1
|
Wang Q, Tao H, Wang H, Chen K, Zhu P, Chen W, Shi F, Gu Y, Xu Y, Geng D. Albiflorin inhibits osteoclastogenesis and titanium particles-induced osteolysis via inhibition of ROS accumulation and the PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 142:113245. [PMID: 39340985 DOI: 10.1016/j.intimp.2024.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Periprosthetic osteolysis (PPO), caused by wear particles, is a significant complication of total joint replacement, leading to prosthesis failure. Previous research has highlighted the crucial role of osteoclast-induced bone destruction in PPO progression. Albiflorin (AF), a monoterpene glycoside from Paeonia lactiflora, is a key active ingredient known for its antioxidant and anti-inflammatory properties. Although AF has shown promise in treating various conditions, its impact on osteoclasts and PPO remains unexplored. Our study revealed that AF could effectively inhibit osteoclast differentiation to reduce overactivated bone resorption and effectively inhibit the accumulation of reactive oxygen species (ROS) induced by wear particles. In vitro experiments also confirmed that AF could effectively inhibit the PI3K/AKT signaling pathway and inhibit inflammation to regulate osteoclast generation. Studies in animal models have also verified the antioxidant and anti-inflammatory properties of AF. In summary, the above studies indicate that AF inhibits osteoclastogenesis via inhibiting ROS accumulation and the PI3K/AKT signaling pathway, which may be a potential therapeutic method for PPO.
Collapse
Affiliation(s)
- Qiufei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Heng Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenxiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feng Shi
- Department of Dermatology and Venereology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
3
|
Ren Q, He C, Sun Y, Gao X, Zhou Y, Qin T, Zhang Z, Wang X, Wang J, Wei S, Wang F. Asiaticoside improves depressive-like behavior in mice with chronic unpredictable mild stress through modulation of the gut microbiota. Front Pharmacol 2024; 15:1461873. [PMID: 39494347 PMCID: PMC11527651 DOI: 10.3389/fphar.2024.1461873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Background Asiaticoside, the main active ingredient of Centella asiatica, is a pentacyclic triterpenoid compound. Previous studies have suggested that asiaticoside possesses neuroprotective and anti-depressive properties, however, the mechanism of its anti-depressant action not fully understood. In recent years, a growing body of research on anti-depressants has focused on the microbiota-gut-brain axis, we noted that disruption of the gut microbial community structure and diversity can induce or exacerbate depression, which plays a key role in the regulation of depression. Methods Behavioral experiments were conducted to detect depression-like behavior in mice through sucrose preference, forced swimming, and open field tests. Additionally, gut microbial composition and short-chain fatty acid (SCFA) levels in mouse feces were analyzed 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS). Hippocampal brain-derived neurotrophic factor (BDNF) and 5-hydroxytryptamine receptor 1A (5-HT1A) expression in mice was assessed by western blotting. Changes in serum levels of inflammatory factors, neurotransmitters, and hormones were measured in mice using ELISA. Results This study revealed that oral administration of asiaticoside significantly improved depression-like behavior in chronic unpredictable mild stress (CUMS) mice. It partially restored the gut microbial community structure in CUMS mice, altered SCFA metabolism, regulated the hypothalamic-pituitary-adrenal axis (HPA axis) and inflammatory factor levels, upregulated BDNF and 5-HT1A receptor protein expression, and increased serum serotonin (5-hydroxytryptamine, 5-HT) concentration. These findings reveal that asiaticoside exerts antidepressant effects via the microbiota-gut-brain axis. Conclusions These results suggested that asiaticoside exerts antidepressant effects through the microbiota-gut-brain axis in a CUMS mouse model.
Collapse
Affiliation(s)
- Qingyi Ren
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chenxi He
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaowei Gao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yan Zhou
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Tao Qin
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jun Wang
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siping Wei
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China
| | - Fang Wang
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Wang J, Zhou T. Unveiling gut microbiota's role: Bidirectional regulation of drug transport for improved safety. Med Res Rev 2024. [PMID: 39180410 DOI: 10.1002/med.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.
Collapse
Affiliation(s)
- Jinyi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Guo M, Zeng J, Li J, Jiang L, Wu X, Ren Z, Hu Z. Pharmacological Components and Mechanism Research on the Treatment of Myelosuppression after Chemotherapy with Danggui Jixueteng Decoction Based on Spectrum-Effect Relationships and Transcriptome Sequencing. ACS OMEGA 2024; 9:28926-28936. [PMID: 38973888 PMCID: PMC11223127 DOI: 10.1021/acsomega.4c03641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Danggui Jixueteng decoction (DJD) has been used to treat anemia for many years and has been shown to be effective. However, the mechanism of action and effective components are yet unknown. We want to search for pharmacodynamic components in DJD with therapeutic effects on myelosuppression after chemotherapy (MAC), utilizing a spectrum-effect connection study based on gray relational analysis and partial least-squares regression analysis. Transcriptome sequencing (RNA-Seq) was used to investigate the mechanism by which DJD treats MAC. In this study, fingerprints of different batches of DJD (S1-S10) were established by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), after which the resulting shared peaks were screened and identified. A total of 21 common peaks were screened through the fingerprints of different batches of DJD, and the similarity of each profile was greater than 0.92. The 21 shared peaks were identified by comparison with the standard sample and searching on a MassLynx 4.1 workstation. The rat model of MAC was established by intraperitoneal injection of cyclophosphamide, and DJD treatment was carried out in parallel with the establishment of the model. White blood cell count, red blood cell count, platelet count, interleukin-3, hemoglobin concentration, granulocyte-macrophage colony-stimulating factor, and nucleated cell count were used as efficacy indicators. Pharmacodynamic results indicated that DJD could effectively improve the pharmacodynamic indices of MAC rats. The results of gray relational analysis demonstrated eight peaks with high correlation with efficacy, which were 2, 7, 10, 14, 15, 16, 18, and 21, and the partial least-squares regression analysis showed four peaks with variable importance in projection values greater than 1, which were 10, 12, 13, and 19. RNA-Seq was used to identify DEGs in rat bone marrow cells, Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs were performed. The genes related to the effects of DJD on MAC were mainly involved in the phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K-Akt) signaling pathway, the mitogen-activated protein kinase signaling pathway, actin cytoskeleton regulation, focal adhesion, and Rap1 signaling pathways. The results of the RNA-Seq study were confirmed by a qPCR experiment. The effective compounds of DJD against MAC include albiflorin, paeoniflorin, gallopaeoniflorin, salvianolic acid H/I, albiflorin R1, salvianolic acid B, salvianolic acid E, benzoylpaeoniflorin, and C12H18N5O4. The mechanism by which DJD prevents and treats MAC might involve the control of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Mingxin Guo
