue and 5 mL peripheral blood were collected. Meanwhile, 22 healthy controls were selected and 5 mL peripheral blood was taken. Real-time PCR was applied to detected the expression of miR-367-3p in cancer tissues, peripheral blood of patients with NSCLC and healthy controls. miR-367-3p was detected in lung cancer cell lines (A549) and normal bronchial epithelial cells (BEAS-2B). The proliferation and invasion ability of A549 cells before and after infection were detected by MTT and Transwell assay after transfection with exogenous miR-367-3p. The downstream target gene of miR-367-3p was analyzed by bioinformatics. Zinc finger E-box binding homeobox 2 (ZEB2) was detected by Real-time PCR and Western blot. RESULTS miR-367-3p in cancer tissues of 22 NSCLC patients was lower than corresponding normal tissues (P<0.05), and the serum miR-367-3p level in healthy subjects was higher than NSCLC subjects (P<0.05). The area under the receiver operating characteristic (ROC) curve of NSCLC was 0.95 (95%CI: 0.89-1.00) and 0.85 (95%CI: 0.74-0.97) respectively; The proliferation and migration ability of lung cancer cell line A549 transfected with exogenous miR-367-3p decreased significantly (P<0.05); Bioinformatics predicted that the downstream target of miR-367-3p was ZEB2 and up-regulating miR-367-3p expression, ZEB2 gene was decreased (P<0.05). The Cancer Genome Atlas (TCGA) data analysis showed that there was no significant difference in overall survival (OS) and disease free survival (DFS) between ZEB2 high expression group and low expression group (P>0.05). ZEB2 expression was positively correlated with infiltration of B lymphocytes (r=0.32, P<005), CD8⁺ T cells (r=0.44, P<005), CD4⁺ T cells (r=0.46, P<005), macrophages (r=0.65, P<005), neutrophils (r=0.73, P<005) and dendritic cells (r=0.71, P<005) in NSCLC. CONCLUSIONS The expression of miR-367-3p is down regulated in NSCLC patients and participates in the biological process of proliferation and invasion of NSCLC by targeting ZEB2 gene.
Collapse
|
18
|
Zheng K, Zhang XL, Wang L, You ZH, Zhan ZH, Li HY. Line graph attention networks for predicting disease-associated Piwi-interacting RNAs. Brief Bioinform 2022; 23:6748487. [PMID: 36198846 DOI: 10.1093/bib/bbac393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
PIWI proteins and Piwi-Interacting RNAs (piRNAs) are commonly detected in human cancers, especially in germline and somatic tissues, and correlate with poorer clinical outcomes, suggesting that they play a functional role in cancer. As the problem of combinatorial explosions between ncRNA and disease exposes gradually, new bioinformatics methods for large-scale identification and prioritization of potential associations are therefore of interest. However, in the real world, the network of interactions between molecules is enormously intricate and noisy, which poses a problem for efficient graph mining. Line graphs can extend many heterogeneous networks to replace dichotomous networks. In this study, we present a new graph neural network framework, line graph attention networks (LGAT). And we apply it to predict PiRNA disease association (GAPDA). In the experiment, GAPDA performs excellently in 5-fold cross-validation with an AUC of 0.9038. Not only that, it still has superior performance compared with methods based on collaborative filtering and attribute features. The experimental results show that GAPDA ensures the prospect of the graph neural network on such problems and can be an excellent supplement for future biomedical research.
Collapse
Affiliation(s)
- Kai Zheng
- College of Information Science and Engineering, Zaozhuang University, Shandong 277100, China.,Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | | | - Lei Wang
- College of Information Science and Engineering, Zaozhuang University, Shandong 277100, China.,Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhu-Hong You
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhao-Hui Zhan
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Hao-Yuan Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
19
|
Wang G, Liu H, An L, Hou S, Zhang Q. CAPG facilitates diffuse large B-cell lymphoma cell progression through PI3K/AKT signaling pathway. Hum Immunol 2022; 83:832-842. [DOI: 10.1016/j.humimm.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|
20
|
He Z, Cheng M, Hu J, Liu L, Liu P, Chen L, Cao D, Tang J. miR-1297 sensitizes glioma cells to temozolomide (TMZ) treatment through targeting adrenomedullin (ADM). J Transl Med 2022; 20:443. [PMID: 36183123 PMCID: PMC9526964 DOI: 10.1186/s12967-022-03647-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gliomas account for about 80% of all malignant brain and other central nervous system (CNS) tumors. Temozolomide (TMZ) resistance represents a major treatment hurdle. Adrenomedullin (ADM) has been reported to induce glioblastoma cell growth. METHODS Cell viability was measured using the CCK-8 assay. The apoptosis analysis was performed using the Annexin V-FITC Apoptosis Detection Kit. The mitochondrial membrane potential was determined by JC-1 staining. A nude mouse tumor assay was used to detect tumor formation. Hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were performed in tissue sections. Activation of Akt and Erk and expression of apoptosis-related proteins were determined by immunoblotting. RESULTS ADM expression has been found upregulated in TMZ -resistant glioma samples based on bioinformatics and experimental analyses. Knocking down ADM in glioma cells enhanced the suppressive effects of TMZ on glioma cell viability, promotive effects on cell apoptosis, and inhibitory effects on mitochondrial membrane potential. Moreover, ADM knockdown also enhanced TMZ effects on Bax/Bcl-2, Akt phosphorylation, and Erk1/2 phosphorylation. Bioinformatics and experimental investigation indicated that miR-1297 directly targeted ADM and inhibited ADM expression. miR-1297 overexpression exerted similar effects to ADM knockdown on TMZ-treated glioma cells. More importantly, under TMZ treatment, inhibition of miR-1297 attenuated TMZ treatment on glioma cells; ADM knockdown partially attenuated the effects of miR-1297 inhibition on TMZ-treated glioma cells. CONCLUSIONS miR-1297 sensitizes glioma cells to TMZ treatment through targeting ADM. The Bax/Bcl-2, Akt, and Erk1/2 signaling pathways, as well as mitochondrial functions might be involved.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Meixiong Cheng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
| | - Junting Hu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
| | - Lingtong Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
| | - Ping Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Deqian Cao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Jian Tang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
21
|
TRAF4 Promotes the Proliferation of Glioblastoma by Stabilizing SETDB1 to Activate the AKT Pathway. Int J Mol Sci 2022; 23:ijms231710161. [PMID: 36077559 PMCID: PMC9456363 DOI: 10.3390/ijms231710161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
The process of ubiquitination regulates the degradation, transport, interaction, and stabilization of substrate proteins, and is crucial for cell signal transduction and function. TNF receptor-associated factor 4, TRAF4, is a member of the TRAF family and is involved in the process of ubiquitination as an E3 ubiquitin protein ligase. Here, we found that TRAF4 expression correlates with glioma subtype and grade, and that TRAF4 is significantly overexpressed in glioblastoma and predicts poor prognosis. Knockdown of TRAF4 significantly inhibited the growth, proliferation, migration, and invasion of glioblastoma cells. Mechanistically, we found that TRAF4 only interacts with the Tudor domain of the AKT pathway activator SETDB1. TRAF4 mediates the atypical ubiquitination of SETDB1 to maintain its stability and function, thereby promoting the activation of the AKT pathway. Restoring SETDB1 expression in TRAF4 knockdown glioblastoma cells partially restored cell growth and proliferation. Collectively, our findings reveal a novel mechanism by which TRAF4 mediates AKT pathway activation, suggesting that TRAF4 may serve as a biomarker and promising therapeutic target for glioblastoma.