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Jiaqi Zeng
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Jing Li
- Zibo
Central Hospital, Zibo 255000, China
| | - Luyao Jiang
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Xia Wu
- Guangdong
Pharmaceutical University, Guangzhou 516006, China
| | - Zhanyun Ren
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Zhiqiang Hu
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| |
Collapse
|
7
|
He J, Liu X, Zhang J, Wang R, Cao X, Liu G. Gut microbiome-derived hydrolases-an underrated target of natural product metabolism. Front Cell Infect Microbiol 2024; 14:1392249. [PMID: 38915922 PMCID: PMC11194327 DOI: 10.3389/fcimb.2024.1392249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, there has been increasing interest in studying gut microbiome-derived hydrolases in relation to oral drug metabolism, particularly focusing on natural product drugs. Despite the significance of natural product drugs in the field of oral medications, there is a lack of research on the regulatory interplay between gut microbiome-derived hydrolases and these drugs. This review delves into the interaction between intestinal microbiome-derived hydrolases and natural product drugs metabolism from three key perspectives. Firstly, it examines the impact of glycoside hydrolases, amide hydrolases, carboxylesterase, bile salt hydrolases, and epoxide hydrolase on the structure of natural products. Secondly, it explores how natural product drugs influence microbiome-derived hydrolases. Lastly, it analyzes the impact of interactions between hydrolases and natural products on disease development and the challenges in developing microbial-derived enzymes. The overarching goal of this review is to lay a solid theoretical foundation for the advancement of research and development in new natural product drugs and personalized treatment.
Collapse
Affiliation(s)
- Jiaxin He
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Xiaofeng Liu
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Junming Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinyuan Cao
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| | - Ge Liu
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| |
Collapse
|
8
|
Cheng W, Zhang BF, Chen N, Liu Q, Ma X, Fu X, Xu M. Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. Cell Biochem Biophys 2024; 82:1433-1451. [PMID: 38753250 DOI: 10.1007/s12013-024-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 08/25/2024]
Abstract
Chronic heart failure (CHF) is a complex multifactorial clinical syndrome leading to abnormal cardiac structure and function. The severe form of this ailment is characterized by high disability, high mortality, and morbidity. Worldwide, 2-17% of patients die at first admission, of which 17-45% die within 1 year of admission and >50% within 5 years. Yangshen Maidong Decoction (YSMDD) is frequently used to treat the deficiency and pain of the heart. The specific mechanism of action of YSMDD in treating CHF, however, remains unclear. Therefore, a network pharmacology-based strategy combined with molecular docking and molecular dynamics simulations was employed to investigate the potential molecular mechanism of YSMDD against CHF. The effective components and their targets of YSMDD and related targets of CHF were predicted and screened based on the public database. The network pharmacology was used to explore the potential targets and possible pathways that involved in YSMDD treated CHF. Molecular docking and molecular dynamics simulations were performed to elucidate the binding affinity between the YSMDD and CHF targets. Screen results, 10 main active ingredients, and 6 key targets were acquired through network pharmacology analysis. Pathway enrichment analysis showed that intersectional targets associated pathways were enriched in the Prostate cancer pathway, Hepatitis B pathway, and C-type lectin receptor signaling pathways. Molecular docking and molecular dynamics simulations analysis suggested 5 critical active ingredients have high binding affinity to the 5 key targets. This research shows the multiple active components and molecular mechanisms of YSMDD in the treatment of CHF and offers resources and suggestions for future studies.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Bo-Feng Zhang
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Na Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qun Liu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xin Ma
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xiao Fu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Min Xu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China.
| |
Collapse
|
9
|
Song J, Qin BF, Feng QY, Zhang JJ, Zhao GY, Luo Z, Sun HM. Albiflorin ameliorates thioacetamide-induced hepatic fibrosis: The involvement of NURR1-mediated inflammatory signaling cascades in hepatic stellate cells activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116334. [PMID: 38626607 DOI: 10.1016/j.ecoenv.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-β), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.
Collapse
Affiliation(s)
- Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Jin-Jin Zhang
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Gui-Yun Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Zheng Luo
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
10
|
Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155483. [PMID: 38432036 DOI: 10.1016/j.phymed.2024.155483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui-Yan Cao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui-Hong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rong-Xue Xu
- The Health Center of Longjiang Airlines, Harbin 150000, China; Qiqihar Medical University, Qiqihar 161003, China
| | - Xing-Yu Zhu
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiu-Bo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Peng Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
11
|
Gan H, Ma Q, Hao W, Yang N, Chen ZS, Deng L, Chen J. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res 2024; 202:107112. [PMID: 38403256 DOI: 10.1016/j.phrs.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.
Collapse
Affiliation(s)
- Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Nating Yang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
12
|
Cheng W, Yuan Z, Wu S, Yu X, Xia K, Zhao L, Wang Y, Kang C, Yang W, Liu L, Li Y. Simultaneous determination of five compounds of fried Radix Paeoniae Alba extract in beagle dogs plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and its application in a pharmacokinetic study. Biomed Chromatogr 2024; 38:e5803. [PMID: 38098275 DOI: 10.1002/bmc.5803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 02/24/2024]
Abstract
In this present study, we developed a reliable and simple ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for the simultaneous quantification of paeoniflorin, albiflorin, oxypaeoniflorin, benzoylpaeoniflorin and isomaltopaeoniflorin in beagle dog plasma. We also analyzed the pharmacokinetics of those components after oral administration of fried Radix Paeoniae Alba (FRPA) in beagle dogs. Plasma samples were processed by protein precipitation with methanol. Chromatographic separation was performed with a Waters HSS-T3 C18 column (100 × 2.1 mm, 1.8 μm, kept at 40°C) using multiple reaction monitoring mode. A gradient elution procedure was used with solvent A (0.02% formic acid-water) and solvent B (0.02% formic acid-acetonitrile) as mobile phases. Method validation was performed as US Food and Drug Administration guidelines, and the results met the acceptance criteria. The method we establish in this experiment was successfully applied to the pharmacokinetic study after oral administration of FRPA extract to beagle dogs.
Collapse
Affiliation(s)
- Wenhao Cheng
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Yuan
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyang Wu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Yu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kexin Xia
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lifeng Zhao
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyan Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Kang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luyang Liu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yingfei Li
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang Z, Du L, Ji Q, Liu H, Ren Z, Ji G, Bian ZX, Zhao L. The Landscape of Gut Microbiota and Its Metabolites: A Key to Understanding the Pathophysiology of Pattern in Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:89-122. [PMID: 38351704 DOI: 10.1142/s0192415x24500046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Liver Stagnation and Spleen Deficiency (LSSD) is a Chinese Medicine (CM) pattern commonly observed in gastrointestinal (GI) diseases, yet its biological nature remains unknown. This limits the global use of CM medications for treating GI diseases. Recent studies emphasize the role of gut microbiota and their metabolites in the pathogenesis and treatment of LSSD-associated GI diseases. There is increasing evidence supporting that an altered gut microbiome in LSSD patients or animals contributes to GI and extra-intestinal symptoms and affects the effectiveness of CM therapies. The gut microbiota is considered to be an essential component of the biological basis of LSSD. This study aims to provide an overview of existing research findings and gaps for the pathophysiological study of LSSD from the gut microbiota perspective in order to understand the relationship between the CM pattern and disease progression and to optimize CM-based diagnosis, prevention, and therapy.
Collapse
Affiliation(s)
- Zhaozhou Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Liqing Du
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Qiuchen Ji
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hao Liu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhenxing Ren
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Ling Zhao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
14
|
Liu Y, Feng L, Yao L. Albiflorin Alleviates Sepsis-induced Acute Liver Injury through mTOR/p70S6K Pathway. Curr Mol Med 2024; 24:344-354. [PMID: 36892118 DOI: 10.2174/1566524023666230309124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Sepsis often induces hepatic dysfunction and inflammation, accounting for a significant increase in the incidence and mortality rates. To this end, albiflorin (AF) has garnered enormous interest due to its potent anti-inflammatory activity. However, the substantial effect of AF on sepsis-mediated acute liver injury (ALI), along with its potential mechanism of action, remains to be explored. METHODS An LPS-mediated primary hepatocyte injury cell model in vitro and a mouse model of CLP-mediated sepsis in vivo were initially built to explore the effect of AF on sepsis. Furthermore, the hepatocyte proliferation by CCK-8 assay in vitro and animal survival analyses in vivo for the survival time of mice were carried out to determine an appropriate concentration of AF. Then, flow cytometry, Western blot (WB), and TUNEL staining analyses were performed to investigate the effect of AF on the apoptosis of hepatocytes. Moreover, the expressions of various inflammatory factors by ELISA and RT-qPCR analyses and oxidative stress by ROS, MDA, and SOD assays were determined. Finally, the potential mechanism of AF alleviating the sepsis-mediated ALI via the mTOR/p70S6K pathway was explored through WB analysis. RESULTS AF treatment showed a significant increase in the viability of LPS-inhibited mouse primary hepatocytes cells. Moreover, the animal survival analyses of the CLP model mice group indicated a shorter survival time than the CLP+AF group. AF-treated groups showed significantly decreased hepatocyte apoptosis, inflammatory factors, and oxidative stress. Finally, AF exerted an effect by suppressing the mTOR/p70S6K pathway. CONCLUSION In summary, these findings demonstrated that AF could effectively alleviate sepsis-mediated ALI via the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| | - Lizhi Feng
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
15
|
Peng YC, Xu JX, You XM, Huang YY, Ma L, Li LQ, Qi LN. Specific gut microbiome signature predicts hepatitis B virus-related hepatocellular carcinoma patients with microvascular invasion. Ann Med 2023; 55:2283160. [PMID: 38112540 PMCID: PMC10986448 DOI: 10.1080/07853890.2023.2283160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND We aimed to assess differences in intestinal microflora between patients with operable hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) with microvascular invasion (MVI) and those without MVI. Additionally, we investigated the potential of the microbiome as a non-invasive biomarker for patients with MVI. METHODS We analyzed the preoperative gut microbiomes (GMs) of two groups, the MVI (n = 46) and non-MVI (n = 56) groups, using 16S ribosomal RNA gene sequencing data. At the operational taxonomic unit level, we employed random forest models to predict MVI risk and validated the results in independent validation cohorts [MVI group (n = 17) and non-MVI group (n = 15)]. RESULTS β diversity analysis, utilizing weighted UniFrac distances, revealed a significant difference between the MVI and non-MVI groups, as indicated by non-metric multidimensional scaling and principal coordinate analysis. We also observed a significant correlation between the characteristic intestinal microbial communities at the genus level and their main functions. Nine optimal microbial markers were identified, with an area under the curve of 79.76% between 46 MVI and 56 non-MVI samples and 79.80% in the independent verification group. CONCLUSION This pioneering analysis of the GM in patients with operable HBV-HCC with and without MVI opens new avenues for treating HBV-HCC with MVI. We successfully established a diagnostic model and independently verified microbial markers for patients with MVI. As preoperative targeted biomarkers, GM holds potential as a non-invasive tool for patients with HBV-HCC with MVI.