Collapse
|
22
|
Chattopadhyay T, Biswal P, Lalruatfela A, Mallick B. Emerging roles of PIWI-interacting RNAs (piRNAs) and PIWI proteins in head and neck cancer and their potential clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188772. [PMID: 35931391 DOI: 10.1016/j.bbcan.2022.188772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are among the well-known neoplasms originating in the oral cavity, pharynx, and larynx. Despite advancements in chemotherapy, radiotherapy, and surgery, the survival rates of the patients are low, which has posed a major therapeutic challenge. A growing number of non-coding RNAs (ncRNAs), for instance, microRNAs, have been identified whose abnormal expression patterns have been implicated in HNSCC. However, more recently, several seminal research has shown that piwi-interacting RNAs (piRNAs), a promising and young class of small ncRNA, are linked to the emergence and progression of cancer. They can regulate transposable elements (TE) and gene expression through multiple mechanisms, making them potentially more powerful regulators than miRNAs. Hence, they can be more promising ncRNAs candidates for cancer therapeutic intervention. Here, we surveyed the roles and clinical implications of piRNAs and their PIWI proteins partners in tumorigenesis and associated molecular processes of cancer, with a particular focus on HNSCC, to offer a new avenue for diagnosis, prognosis, and therapeutic interventions for the malignancy, improving patient's outcomes.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Anthony Lalruatfela
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
23
|
Yang JH, Chang MW, Tsitsipatis D, Yang X, Martindale J, Munk R, Cheng A, Izydore E, Pandey PR, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Gorospe M. LncRNA OIP5-AS1-directed miR-7 degradation promotes MYMX production during human myogenesis. Nucleic Acids Res 2022; 50:7115-7133. [PMID: 35736212 PMCID: PMC9262585 DOI: 10.1093/nar/gkac524] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) modulate gene expression programs in physiology and disease. Here, we report a noncoding RNA regulatory network that modulates myoblast fusion into multinucleated myotubes, a process that occurs during muscle development and muscle regeneration after injury. In early stages of human myogenesis, the levels of lncRNA OIP5-AS1 increased, while the levels of miR-7 decreased. Moreover, OIP5-AS1 bound and induced miR-7 decay via target RNA-directed miRNA decay; accordingly, loss of OIP5-AS1 attenuated, while antagonizing miR-7 accelerated, myotube formation. We found that the OIP5-AS1-mediated miR-7 degradation promoted myoblast fusion, as it derepressed the miR-7 target MYMX mRNA, which encodes the fusogenic protein myomixer (MYMX). Remarkably, an oligonucleotide site blocker interfered with the OIP5-AS1-directed miR-7 degradation, allowing miR-7 to accumulate, lowering MYMX production and suppressing myotube formation. These results highlight a mechanism whereby lncRNA OIP5-AS1-mediated miR-7 decay promotes myotube formation by stimulating a myogenic fusion program.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Correspondence may also be addressed to Jen-Hao Yang. Tel: +1 410 454 8392;
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Aiwu Cheng
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Elizabeth Izydore
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- To whom correspondence should be addressed. Tel: +1 410 454 8412;
| |
Collapse
|
24
|
Integrative analysis of expression profile indicates the ECM receptor and LTP dysfunction in the glioma-related epilepsy. BMC Genomics 2022; 23:430. [PMID: 35676651 PMCID: PMC9175475 DOI: 10.1186/s12864-022-08665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Seizures are a common symptom in glioma patients, and they can cause brain dysfunction. However, the mechanism by which glioma-related epilepsy (GRE) causes alterations in brain networks remains elusive. Objective To investigate the potential pathogenic mechanism of GRE by analyzing the dynamic expression profiles of microRNA/ mRNA/ lncRNA in brain tissues of glioma patients. Methods Brain tissues of 16 patients with GRE and 9 patients with glioma without epilepsy (GNE) were collected. The total RNA was dephosphorylated, labeled, and hybridized to the Agilent Human miRNA Microarray, Release 19.0, 8 × 60 K. The cDNA was labeled and hybridized to the Agilent LncRNA + mRNA Human Gene Expression Microarray V3.0, 4 × 180 K. The raw data was extracted from hybridized images using Agilent Feature Extraction, and quantile normalization was performed using the Agilent GeneSpring. P-value < 0.05 and absolute fold change > 2 were considered the threshold of differential expression data. Data analyses were performed using R and Bioconductor. Results We found that 3 differentially expressed miRNAs (miR-10a-5p, miR-10b-5p, miR-629-3p), 6 differentially expressed lncRNAs (TTN-AS1, LINC00641, SNHG14, LINC00894, SNHG1, OIP5-AS1), and 49 differentially expressed mRNAs play a vitally critical role in developing GRE. The expression of GABARAPL1, GRAMD1B, and IQSEC3 were validated more than twofold higher in the GRE group than in the GNE group in the validation cohort. Pathways including ECM receptor interaction and long-term potentiation (LTP) may contribute to the disease’s progression. Meanwhile, We built a lncRNA-microRNA-Gene regulatory network with structural and functional significance. Conclusion These findings can offer a fresh perspective on GRE-induced brain network changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08665-8.
Collapse
|
25
|
Jia DD, Jiang H, Zhang YF, Zhang Y, Qian LL, Zhang YF. The regulatory function of piRNA/PIWI complex in cancer and other human diseases: The role of DNA methylation. Int J Biol Sci 2022; 18:3358-3373. [PMID: 35637965 PMCID: PMC9134905 DOI: 10.7150/ijbs.68221] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of short chain noncoding RNAs that are constituted by 26-30 nucleotides (nt) and can couple with PIWI protein family. piRNAs were initially described in germline cells and are believed to be critical regulators of the maintenance of reproductive line. Increasing evidence has extended our perspectives on the biological significance of piRNAs and indicated that they could still affect somatic gene expression through DNA methylation, chromatin modification and transposon silencing, etc. Many studies have revealed that the dysregulation of piRNAs might contribute to diverse diseases through epigenetic changes represented by DNA methylation and chromatin modification. In this review, we summarized piRNA/PIWI protein-mediated DNA methylation regulation mechanisms and methylation changes caused by piRNA/PIWI proteins in different diseases, especially cancers. Since DNA methylation and inhibitory chromatin marks represented by histone H3 lysine 9 (H3K9) methylation frequently cooperate to silence genomic regions, we also included methylation in chromatin modification within this discussion. Furthermore, we discussed the potential clinical applications of piRNAs as a new type promising biomarkers for cancer diagnosis, as well as the significance of piRNA/PIWI protein-associated methylation changes in treatment, providing disparate insights into the potential applications of them.