Collapse
Affiliation(s)
- Yu-Chong Peng
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Xue-Mei You
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Yi-Yue Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| |
Collapse
|
16
|
Fu J, Yu H, Guo Q, Wang Y, Xu H, Lu J, Hu J, Wang Y. Metabolic Transformation of Gentiopicrin, a Liver Protective Active Ingredient, Based on Intestinal Bacteria. Molecules 2023; 28:7575. [PMID: 38005297 PMCID: PMC10673279 DOI: 10.3390/molecules28227575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Gentiopicrin, the main component of the famous Chinese patent medicine Long Dan Xie Gan Wan, has the characteristics of fast absorption in vivo and low bioavailability. Intestinal bacteria play an important role in the absorption and pharmacokinetics of oral drugs. In this study, the metabolic transformation of gentiopicrin by intestinal bacteria was examined. High-performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry (LC/MSn-IT-TOF) and nuclear magnetic resonance (NMR) were used, and six metabolites were identified, including reduction products (G-M1, G-M2, G-M4, and G-M6), a hydrolytic product (G-M3), and a dehydration product (G-M5) of gentiopicrin aglycone after hydrolysis, reduction, and dehydration reactions were performed by the intestinal flora. This is the first time that chiral metabolites of gentiopicrin (G-M1 and G-M2) were found in this study. In addition, the precursors of glucuronic acid conjugates previously reported in vivo may have come from the intestinal bacterial metabolites G-M1, G-M2, and G-M3. In addition, the metabolic transformation of gentiopicrin in liver microsomes was studied in vitro, and it was found that gentiopicrin did not undergo metabolic transformation under the action of liver microsomes. It is suggested that gentiopicroside may be metabolized in the intestine. This study provides both new insight regarding the investigation of effective substances and an exploration of the pharmacodynamic and toxicological properties of gentiopicrin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (J.F.); (H.Y.); (Q.G.); (Y.W.); (H.X.); (J.L.); (J.H.)
| |
Collapse
|
17
|
Zhou F, Liu J, Xu X, Luo Y, Yang S. Albiflorin alleviation efficacy in osteoarthritis injury using in-vivo and in-vitro models. J Pharm Pharmacol 2023; 75:1332-1343. [PMID: 37403239 DOI: 10.1093/jpp/rgad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVES Osteoarthritis seriously affects the daily life of people. Albiflorin (AF) has anti-inflammatory and antioxidant functions in various human diseases. This study aimed to clarify the function and mechanism of AF in osteoarthritis. METHODS The functions of AF on rat chondrocyte proliferation and apoptosis, inflammatory response, oxidative stress and extracellular matrix (ECM) degradation in rat chondrocytes induced by interleukin-1beta (IL-1β) were evaluated by Western blot, immunofluorescence, flow cytometry and enzyme-linked immunosorbent assay. The mechanism of AF on the IL-1β induced rat chondrocyte injury was investigated by multiple experiments in vitro. Meanwhile, the AF function in vivo was assessed using haematoxylin-eosin staining, Alcian blue, Safranin O/Fast green staining, immunohistochemical analysis and TUNEL assay. KEY FINDINGS Functionally, AF accelerated the rat chondrocyte proliferation and repressed cell apoptosis. Meanwhile, AF reduced the inflammatory response, oxidative stress and ECM degradation in rat chondrocytes caused by IL-1β. Mechanistically, the receptor activator of the NF-kappaB ligand (RANKL), an activator for the NF-κB signalling pathway, partially reversed the alleviating effect of AF on IL-1β-induced chondrocyte injury. Furthermore, the in-vitro results confirmed that AF exerted protective properties against osteoarthritis injury in vivo. CONCLUSION Albiflorin relieved osteoarthritis injury in rats by inactivating the NF-κB pathway.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| | - Jianfan Liu
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| | - Xuezheng Xu
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| | - Yi Luo
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| | - Shuo Yang
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| |
Collapse
|
18
|
Guo Y, Gan H, Xu S, Zeng G, Xiao L, Ding Z, Zhu J, Xiong X, Fu Z. Deciphering the Mechanism of Xijiao Dihuang Decoction in Treating Psoriasis by Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2023; 17:2805-2819. [PMID: 37719360 PMCID: PMC10504908 DOI: 10.2147/dddt.s417954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose This study aims to confirm the efficacy of Xijiao Dihuang decoction (XJDHT), a classic prescription, in treating psoriasis and to explore the potential therapeutic mechanism. Methods For pharmacodynamic analysis, a mouse model of imiquimod cream (IMQ)-induced psoriasis was constructed. Active ingredients and genes of XJDHT, as well as psoriasis-related targets, were obtained from public databases. Intersecting genes (IGEs) of XJDHT and psoriasis were collected by Venn Diagram. A protein-protein interaction (PPI) network of IGEs is constructed through the STRING database. The Molecular Complex Detection (MCODE) and Cytohubba plug-ins of Cytoscape software were used to identified hub genes. In addition, we conducted enrichment analysis of IGEs using the R package clusterProfiler. Hub genes were validated via external GEO databases. The influence of XJDHT on Hub gene expression was examined by qPCR and ELISA, and molecular docking was used to evaluate the binding efficacy between active ingredients and hub genes. Results The results revealed that XJDHT possesses 92 potential genes for psoriasis, and 8 Hub genes were screened. Enrichment analysis suggested that XJDHT ameliorate psoriasis through multiple pathways, including AGE-RAGE, HIF-1, IL-17 and TNF signaling pathway. Validation data confirmed the differential expression of IL6, VEGFA, TNF, MMP9, STAT3, and TLR4. Molecular docking revealed a strong affinity between active ingredients and Hub genes. The efficacy of XJDHT in improving psoriatic lesions in model mice was demonstrated by PASI score and HE staining, potentially attributed to the down-regulation of VEGFA, MMP9, STAT3, TNF, and IL-17A, as evidenced by ELISA and qPCR. Conclusion This study employed network pharmacology and in vitro experiments to identify the potential mechanisms underlying the therapeutic effects of XJDHT on psoriasis, providing a new theoretical basis for its clinical application in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yicheng Guo
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Huiqun Gan