Collapse
Affiliation(s)
- Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Jiang
- Department of Radiation Oncology, Sun Yat - Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Li-Li Qian
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
26
|
Liu K, Chen H, Wang Y, Jiang L, Li Y. Evolving Insights Into the Biological Function and Clinical Significance of Long Noncoding RNA in Glioblastoma. Front Cell Dev Biol 2022; 10:846864. [PMID: 35531099 PMCID: PMC9068894 DOI: 10.3389/fcell.2022.846864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most prevalent and aggressive cancers worldwide. The overall survival period of GBM patients is only 15 months even with standard combination therapy. The absence of validated biomarkers for early diagnosis mainly accounts for worse clinical outcomes of GBM patients. Thus, there is an urgent requirement to characterize more biomarkers for the early diagnosis of GBM patients. In addition, the detailed molecular basis during GBM pathogenesis and oncogenesis is not fully understood, highlighting that it is of great significance to elucidate the molecular mechanisms of GBM initiation and development. Recently, accumulated pieces of evidence have revealed the central roles of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of GBM by binding with DNA, RNA, or protein. Targeting those oncogenic lncRNAs in GBM may be promising to develop more effective therapeutics. Furthermore, a better understanding of the biological function and underlying molecular basis of dysregulated lncRNAs in GBM initiation and development will offer new insights into GBM early diagnosis and develop novel treatments for GBM patients. Herein, this review builds on previous studies to summarize the dysregulated lncRNAs in GBM and their unique biological functions during GBM tumorigenesis and progression. In addition, new insights and challenges of lncRNA-based diagnostic and therapeutic potentials for GBM patients were also introduced.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Yuanyuan Wang
- Department of Pathology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Yi Li, ; Liping Jiang,
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yi Li, ; Liping Jiang,
| |
Collapse
|
27
|
Cao J, Yang F, Zhou H, Fan D, Li H, Fan T, Sun P. Bone Marrow Mesenchymal Stem Cell (BMSC)-Exosomes Overexpressing miR-141 Inhibit the Malignant Biological Behavior of Glioma Cells via Wnt Signaling. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study explores whether BMSC-exosomes overexpressing miR-141 can regulate Wnt signal to inhibit the malignant biological behavior of glioma cells. Thirty healthy mice were selected to construct a glioma mouse model and assigned randomly into the control group, miR-141 NC group, and
miR-141 mimic group followed by analysis of cell proliferation, apoptosis, protein expression and mRNA expression by MTT method, flow cytometry, Western blot and RT-PCR methods. Compared with the other two groups, miR-141 mimic group showed reduced number of cell proliferation at 24 h and
48 h, decreased cell migration and invasion ability, and the increased cell apoptosis rate (P < 0.05). In miR-141 mimic group, the protein expression of miR-141 was the highest, while the protein expression of β-catenin, survivin and c-myc was the lowest (P <
0.05). In conclusion, BMSC-exosomes overexpressing miR-141 can inhibit the malignant biological behavior of GC cells possibly by inhibiting the activation of Wnt signaling pathway.
Collapse
Affiliation(s)
- Jing Cao
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, 071051, Hebei Province, China
| | - Fan Yang
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, 071051, Hebei Province, China
| | - Haiyan Zhou
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, 071051, Hebei Province, China
| | - Duojiao Fan
- Department of Science and Education, Baoding Second Hospital, Baoding City, 071051, Hebei Province, China
| | - Hengzhou Li
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, 071051, Hebei Province, China
| | - Tao Fan
- Department of Neurosurgery, Beijing Sanbo Brain Hospital of Capital Medical University, Beijing, 071051, China
| | - Peng Sun
- Department of Emergency Medicine, Baoding Second Hospital, Baoding City, 071051, Hebei Province, China
| |
Collapse
|
28
|
Zheng C, Chu M, Chen Q, Chen C, Wang ZW, Chen X. The role of lncRNA OIP5-AS1 in cancer development and progression. Apoptosis 2022; 27:311-321. [PMID: 35316453 DOI: 10.1007/s10495-022-01722-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/23/2022]
Abstract
OIP5-AS1, a conserved lncRNA, has been reported to be involved in several biological and pathological processes, including oncogenesis. OIP5-AS1 exerts its oncogenic or antitumor functions via regulation of different miRNAs in various cancer types. In this review, we describe the dysregulation of OIP5-AS1 expression in a variety of human cancers. Moreover, we discuss the multiple functions of OIP5-AS1 in cancer, including in proliferation, apoptosis, autophagy, ferroptosis, cell cycle, migration, metastasis, invasion, epithelial to mesenchymal transition, angiogenesis, cancer stem cells and drug resistance. Furthermore, we provide a future perspective for OIP5-AS1 research. We conclude that targeting OIP5-AS1 might be a promising cancer therapy approach.
Collapse
Affiliation(s)
- Cheng Zheng
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Man Chu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Qiuli Chen
- Department of Research and Development, Zhengjiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
- The School of Public Health, The University of Queensland, Brisbane, Australia
| | - Cheng Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xiao Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
29
|
Zhang L, Cai Y, Tian C, Li Y, Ma K, Gao X, Liu L, Jiang Y, Wen W, Ma Z. LncRNA Opa interacting protein 5-antisense RNA 1 (OIP5-AS1) promotes the migration, invasion and epithelial-mesenchymal transition (EMT) through targeting miR-147a/insulin-like growth factor 1 receptor (IGF1R) pathway in cervical cancer tissues and cell model. J Obstet Gynaecol Res 2022; 48:1222-1232. [PMID: 35233882 DOI: 10.1111/jog.15209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Two factors involved in regulation, long noncoding RNA Opa interacting protein 5-antisense RNA 1 (lncRNA OIP5-AS1) and microRNA-147a, were found in cervical cancer. Therefore, the investigation of the specific regulation of miR-147a by OIP5-AS1 was performed in cervical cancer. METHOD The cervical cancer tissues were collected from patients with cervical cancer (n = 50). The expression of OIP5-AS1, miR-147a, proteins in epithelial-mesenchymal transition (EMT) process and insulin-like growth factor 1 receptor (IGF1R) were measured by quantitative real-time polymerase chain reaction (qRT-PCT) or western blotting. Cell motility and the relationship between OIP5-AS1 and miR-147a were detected or analyzed by wound healing test, Transwell assay, dual-luciferase reporter assay, RNA binding protein immunoprecipitation assay or Pearson correlation in OIP5-AS1, or miR-147a over-expressed and/or suppressed cervical cancer cells. RESULTS OIP5-AS1 showed the high-expression and miR-147a showed the low-expression in tumor tissues collected from patients with cervical cancer and cell lines Hela, CaSki, Siha, and ME-180. The low-expression of OIP5-AS1 suppressed the motility of Caski cells, as well as up-regulated the level of E-cadherin, which a key protein in EMT. There were targeting sites between miR-147a and OIP5-AS1. OIP5-AS1 induced the down-regulation of miR-147a, so miR-147a was inversely correlated with OIP5-AS1. The down-regulation of miR-147a increased IGF1R and E-cadherin, and these increases were alleviated by OIP5-AS1 knockdown. CONCLUSION LncRNA OIP5-AS1 promotes the migration, invasion and EMT of cervical cancer cells via targeting miR-147a/IGF1R pathway.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Yufei Cai