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Shigui Xu
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Guosheng Zeng
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Lili Xiao
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Zhijun Ding
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Jie Zhu
- Candidate Branch of National Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Xinglong Xiong
- Candidate Branch of National Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Zhiyuan Fu
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| |
Collapse
|
19
|
Yu H, Xu H, Yang X, Zhang Z, Hu J, Lu J, Fu J, Bu M, Zhang H, Zhai Z, Wang J, Jiang J, Wang Y. Gut microbiota-based pharmacokinetic-pharmacodynamic study and molecular mechanism of specnuezhenide in the treatment of colorectal cancer targeting carboxylesterase. J Pharm Anal 2023; 13:1024-1040. [PMID: 37842660 PMCID: PMC10568112 DOI: 10.1016/j.jpha.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 10/17/2023] Open
Abstract
Specnuezhenide (SNZ) is among the main components of Fructus Ligustri Lucidi, which has anti-inflammation, anti-oxidation, and anti-tumor effect. The low bioavailability makes it difficult to explain the mechanism of pharmacological effect of SNZ. In this study, the role of the gut microbiota in the metabolism and pharmacokinetics characteristics of SNZ as well as the pharmacological meaning were explored. SNZ can be rapidly metabolized by the gut microbiome, and two intestinal bacterial metabolites of SNZ, salidroside and tyrosol, were discovered. In addition, carboxylesterase may be the main intestinal bacterial enzyme that mediates its metabolism. At the same time, no metabolism was found in the incubation system of SNZ with liver microsomes or liver homogenate, indicating that the gut microbiota is the main part involved in the metabolism of SNZ. In addition, pharmacokinetic studies showed that salidroside and tyrosol can be detected in plasma in the presence of gut microbiota. Interestingly, tumor development was inhibited in a colorectal tumor mice model administered orally with SNZ, which indicated that SNZ exhibited potential to inhibit tumor growth, and tissue distribution studies showed that salidroside and tyrosol could be distributed in tumor tissues. At the same time, SNZ modulated the structure of gut microbiota and fungal group, which may be the mechanism governing the antitumoral activity of SNZ. Furthermore, SNZ stimulates the secretion of short-chain fatty acids by intestinal flora in vitro and in vivo. In the future, targeting gut microbes and the interaction between natural products and gut microbes could lead to the discovery and development of new drugs.
Collapse
Affiliation(s)
| | | | - Xinyu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Zhengwei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jiachun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jinyue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Mengmeng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Haojian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jingyue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
20
|
Shi R, Huang C, Gao Y, Li X, Zhang C, Li M. Gut microbiota axis: potential target of phytochemicals from plant-based foods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Zhang Y, Chen X, Mo X, Xiao R, Cheng Q, Wang H, Liu L, Xie P. Enterogenic metabolomics signatures of depression: what are the possibilities for the future. Expert Rev Proteomics 2023; 20:397-418. [PMID: 37934939 DOI: 10.1080/14789450.2023.2279984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION An increasing number of studies indicate that the microbiota-gut-brain axis is an important pathway involved in the onset and progression of depression. The responses of the organism (or its microorganisms) to external cues cannot be separated from a key intermediate element: their metabolites. AREAS COVERED In recent years, with the rapid development of metabolomics, an increasing amount of metabolites has been detected and studied, especially the gut metabolites. Nevertheless, the increasing amount of metabolites described has not been reflected in a better understanding of their functions and metabolic pathways. Moreover, our knowledge of the biological interactions among metabolites is also incomplete, which limits further studies on the connections between the microbial-entero-brain axis and depression. EXPERT OPINION This paper summarizes the current knowledge on depression-related metabolites and their involvement in the onset and progression of this disease. More importantly, this paper summarized metabolites from the intestine, and defined them as enterogenic metabolites, to further clarify the function of intestinal metabolites and their biochemical cross-talk, providing theoretical support and new research directions for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yangdong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Xiaolong Mo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Qisheng Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Irum N, Afzal T, Faraz MH, Aslam Z, Rasheed F. The role of gut microbiota in depression: an analysis of the gut-brain axis. Front Behav Neurosci 2023; 17:1185522. [PMID: 37333479 PMCID: PMC10272349 DOI: 10.3389/fnbeh.2023.1185522] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The gut-brain axis is a communication pathway that allows a two-way exchange of information between the microbiota of the gastrointestinal tract and the nervous system of humans. The vagus nerve, which is responsible for facilitating communication, provides support for this axis. The gut-brain axis is currently the subject of research, but studies into the diversity and stratification of the gut microbiota are just getting started. Researchers have discovered several positive trends by analyzing numerous studies examining the gut microbiota's impact on the effectiveness of SSRIs. It is common knowledge that a specific group of measurable, microbial markers has been recognized as being present in the feces of individuals suffering from depression. Specific bacterial species are a common denominator among therapeutic bacteria used to treat depression. It can also play a role in determining the severity of disease progression. Evidence that selective serotonin reuptake inhibitors (SSRIs) rely on the vagus nerve to exert their therapeutic effects has provided further support for the importance of the vagus nerve in the gut-brain axis, which is necessary for beneficial changes in the gut microbiota. This review will analyze the research linking gut microbiota to depression.
Collapse
Affiliation(s)
- Natasha Irum
- Medical Unit 02, Nishtar Medical University, Multan, Pakistan
| | - Tayyeba Afzal
- Services Institute of Medical Sciences, Lahore, Pakistan
| | | | - Zeeshan Aslam
- Medical Unit 02, Nishtar Medical University, Multan, Pakistan
- Nishtar Institute of Dentistry, Nishtar Medical University, Multan, Pakistan
| | - Faisal Rasheed
- Medical Unit 02, Nishtar Medical University, Multan, Pakistan
| |
Collapse
|
24
|
Zhao N, Xing J, Zheng Z, Song F, Liu Z, Liu S. A novel strategy on the study of whole intestinal metabolic profiles for Polygalae Radix before and after processing. PHYTOCHEMICAL ANALYSIS : PCA 2023. [PMID: 37169718 DOI: 10.1002/pca.3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Relieving toxicity and enhancing a calming effect after processing Polygalae Radix (PR) are widely known. Aromatic carboxylic acids (ACAs) may be crucial processed products. However, due to the limited detection methods for ACAs, the whole metabolic profiles via intestinal bacteria are still not very clear. OBJECTIVE Designing a novel strategy for the detection of ACAs and tracking the whole metabolic profiles before and after processing PR. MATERIALS AND METHODS The stable-isotope labelling derivatisation (SILD) method based on multidimensional ultra-high performance liquid chromatography coupled with a mass spectrometer (UHPLC-MS) technology and UNIFI-pathway mode was firstly designed to systematically study the metabolisms of all the drug-derived ingredients ranging from m/z 100 to 2000 in processing PR via intestinal bacteria. Firstly, the SILD with UHPLC coupled with a triple-quadrupole MS technology was designed to trace eight ACA metabolites of the processed PR with intestinal bacteria. Additionally, the UHPLC coupled with a quadrupole time-of-flight MS with UNIFI-pathway mode was adopted to monitor relatively big metabolites. RESULTS The metabolism mechanism of ACAs (eight kinds) and the relatively big molecular metabolites (98 kinds) were deeply traced in PR, PR with refined honey (HP), and PR with licorice (LP) via the intestinal bacteria. Totally 106 intact metabolic profiles of drug-derived ingredients were presented. Importantly, the influence of LP on the metabolism of compounds after incubation of intestinal bacteria was greater than that of HP. CONCLUSION This research provides a comprehensive and systematic guidance for further study on in vivo metabolisms of the processed PR.
Collapse
Affiliation(s)
- Ningning Zhao
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
25
|
Xu H, Yu H, Fu J, Zhang ZW, Hu JC, Lu JY, Yang XY, Bu MM, Jiang JD, Wang Y. Metabolites analysis of plantamajoside based on gut microbiota-drug interaction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154841. [PMID: 37196513 DOI: 10.1016/j.phymed.2023.154841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plantaginis Herba (Plantago asiatica L.) has the effects of clearing heat and diuresis, oozing wet and drenching. As the main active components of Plantaginis Herba (Plantago asiatica L.), plantamajoside have a wide range of antitumor activities but very low bioavailability. The process of interacting between plantamajoside and gut microbiota remains unclear. PURPOSE To illustrate the process of interacting between plantamajoside and gut microbiota based on high-resolution mass spectrometry and targeted metabolomics methods. STUDY DESIGN AND METHODS This experiment was divided into two parts. First, metabolites produced from plantamajoside by gut microbiota were identified and quantified based on high-resolution mass spectrometry and LC-MS/MS. Additionally, stimulation of plantamajoside on gut microbiota-derived metabolites was determined by targeted metabolomics and gas chromatography. RESULTS We first found that plantamajoside was rapidly metabolized by gut microbiota. Then, we identified metabolites of plantamajoside by high-resolution mass spectrometry and speculated that plantamajoside was metabolized into five metabolites including calceolarioside A, dopaol glucoside, hydroxytyrosol, 3-(3-hydroxyphenyl) propionic acid (3-HPP) and caffeic acid. Among them, we quantitatively analyzed four possible metabolites based on LC‒MS/MS and found that hydroxytyrosol and 3-HPP were final products by the gut microbiota. In addition, we studied whether plantamajoside could affect the short-chain fatty acid (SCFA) and amino acid metabolites. We found that plantamajoside could inhibit the acetic acid, kynurenic acid (KYNA) and kynurenine (KN) produced by intestinal bacteria and promote the indole propionic acid (IPA) and indole formaldehyde (IALD) produced by intestinal bacteria. CONCLUSION An interaction between plantamajoside and gut microbiota was revealed in this study. Unlike the traditional metabolic system, the special metabolic characteristics of plantamajoside in gut microbiota was found. Plantamajoside was metabolized into the following active metabolites: calceolarioside A, dopaol glucoside, hydroxytyrosol, caffeic acid and 3-HPP. Besides, plantamajoside could affect SCFA and tryptophan metabolism by gut microbiota. Especially, the exogenous metabolites hydroxytyrosol, caffeic acid and endogenous metabolites IPA may have potential association with the antitumor activity of plantamajoside.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xin-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
26
|
Zhang ZW, Han P, Fu J, Yu H, Xu H, Hu JC, Lu JY, Yang XY, Zhang HJ, Bu MM, Jiang JD, Wang Y. Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116555. [PMID: 37100263 DOI: 10.1016/j.jep.2023.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Xin-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hao-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
27
|
Swann JR, Diaz Heijtz R, Mayneris-Perxachs J, Arora A, Isaksson J, Bölte S, Tammimies K. Characterizing the metabolomic signature of attention-deficit hyperactivity disorder in twins. Neuropharmacology 2023; 234:109562. [PMID: 37100381 DOI: 10.1016/j.neuropharm.2023.109562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/05/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Emerging evidence implicate the gut microbiota as a potential susceptibility factor in attention-deficit hyperactivity disorder (ADHD), a common multifactorial neurodevelopmental condition. However, little is known about the biochemical signature of ADHD, including the metabolic contribution of the microbiota via the gut-brain axis, and the relative contribution of genetics and environmental factors. Here, we perform unbiased metabolomic profiling of urine and fecal samples collected from a well-characterized Swedish twin cohort enriched for ADHD (33 ADHD, 79 non-ADHD), using 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. Our results highlight sex-specific patterns in the metabolic phenotype of individuals with ADHD. Specifically, the urine profile of males, but not females, with ADHD was characterized by greater excretion of hippurate, a product of microbial-host co-metabolism that can cross the blood-brain-barrier with bioactivity of potential relevance to ADHD. This trans-genomic metabolite was also negatively correlated with IQ in males and was significantly correlated with fecal metabolites associated with gut microbial metabolism. The fecal profile of ADHD individuals was characterized by increased excretion of stearoyl-linoleoyl-glycerol, 3,7-dimethylurate, and FAD and lower amounts of glycerol 3-phosphate, thymine, 2(1H)-quinolinone, aspartate, xanthine, hypoxanthine, and orotate. These changes were independent of ADHD medication, age, and BMI. Furthermore, our specific twins' models revealed that many of these gut metabolites had a stronger genetic influence than environmental. These findings suggest that metabolic disturbances in ADHD, involving combined gut microbial and host metabolic processes, may largely derive from gene variants previously linked to behavioral symptoms in this disorder.