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Chenchen Tian
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Yanru Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Kuili Ma
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Xiaolei Gao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Lili Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Yan Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Wanting Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Zhe Ma
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| |
Collapse
|
30
|
Zhang Z, Wang Y, Wang X, Zhang H, Wang S. The up-regulation of LRIG1 expression inhibits the proliferation, apoptosis and invasion of glioma cells. Am J Transl Res 2022; 14:788-797. [PMID: 35273685 PMCID: PMC8902577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To illustrate the role of LRIG1 in regulating the Notch signaling pathway and glioma cell proliferation, apoptosis and invasion. METHODS The glioma cells (U373) were divided into control group, NC group and LRIG1 group. After transfection, the CCK-8 assay, Transwell assay, and Flow cytometry were used to explore the biological function of LRIG1 in glioma cells. At the end, Western blot was used to detect the expression of LRIG1, Notch1, Hes1, Bcl-2, and Bax. RESULTS The LRIG1 expression in U373 cells was remarkably lower than that in normal glial cells (P=0.019). The LRIG1 expression in the LRIG1 group was successfully increased when compared with that in the control group (P=0.004). The cell viability of the LRIG1 group was significantly lower than that of the NC group and control group at 24 h, 48 h, and 72 h (P=0.040, 0.025; P=0.041, 0.041; P=0.035, 0.035) respectively. Increased LRIG1 expression level in glioma cells strongly inhibits cell migration in transwell experiment. Flow cytometry results indicated that the apoptosis rate of the LRIG1 group was critically higher than that of the NC group and control group (P=0.003; P=0.003). According to results of Western blot, the expression levels of Notch1, Hes1, Hes5, and Jagged1 in LRIG1 group were dramatically higher than that in NC group and control group (P=0.006, 0.013; P=0.025, 0.026; P=0.001, 0.004; P=0.025, 0.027; P=0.029, 0.021) reespectively. While Bax expression in LRIG1 group was lower than that of NC group and control group (P=0.018, 0.021). CONCLUSION The up-regulation of LRIG1 can inhibit the proliferation and migration of glioma cells and promote apoptosis by regulating the Notch signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Neurosurgery, Caoxian People’s HospitalHeze 274400, Shandong, China
| | - Yuanyuan Wang
- Department of Oncology, Linyi People’s HospitalLinyi 251500, Shandong, China
| | - Xianxing Wang
- Department of Neurosurgery, Yuncheng County People’s HospitalHeze 274700, Shandong, China
| | - Hongguang Zhang
- Department of Neurosurgery, Gaotang People’s HospitalLiaocheng 252800, Shandong, China
| | - Shuai Wang
- Department of Neurosurgery, First Hospital of ZiboZibo 255200, Shandong, China
| |
Collapse
|
31
|
Xiang J, Alafate W, Wu W, Wang Y, Li X, Xie W, Bai X, Li R, Wang M, Wang J. NEK2 enhances malignancies of glioblastoma via NIK/NF-κB pathway. Cell Death Dis 2022; 13:58. [PMID: 35031599 PMCID: PMC8760305 DOI: 10.1038/s41419-022-04512-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is one of the most lethal primary brain tumor with a poor median survival less than 15 months. Despite the development of the clinical strategies over the decades, the outcomes for GBM patients remain dismal due to the strong proliferation and invasion ability and the acquired resistance to radiotherapy and chemotherapy. Therefore, developing new biomarkers and therapeutic strategies targeting GBM is in urgent need. In this study, gene expression datasets and relevant clinical information were extracted from public cancers/glioma datasets, including TCGA, GRAVENDEEL, REMBRANDT, and GILL datasets. Differentially expressed genes were analyzed and NEK2 was picked as a candidate gene for subsequent validation. Human tissue samples and corresponding data were collected from our center and detected by immunohistochemistry analysis. Molecular biological assays and in vivo xenograft transplantation were performed to confirm the bioinformatic findings. High-throughput RNA sequencing, followed by KEGG analysis, GSEA analysis and GO analysis were conducted to identify potential signaling pathways related to NEK2 expression. Subsequent mechanism assays were used to verify the relationship between NEK2 and NF-κB signaling. Overall, we identified that NEK2 is significantly upregulated in GBM and the higher expression of NEK2 exhibited a poorer prognosis. Functionally, NEK2 knockdown attenuated cell proliferation, migration, invasion, and tumorigenesis of GBM while NEK2 overexpression promoted the GBM progression. Furthermore, High-throughput RNA sequencing and bioinformatics analysis indicated that NEK2 was positively related to the NF-κB signaling pathway in GBM. Mechanically, NEK2 activated the noncanonical NF-κB signaling pathway by phosphorylating NIK and increasing the activity and stability of NIK. In conclusion, NEK2 promoted the progression of GBM through activation of noncanonical NF-κB signaling, indicating that NEK2- NF-κB axis could be a potential drug target for GBM.
Collapse
Affiliation(s)
- Jianyang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wahafu Alafate
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yichang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaodong Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
32
|
Abstract
Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.
Collapse
|
33
|
Wooten S, Smith KN. Long non-coding RNA OIP5-AS1 (Cyrano): A context-specific regulator of normal and disease processes. Clin Transl Med 2022; 12:e706. [PMID: 35040588 PMCID: PMC8764876 DOI: 10.1002/ctm2.706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding (lnc) RNAs have been implicated in a plethora of normal biological functions, and have also emerged as key molecules in various disease processes. OIP5-AS1, also commonly known by the alias Cyrano, is a lncRNA that displays broad expression across multiple tissues, with significant enrichment in particular contexts including within the nervous system and skeletal muscle. Thus far, this multifaceted lncRNA has been found to have regulatory functions in normal cellular processes including cell proliferation and survival, as well as in the development and progression of a myriad disease states. These widespread effects on normal and disease states have been found to be mediated through context-specific intermolecular interactions with dozens of miRNAs and proteins identified to date. This review explores recent studies to highlight OIP5-AS1's contextual yet pleiotropic roles in normal homeostatic functions as well as disease oetiology and progression, which may influence its utility in the generation of future theranostics.