Collapse
Affiliation(s)
- J R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, UK; Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, UK.
| | - R Diaz Heijtz
- Department of Neuroscience, Karolinska Institutet Region Stockholm, Stockholm, Sweden
| | - J Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - A Arora
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet Region Stockholm, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - J Isaksson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet Region Stockholm, Stockholm, Sweden; Department of Medical Sciences, Child and Adolescent Psychiatry Unit, Uppsala University, Uppsala, Sweden
| | - S Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet Region Stockholm, Stockholm, Sweden; Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia; Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| | - K Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet Region Stockholm, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
28
|
Yang Y, Wu C. The linkage of gut microbiota and the property theory of traditional Chinese medicine (TCM): Cold-natured and sweet-flavored TCMs as an example. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116167. [PMID: 36641107 DOI: 10.1016/j.jep.2023.116167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The property theory of traditional Chinese medicine (TCM) is a unique medical theory based on an extensive clinical practice for thousands of years, which guides TCM doctors choosing proper medicines to treat specific diseases. The nature and flavor of TCM are a high generalization of drug's characteristics according to the property theory. Despite intensive investigations, the modern interpretation of TCM property theory still confronts several challenges, which greatly hampers the elucidation of TCM's mechanisms as well as its application. Compelling evidence has proved that gut microbiota may be a potential indicator for TCM's efficacy and mechanism. Nevertheless, at present, the relationship between the gut microbiota and the nature and flavor of TCM has not been fully elucidated. AIM OF THE STUDY To fill the gap in this field, we developed a comprehensive study to investigate the relationship between gut microbial community and TCM's property. MATERIALS AND METHODS We searched "PubMed" and "China National Knowledge Infrastructure (CNKI)" with the key word "gut microbiota", and screened the published articles related to TCM. In this review, we mainly applied cold-natured and sweet-flavored TCMs as an example to explore the modulation of cold-natured and sweet-flavored TCMs on gut microbiota, and identify the potential relationship between the alterations of gut microbiota and TCM's efficacy. RESULTS We found cold-natured and sweet-flavored TCMs possess several pharmacological activities and generally enrich beneficial bacteria like Akkermansia, Bacteroides, Lactobacillus and Bifidobacterium, which is in good accordance with their pharmacological effects. Simultaneously, these TCMs reduce the relative abundance of some harmful bacteria belonging to Firmicutes (Streptpcoccus, Enterococcus, Turicibacter, Anaerostipes and Oscillibacter) and Proteobacteria (Helicobacter, Enterobacter, Sutterella, Klebsiella, Desulfovibrio, Escherichia coli and Campylobacter jejuni). These results indicate that there are some intrinsic correlations between gut microbiota and the property of TCM, and gut microbiota may serve as a potential indicator to reflect the property of TCM. CONCLUSIONS This pilot but comprehensive review provides an interesting proposal that the ancient theory of TCM property may be interpreted by the modern biological findings in gut microbiome.