Collapse
Affiliation(s)
- Serena Wooten
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| | - Keriayn N. Smith
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| |
Collapse
|
34
|
Tang Y, Tang Y, Xiang Y, Yan J, Guo K. AK003290 Protects Myocardial Cells Against Apoptosis and Promotes Cardiac Function Recovery Via miR-539-3p/ ErbB4 Axis in Ischemic-Reperfusion Injury. DNA Cell Biol 2021; 40:1528-1538. [PMID: 34931871 DOI: 10.1089/dna.2021.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acute myocardial infarction is the leading cause of death and disability worldwide. Reperfusion is the main treatment method. However, ischemia-reperfusion (I/R) injury aggravates tissue and cell damage. In this study, we aim to find a strategy to reduce I/R injury and promote cardiac function recovery. The expression of AK003290 was downregulated in I/R injury both in vitro and in vivo. Overexpression of AK003290 reduced infarction area, oxidative stress, cell apoptosis, and promoted cardiac function recovery. AK003290 was observed to sponge miR-539-3p. Moreover, the expression of miR-539-3p was upregulated in I/R injury. Overexpression of miR-539-3p reversed the beneficial role of AK003290 in I/R injury. The target gene of miR-539-3p was proved to be ErbB4, as identified by database prediction, dual-luciferase reporter assay, and pull-down assay. The expression of ErbB4 was negatively correlated with the expression of miR-539-3p, but positively correlated with the expression of AK003290. Subsequently, the key downstream proteins were determined. AK003290 promoted p-AKT and bcl-2 expression and inhibited p-ERK1/2, Bax, cytoplasmic cyto-c, and c-caspase-3 expression. The application of ErbB4 siRNA significantly reversed the effect of AK003290 on the expression of these proteins. These results suggest that ErbB4 is the key downstream gene, which regulates myocardial cell apoptosis by influencing the miR-539-3p expression. To the best of knowledge, this study is the first to demonstrate that the AK003290/miR-539-3p/ErbB4 axis regulates myocardial cell apoptosis. These findings provide a potential novel target for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yong Tang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Tang
- Department of Radiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Yan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Guo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Jiang Y, Wang K, Lu X, Wang Y, Chen J. Cancer-associated fibroblasts-derived exosomes promote lung cancer progression by OIP5-AS1/ miR-142-5p/ PD-L1 axis. Mol Immunol 2021; 140:47-58. [PMID: 34653794 DOI: 10.1016/j.molimm.2021.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are the most important stromal cells in the tumor microenvironment (TEM) and have been reported to regulate various cancer development. Exosomes are considered important elements involved in intercellular communication and TME regulation, while the potential function of CAFs in lung cancer immunosuppressive microenvironments remains unknown. CAFs-derived exosomes (CAFs-exo) and normal fibroblasts (NFs)-derived exosomes (NFs-exo) were isolated by ultra-centrifugation and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot analysis. A549 cells were co-cultured with peripheral blood mononuclear cells (PBMCs). Flow cytometry assay was performed to detect the killing role of PBMCs on A549 cells. Bioinformatics and luciferase reporter assays were used to analyze the relationship among microRNA (miRNA), long non-coding RNA (lncRNA) and target gene. BALB/c mice were used to construct the lung cancer model by subcutaneous injection. Programmed death ligand 1 (PD-L1) was up-regulated in lung cancer tissues and cells. PD-L1 also up-regulated in CAFs cell medium-mediated A549 cells. CAFs decreased PBMCs induced-cell apoptosis through increasing PD-L1 in A549 cells. Moreover, CAFs transferred exosomes to lung cancer cells to suppress the killing effect of PBMCs through up-regulating PD-L1. Using microarray assays, opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) level was highly expressed in CAFs-exos. After treatment by CAFs-exos, miR-142-5p level was significantly down-regulated in A549 cells. OIP5-AS1 served as a sponge to target miR-142-5p and negatively regulated miR-142-5p expression in lung cancer cells. In addition, PD-L1 was a direct target of miR-142-5p. CAFs derived exosomal OIP5-AS1 reduced PBMCs induced-cell apoptosis and promoted tumor growth through decreasing miR-142-5p and up-regulating PD-L1. CAFs-derived exosomes suppressed the role of PBMCs induced-killing of lung cancer cells and promoted lung cancer progression by OIP5-AS1/ miR-142-5p/ PD-L1 axis, which provided a potential opportunity for diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Kun Wang
- Department of Cardiothoracic Surgery, The First People's Hospital of Suqian, Suqian, 223800, Jiangsu, China
| | - Xiaoning Lu
- Department of Cardiothoracic Surgery, The First People's Hospital of Suqian, Suqian, 223800, Jiangsu, China
| | - Yongliang Wang
- Department of Cardiothoracic Surgery, The First People's Hospital of Suqian, Suqian, 223800, Jiangsu, China
| | - Jianle Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China.
| |
Collapse
|
36
|
Chen G, Wang S, Long C, Wang Z, Chen X, Tang W, He X, Bao Z, Tan B, Lu WW, Li Z, Yang D, Xiao G, Peng S. PiRNA-63049 inhibits bone formation through Wnt/β-catenin signaling pathway. Int J Biol Sci 2021; 17:4409-4425. [PMID: 34803507 PMCID: PMC8579447 DOI: 10.7150/ijbs.64533] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Bone remodeling is a dynamic process between bone formation mediated by osteoblasts and bone resorption mediated by osteoclasts. Disrupted bone remodeling is a key factor in postmenopausal osteoporosis, a metabolic disorder characterized by deteriorated bone microarchitecture and increased risk of fracture. Recent studies have shown that piwi-binding RNA (piRNA) is involved in the pathogenesis of certain diseases at the post-transcriptional level. Here, we analyzed piRNA-63049 (piR-63049), which may play an essential role in bone remodeling. The expression of piR-63049 significantly increased in both bone tissues and plasma of osteoporotic rats and postmenopausal osteoporotic patients. Overexpressing piR-63049 could inhibit the osteoblastogenesis of bone marrow stromal cells (BMSCs) while knocking down piR-63049 could promote the osteoblastogenesis of BMSCs through the Wnt2b/β-catenin signaling pathway. Moreover, knocking-down piR-63049 (piR-63049-antagonist) in vivo could attenuate the bone loss in ovariectomized rats by promoting bone formation. Taken together, the current study shows that piR-63049 inhibits bone formation through the Wnt2b/β-catenin signaling pathway. This novel piRNA may be a potential target to increase bone formation in bone loss disorders such as postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shang Wang
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Canling Long
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenmin Wang
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Chen
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanze Tang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoqin He
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiteng Bao
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baoyu Tan
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - William W Lu
- Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, 999077 China
| | - Zhizhong Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Dazhi Yang
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Guangdong, Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| | - Songlin Peng
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
37
|
Li W, Cui Y, Ma W, Wang M, Cai Y, Jiang Y. LncRNA RBPMS-AS1 promotes NRGN transcription to enhance the radiosensitivity of glioblastoma through the microRNA-301a-3p/CAMTA1 axis. Transl Oncol 2021; 15:101282. [PMID: 34800915 PMCID: PMC8605343 DOI: 10.1016/j.tranon.2021.101282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
RBPMS-AS1 and CAMTA1 are lowly expressed in GBM patients. RBPMS-AS1 and CAMTA1 enhance the radiosensitivity of GBM. miR-301a-3p diminishes the radiosensitivity of GBM. RBPMS-AS1 enhances CAMTA1 expression in GBM cells through sponging miR-301a-3p. CAMTA1 promotes NRGN transcription.
Objective Glioblastoma (GBM) is the most frequent brain malignancy with high incidence, and long noncoding RNAs (lncRNAs) exerts functions in GBM. In this research, we focused on the capabilities of lncRNA RBPMS-AS1 in radiosensitivity of GBM. Methods RBPMS-AS1 and CAMTA1 expression levels were determined in GBM tissues and cells. StarBase v3.0 database was searched for predicting miRNAs that simultaneously bound to RBPMS-AS1 and CAMTA1. pcDNA3.1-RBPMS-AS1, pcDNA3.1-CAMTA1, miR-301a-3p mimic, or pcDNA3.1-RBPMS-AS1/pcDNA3.1-CAMTA1 and miR-301a-3p mimic were transfected into GBM cells to test radiosensitivity, cell proliferation and apoptosis. The interactions of miR-301a-3p with RBPMS-AS1 and CAMTA1, as well as CAMTA1 and NRGN, were confirmed. In vivo imaging technology was utilized to detect tumor growth in orthotopic xenograft tumors, and Ki67 expression was tested in intracranial tumors. Results RBPMS-AS1 and CAMTA1 levels were reduced in GBM tissues and cells. miR-301a-3p had a binding site with both RBPMS-AS1 and CAMTA1 and it was the most significantly-upregulated one. Upregulation of RBPMS-AS1 or CAMTA1 enhanced the radiosensitivity and cell apoptosis while suppressing proliferation of GBM cells. Conversely, miR-301a-3p overexpression diminished the radiosensitivity and cell apoptosis while inducing proliferation of GBM cells. Overexpression of RBPMS-AS1 or CAMTA1 reversed the effects of overexpressed miR-301a-3p in GBM cells. Mechanistically, RBPMS-AS1 enhanced CAMTA1 expression in GBM cells through sponging miR-301a-3p, and CAMTA1 promoted NRGN expression. In animal experiments, overexpressed RBPMS-AS1 inhibited tumor growth and the positive expression of Ki67 both before and after radiation therapy. Conclusion RBPMS-AS1 promotes NRGN transcription through the miR-301a-3p/CAMTA1 axis and enhances the radiosensitivity of GBM.
Collapse
Affiliation(s)
- Wenyang Li
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yan Cui
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Wenjia Ma
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Ming Wang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yang Cai
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yugang Jiang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
38
|
Peng Q, Chiu PKF, Wong CYP, Cheng CKL, Teoh JYC, Ng CF. Identification of piRNA Targets in Urinary Extracellular Vesicles for the Diagnosis of Prostate Cancer. Diagnostics (Basel) 2021; 11:diagnostics11101828. [PMID: 34679526 PMCID: PMC8534571 DOI: 10.3390/diagnostics11101828] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging studies demonstrate that PIWI-interacting RNAs (piRNAs) are associated with various human cancers. This study aimed to evaluate the urinary extracellular vesicles (EVs) piRNAs as non-invasive biomarkers for prostate cancer (PCa) diagnosis. RNA was extracted from urinary EVs from five PCa patients and five healthy controls (HC), and the piRNAs were analyzed by small RNA sequencing. Dysregulated piRNAs were identified and then validated in another 30 PCa patients and 10 HC by reverse-transcription polymerase chain reaction (RT-qPCR). The expressions of novel_pir349843, novel_pir382289, novel_pir158533, and hsa_piR_002468 in urinary EVs were significantly increased in the PCa group compared with the HC group. The area under the curve (AUC) of novel_pir158533, novel_pir349843, novel_pir382289, hsa_piR_002468, and the combination of the four piRNA in PCa diagnosis was 0.723, 0.757, 0.777, 0.783, and 0.853, respectively. After the RNAhybrid program analysis, all four piRNAs had multiple potential binding sites with key mRNAs in PTEN/PI3K/Akt, Wnt/beta-catenin, or androgen receptor pathway, which are critical in PCa development and progression. In conclusion, our findings indicate that specific piRNAs in urinary EVs may serve as non-invasive diagnostic biomarkers for PCa.
Collapse
|
39
|
Bartos M, Siegl F, Kopkova A, Radova L, Oppelt J, Vecera M, Kazda T, Jancalek R, Hendrych M, Hermanova M, Kasparova P, Pleskacova Z, Vybihal V, Fadrus P, Smrcka M, Lakomy R, Lipina R, Cesak T, Slaby O, Sana J. Small RNA Sequencing Identifies PIWI-Interacting RNAs Deregulated in Glioblastoma-piR-9491 and piR-12488 Reduce Tumor Cell Colonies In Vitro. Front Oncol 2021; 11:707017. [PMID: 34485142 PMCID: PMC8415021 DOI: 10.3389/fonc.2021.707017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM) is the most frequently occurring primary malignant brain tumor of astrocytic origin. To change poor prognosis, it is necessary to deeply understand the molecular mechanisms of gliomagenesis and identify new potential biomarkers and therapeutic targets. PIWI-interacting RNAs (piRNAs) help in maintaining genome stability, and their deregulation has already been observed in many tumors. Recent studies suggest that these molecules could also play an important role in the glioma biology. To determine GBM-associated piRNAs, we performed small RNA sequencing analysis in the discovery set of 19 GBM and 11 non-tumor brain samples followed by TaqMan qRT-PCR analyses in the independent set of 77 GBM and 23 non-tumor patients. Obtained data were subsequently bioinformatically analyzed. Small RNA sequencing revealed 58 significantly deregulated piRNA molecules in GBM samples in comparison with non-tumor brain tissues. Deregulation of piR-1849, piR-9491, piR-12487, and piR-12488 was successfully confirmed in the independent groups of patients and controls (all p < 0.0001), and piR-9491 and piR-12488 reduced GBM cells’ ability to form colonies in vitro. In addition, piR-23231 was significantly associated with the overall survival of the GBM patients treated with Stupp regimen (p = 0.007). Our results suggest that piRNAs could be a novel promising diagnostic and prognostic biomarker in GBM potentially playing important roles in gliomagenesis.
Collapse
Affiliation(s)
- Michael Bartos
- Department of Neurosurgery, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Frantisek Siegl
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Alena Kopkova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Vecera
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Medical Faculty, Masaryk University, Brno, Czechia
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czechia
| | - Michal Hendrych
- 1st Department of Pathology, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czechia
| | - Marketa Hermanova
- 1st Department of Pathology, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czechia
| | - Petra Kasparova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Zuzana Pleskacova
- Department of Oncology and Radiotherapy, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Vaclav Vybihal
- Department of Neurosurgery, University Hospital Brno, Brno, Czechia
| | - Pavel Fadrus
- Department of Neurosurgery, University Hospital Brno, Brno, Czechia
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno, Brno, Czechia
| | - Radek Lakomy
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Radim Lipina
- Department of Neurosurgery, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Cesak
- Department of Neurosurgery, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Pathology, University Hospital Brno, Brno, Czechia
| |
Collapse
|
40
|
Bi Y, Ji J, Zhou Y. LncRNA-PVT1 indicates a poor prognosis and promotes angiogenesis via activating the HNF1B/EMT axis in glioma. J Cancer 2021; 12:5732-5744. [PMID: 34475987 PMCID: PMC8408127 DOI: 10.7150/jca.60257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Recent studies identified that long non-coding RNAs (lncRNAs) exhibited critical roles in tumor migration and invasion. However, the roles of lncRNAs in glioma remain unclear. The aim of this study was to uncover the underlying mechanisms of glioma progression and provide potential therapeutic targets for its treatment in clinic. Our microarray study showed that lncRNA-PVT1 was significantly upregulated in glioma tissues and played an important role in cell proliferation, migration, invasion and angiogenesis. Our data showed that the expression of lncRNA-PVT1 was increased obviously and associated with advanced tumor stage, metastasis, invasion ability, and poor prognosis in glioma patients. Up-regulation of lncRNA-PVT1 was observed to promote glioma cells proliferation, and invasion abilities in vitro as well as tumor growth in vivo by regulating miR-1207-3p expression. Online software (TargetScan, miRDB and miR TarBase) were used to predict the regulating mechanisms of lncRNA-PVT1, miR-1207-3p and HNF1B, which were validated by dual-luciferase reporter gene system. In vivo tumor-bearing mice models were established to validate the cellular results. Therefore, we suggested that lncRNA-PVT1/miR-1207-3p/HNF1B axis might play critical roles in glioma progression, indicating that lncRNA-PVT1/miR-1207-3p/HNF1B signaling axis may serve as novel molecular targets for glioma prevention and treatment.
Collapse
Affiliation(s)
- Yongyan Bi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Neurosurgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Jie Ji
- Department of Rehabilitation Medicine, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
41
|
Dehbashi M, Hojati Z, Motovali-bashi M, Cho WC, Shimosaka A, Ganjalikhani-Hakemi M. Systems biology unravels the relationship of lncRNA OIP5-AS1 with CD25. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Yang X, Qu Y, Zhang J. Up-Regulated LncRNA FEZF1-AS1 Promotes the Progression of Cervical Carcinoma Cells via MiR-367-3p/SLC12A5 Signal Axis. Arch Med Res 2021; 53:9-19. [PMID: 34362591 DOI: 10.1016/j.arcmed.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/01/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cervical cancer (CC) is a common female malignant tumor. With the trend of younger onset, people pay more and more attention to it. Numberless evidence has been indicated that long non-coding RNAs (lncRNAs) can take part in progression of cancers and can exert the regulatory roles in assorted cancers. Nevertheless, the roles of FEZ family zinc finger 1-antisense RNA 1 (FEZF1-AS1) in CC cells are still undiscovered. AIM OF THE STUDY Thus, the central purpose of our research was to reveal the specific functions and molecular mechanisms of FEZF1-AS1 in CC cells. METHODS RT-qPCR was utilized to test FEZF1-AS1 expression in CC cells. In addition, functional assays were conducted to evaluate cell proliferation, apoptosis, and migration as well as invasion. In addition, mechanism experiments verified relationship among FEZF1-AS1, miR-367-3p and solute carrier family 12 member 5 (SLC12A5). RESULTS FEZF1-AS1 was highly expressed in CC cells. Moreover, FEZF1-AS1 depletion suppressed proliferation, migration, invasion, and induced cell apoptosis. Importantly, mechanism experiments confirmed that miR-367-3p could bissnd to FEZF1-AS1 and SLC12A5. The rescue assays determined that FEZF1-AS1 could up-regulate SLC12A5 through binding to miR-367-3p. CONCLUSIONS The up-regulated FEZF1-AS1 could accelerate the malignant behaviors of CC cells by miR-367-3p/SLC12A5 signal axis.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Obstetrics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Yuejie Qu
- Department of Obstetrics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Jixian Zhang
- Department of Obstetrics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China.
| |
Collapse
|
43
|
Qian L, Xie H, Zhang L, Zhao Q, Lü J, Yu Z. Piwi-Interacting RNAs: A New Class of Regulator in Human Breast Cancer. Front Oncol 2021; 11:695077. [PMID: 34295823 PMCID: PMC8290475 DOI: 10.3389/fonc.2021.695077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 01/17/2023] Open
Abstract
P-element-induced wimpy testis (Piwi)-interacting RNAs (piRNAs) are a class of germline-enriched small non-coding RNA that associate with Piwi family proteins and mostly induce transposon silencing and epigenetic regulation. Emerging evidence indicated the aberrant expression of Piwil proteins and associated piRNAs in multiple types of human cancer including breast cancer. Although the majority of piRNAs in breast cancer remains unclear of the function mainly due to the variety of regulatory mechanisms, the potential of piRNAs serving as biomarkers for cancer diagnosis and prognosis or therapeutic targets for cancer treatment has been demonstrated by in vitro and in vivo studies. Herein we summarized the research progress of oncogenic or tumor suppressing piRNAs and their regulatory mechanisms in regulating human breast cancer, including piR-021285, piR-823, piR-932, piR-36712, piR-016658, piR-016975 and piR-4987. The challenges and perspectives of piRNAs in the field of human cancer were discussed.
Collapse
Affiliation(s)
- Lu Qian
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Jinzhou Medical University, School of Basic Medical Sciences, Jinzhou, China
| | - Heying Xie
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Jinzhou Medical University, School of Basic Medical Sciences, Jinzhou, China
| | - Libo Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Kovalenko TF, Larionova TD, Antipova NV, Shakhparonov MI, Pavlyukov MS. The Role of Non-coding RNAs in the Pathogenesis of Glial Tumors. Acta Naturae 2021; 13:38-51. [PMID: 34707896 PMCID: PMC8526181 DOI: 10.32607/actanaturae.11270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Among the many malignant neoplasms, glioblastoma (GBM) leads to one of the worst prognosis for patients and has an almost 100% recurrence rate. The only chemotherapeutic drug that is widely used for treating glioblastoma is temozolomide, a DNA alkylating agent. Its impact, however, is only minor; it increases patients' survival just by 12 to 14 months. Multiple highly selective compounds that affect specific proteins and have performed well in other types of cancer have proved ineffective against glioblastoma. Hence, there is an urgent need for novel methods that could help achieve the long-awaited progress in glioblastoma treatment. One of the potentially promising approaches is the targeting of non-coding RNAs (ncRNAs). These molecules are characterized by extremely high multifunctionality and often act as integrators by coordinating multiple key signaling pathways within the cell. Thus, the impact on ncRNAs has the potential to lead to a broader and stronger impact on cells, as opposed to the more focused action of inhibitors targeting specific proteins. In this review, we summarize the functions of long noncoding RNAs, circular RNAs, as well as microRNAs, PIWI-interacting RNAs, small nuclear and small nucleolar RNAs. We provide a classification of these transcripts and describe their role in various signaling pathways and physiological processes. We also provide examples of oncogenic and tumor suppressor ncRNAs belonging to each of these classes in the context of their involvement in the pathogenesis of gliomas and glioblastomas. In conclusion, we considered the potential use of ncRNAs as diagnostic markers and therapeutic targets for the treatment of glioblastoma.
Collapse
Affiliation(s)
- T. F. Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - T. D. Larionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - N. V. Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. I. Shakhparonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. S. Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
45
|
Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021. [DOI: 10.1016/j.bcp.2021.114469 order by 22025--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
46
|
Chen S, Ben S, Xin J, Li S, Zheng R, Wang H, Fan L, Du M, Zhang Z, Wang M. The biogenesis and biological function of PIWI-interacting RNA in cancer. J Hematol Oncol 2021; 14:93. [PMID: 34118972 PMCID: PMC8199808 DOI: 10.1186/s13045-021-01104-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Small non-coding RNAs (ncRNAs) are vital regulators of biological activities, and aberrant levels of small ncRNAs are commonly found in precancerous lesions and cancer. PIWI-interacting RNAs (piRNAs) are a novel type of small ncRNA initially discovered in germ cells that have a specific length (24-31 nucleotides), bind to PIWI proteins, and show 2'-O-methyl modification at the 3'-end. Numerous studies have revealed that piRNAs can play important roles in tumorigenesis via multiple biological regulatory mechanisms, including silencing transcriptional and posttranscriptional gene processes and accelerating multiprotein interactions. piRNAs are emerging players in the malignant transformation of normal cells and participate in the regulation of cancer hallmarks. Most of the specific cancer hallmarks regulated by piRNAs are involved in sustaining proliferative signaling, resistance to cell death or apoptosis, and activation of invasion and metastasis. Additionally, piRNAs have been used as biomarkers for cancer diagnosis and prognosis and have great potential for clinical utility. However, research on the underlying mechanisms of piRNAs in cancer is limited. Here, we systematically reviewed recent advances in the biogenesis and biological functions of piRNAs and relevant bioinformatics databases with the aim of providing insights into cancer diagnosis and clinical applications. We also focused on some cancer hallmarks rarely reported to be related to piRNAs, which can promote in-depth research of piRNAs in molecular biology and facilitate their clinical translation into cancer treatment.
Collapse
Affiliation(s)
- Silu Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lulu Fan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China. .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
47
|
Knockdown circular RNA circGFRA1 inhibits glioma cell proliferation and migration by upregulating microRNA-99a. Neuroreport 2021; 32:748-756. [PMID: 33994521 DOI: 10.1097/wnr.0000000000001649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glioma is the most widespread and malignant brain tumor in the central nervous system of adult, causing multiple cancer-associated deaths worldwide. Here, we identified the impact of circGFRA1 on glioma, and aimed to uncover the underlying molecular mechanism. The expression of circGFRA1 of glioma specimens was evaluated by using quantitative reverse transcription PCR. Cell viability, proliferation, colony formation, apoptosis and migration were estimated utilizing CCK-8, EdU staining, colony formation assay, TUNEL staining and Transwell assay, respectively. Bioinformatics analysis, luciferase assay and RNA co-immunoprecipitation was utilized for verification of direct binding between circGFRA1 and miR-99a. Western blot was applied to investigate protein expression in U251 cells. The results showed that circGFRA1 expression was overexpressed in glioma specimens. Knockdown circGFRA1 declined viability, colony formation, proliferation and migrative potential, but enhanced U251 cell apoptosis. Moreover, circGFRA1 acts as a microRNA sponge for miR-99a. Furthermore, miR-99a was involved in the circGFRA1-regulated glioma cell behaviors. Silencing circGFRA1 reduced p/t-AKT, p/t-FOXO1 and p/t-mTOR expression levels via upregulating miR-99a expression. In conclusion, our study demonstrated that knockdown circGFRA1 inhibits glioma cell proliferation and migration by upregulating microRNA-99a.
Collapse
|
48
|
Liu B, Pan J, Fu C. Correlation of microRNA-367 in the clinicopathologic features and prognosis of breast cancer patients. Medicine (Baltimore) 2021; 100:e26103. [PMID: 34087856 PMCID: PMC8183767 DOI: 10.1097/md.0000000000026103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
Breast cancer (BC) is a malignant tumor originating from cells of the breast. Notably, microRNAs have been recognized as biomarkers of BC metastasis. The present study is designed to evaluate the association between microRNA (miR)-367 expression and BC with the variance of clinicopathologic features and prognosis.Initially, 63 BC patients were allocated in the BC group, while the other 40 healthy volunteers were recruited as the control group. miR-367 expression in the serum of patients and healthy controls was detected using real-time polymerase chain reaction. Furthermore, the relation between miR-367 in serum and clinicopathologic features and prognosis of BC patients was accessed.miR-367 expression in serum of the BC group was evidently lower than that in the control group (all P < .001). Besides, miR-367 underexpression in the BC group was closely associated with the variance in tumor nodes metastasis advanced stage, tumor diameter, and lymph node metastasis of BC (all P < .001). In addition, compared with the control group, poorly expressed miR-367 BC group had short period of disease-free survival and overall survival (all P < .001).Our study demonstrated that miR-367 expression is associated with BC clinicopathologic features and prognosis. This investigation may offer new insight for BC treatment.
Collapse
|
49
|
Wang K, Wang T, Gao XQ, Chen XZ, Wang F, Zhou LY. Emerging functions of piwi-interacting RNAs in diseases. J Cell Mol Med 2021; 25:4893-4901. [PMID: 33942984 PMCID: PMC8178273 DOI: 10.1111/jcmm.16466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
PIWI‐interacting RNAs (piRNAs) are recently discovered small non‐coding RNAs consisting of 24‐35 nucleotides, usually including a characteristic 5‐terminal uridine and an adenosine at position 10. PIWI proteins can specifically bind to the unique structure of the 3′ end of piRNAs. In the past, it was thought that piRNAs existed only in the reproductive system, but recently, it was reported that piRNAs are also expressed in several other human tissues with tissue specificity. Growing evidence shows that piRNAs and PIWI proteins are abnormally expressed in various diseases, including cancers, neurodegenerative diseases and ageing, and may be potential biomarkers and therapeutic targets. This review aims to discuss the current research status regarding piRNA biogenetic processes, functions, mechanisms and emerging roles in various diseases.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xiang-Qian Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
50
|
Noncoding RNAs in Glioblastoma: Emerging Biological Concepts and Potential Therapeutic Implications. Cancers (Basel) 2021; 13:cancers13071555. [PMID: 33800703 PMCID: PMC8037102 DOI: 10.3390/cancers13071555] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Since the completion of the Human Genome Project, noncoding RNAs (ncRNAs) have emerged as an important class of genetic regulators. Several classes of ncRNAs, which include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs), have been shown to play important roles in controlling developmental and disease processes. In this article, we discuss the potential roles of ncRNAs in regulating glioblastoma (GBM) formation and progression as well as potential strategies to exploit the diagnostic and therapeutic potential of ncRNAs in GBM. Abstract Noncoding RNAs (ncRNAs) have emerged as a novel class of genomic regulators, ushering in a new era in molecular biology. With the advent of advanced genetic sequencing technology, several different classes of ncRNAs have been uncovered, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs), which have been linked to many important developmental and disease processes and are being pursued as clinical and therapeutic targets. Molecular phenotyping studies of glioblastoma (GBM), the most common and lethal cancer of the adult brain, revealed that several ncRNAs are frequently dysregulated in its pathogenesis. Additionally, ncRNAs regulate many important aspects of glioma biology including tumour cell proliferation, migration, invasion, apoptosis, angiogenesis, and self-renewal. Here, we present an overview of the biogenesis of the different classes of ncRNAs, discuss their biological roles, as well as their relevance to gliomagenesis. We conclude by discussing potential approaches to therapeutically target the ncRNAs in clinic.
Collapse
|