Collapse
Affiliation(s)
- Yanan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
29
|
Chen C, Tian J, Gao X, Qin X, Du G, Zhou Y. An integrated strategy to study the combination mechanisms of Bupleurum chinense DC and Paeonia lactiflora Pall for treating depression based on correlation analysis between serum chemical components profiles and endogenous metabolites profiles. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116068. [PMID: 36574791 DOI: 10.1016/j.jep.2022.116068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleurum chinense DC-Paeonia lactiflora Pall (BCD-PLP) is a common clinical herb pair in traditional Chinese medicine (TCM) prescriptions commonly used to treat depression. However, its combination mechanisms with its anti-depressive effects remain highly unclear. AIM OF THE STUDY Here, an effective strategy has been developed to study the combination mechanisms of Bupleurum chinense DC (BCD) and Paeonia lactiflora Pall (PLP) by integrating serum pharmacochemistry analysis, metabolomics technology, and molecular docking technology. MATERIALS AND METHODS First, the depression model rats were replicated by the chronic unpredictable mild stress (CUMS) procedure, and the difference in the chemical composition in vivo before and after the combination of BCD and PLP was analyzed by integrating background subtraction and multivariate statistical analysis techniques. Then, UPLC/HRMS-based serum metabolomics was performed to analyze the synergistic effect on metabolite regulation before and after the combination of BCD and PLP. Further, the correlation analysis between the differential exogenous chemical components and the differential endogenous metabolites before and after the combination was employed to dissect the combination mechanisms from a global perspective of combining metabolomics and serum pharmacochemistry. Finally, the molecular docking between the differential chemical components and the key metabolic enzymes was applied to verify the regulatory effect of the differential exogenous chemical components on the differential endogenous metabolites. RESULTS The serum pharmacochemistry analysis results demonstrated that the combination of BCD and PLP could significantly affect the content of 10 components in BCD (including 5 prototype components were significantly decreased and 5 metabolites were significantly increased) and 8 components in PLP (including 4 prototype components and 3 metabolites were significantly increased, 1 metabolite was significantly decreased), which indicated that the combination could enhance BCD prototype components' metabolism and the absorption of the PLP prototype components. Besides, metabolomics results indicated that the BCD-PLP herb pair group significantly reversed more metabolites (8) than BCD and PLP single herb group (5 & 4) and has a stronger regulatory effect on metabolite disorders caused by CUMS. Furthermore, the correlation analysis results suggested that saikogenin F and saikogenin G were significantly positively correlated with the endogenous metabolite itaconate, an endogenous anti-inflammatory metabolite; and benzoic acid was significantly positively correlated with D-serine, an endogenous metabolite with an antidepressant effect. Finally, the molecular docking results further confirmed that the combination of BCD and PLP could affect the activities of cis-aconitic acid decarboxylase and D-amino acid oxidase by increasing the in vivo concentration of saikogenin F and benzoic acid, which further enhances its anti-inflammatory activity and anti-depressive effect. CONCLUSIONS In this study, an effective strategy has been developed to study the combination mechanisms of BCD and PLP by integrating serum pharmacochemistry analysis, multivariate statistical analysis, metabolomics technology, and molecular docking technology. Based on this strategy, the present study indicated that the combination of BCD and PLP could affect the activities of cis-aconitic acid decarboxylase and D-amino acid oxidase by increasing the concentration of saikogenin F and benzoic acid in vivo, which further enhances its anti-depressive effect. In short, this strategy will provide a reliable method for elucidating the herb-herb compatibility mechanism of TCM.
Collapse
Affiliation(s)
- Congcong Chen
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Junshen Tian
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|
30
|
Xu F, Xie Q, Kuang W, Dong Z. Interactions Between Antidepressants and Intestinal Microbiota. Neurotherapeutics 2023; 20:359-371. [PMID: 36881351 PMCID: PMC10121977 DOI: 10.1007/s13311-023-01362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The microbiota-gut-brain axis has been shown to influence human health and diseases, including depression. The interactions between drugs and intestinal microbiota are complex and highly relevant to treat diseases. Studies have shown an interaction between antidepressants and intestinal microbiota. Antidepressants may alter the abundance and composition of intestinal microbiota, which are closely related to the treatment outcomes of depression. Intestinal microbiota can influence the metabolism of antidepressants to change their availability (e.g., tryptophan can be metabolized to kynurenine by intestinal microbiota) and regulate their absorption by affecting intestinal permeability. In addition, the permeability of the blood-brain barrier can be altered by intestinal microbiota, influencing antidepressants to reach the central nervous system. Bioaccumulation is also a type of drug-microbiota interaction, which means bacteria accumulate drugs without biotransformation. These findings imply that it is important to consider intestinal microbiota when evaluating antidepressant therapy regimens and that intestinal microbiota can be a potential target for depression treatment.
Collapse
Affiliation(s)
- Feiyu Xu
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Huang HS, Lin YE, Panyod S, Chen RA, Lin YC, Chai LMX, Hsu CC, Wu WK, Lu KH, Huang YJ, Sheen LY. Anti-depressive-like and cognitive impairment alleviation effects of Gastrodia elata Blume water extract is related to gut microbiome remodeling in ApoE -/- mice exposed to unpredictable chronic mild stress. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115872. [PMID: 36343797 DOI: 10.1016/j.jep.2022.115872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Gastrodia elata Blume (GE) is a traditional Chinese dietary therapy used to treat neurological disorders. Gastrodia elata Blume water extract (WGE) has been shown to ameliorate inflammation and improve social frustration in mice in a chronic social defeat model. However, studies on the anti-depressive-like effects and cognitive impairment alleviation related to the impact of WGE on the gut microbiome of ApoE-/- mice remain elusive. AIM OF THE STUDY The present study aimed to investigate the anti-depressive-like effect and cognitive impairment alleviation and mechanisms of WGE in ApoE-/- mice subjected to unpredictable chronic mild stress (UCMS), as well as its impact on the gut microbiome of the mice. MATERIALS AND METHODS Sixty ApoE-/- mice (6 months old) were randomly grouped into six groups: control, UCMS, WGE groups [5, 10, 20 mL WGE/kg body weight (bw) + UCMS], and a positive group (fluoxetine 20 mg/kg bw + UCMS). After four weeks of the UCMS paradigm, the sucrose preference, novel object recognition, and open field tests were conducted. The neurotransmitters serotonin (5-HT), dopamine (DA) and their metabolites were measured in the prefrontal cortex. Serum was collected to measure corticosterone and amyloid-42 (Aβ-42) levels. Feces were collected, and the gut microbiome was analyzed. RESULTS WGE restored sucrose preference, exploratory behavior, recognition ability, and decreased the levels of serum corticosterone and Aβ-42 in ApoE-/- mice to alleviate depressive-like behavior and cognitive impairment. Furthermore, WGE regulated the monoamine neurotransmitter via reduced the 5-HT and DA turnover rates in the prefrontal cortex. Moreover, WGE elevated the levels of potentially beneficial bacteria such as Bifidobacterium, Akkermansia, Alloprevotella, Defluviitaleaceae_UCG-011, and Bifidobacterium pseudolongum as well as balanced fecal short-chain fatty acids (SCFAs). CONCLUSION WGE demonstrates anti-depressive-like effects, cognitive impairment alleviation, and gut microbiome and metabolite regulation in ApoE-/- mice. Our results support the possibility of developing a functional and complementary medicine to prevent or alleviate depression and cognitive decline using WGE in CVDs patients.
Collapse
Affiliation(s)
- Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Ying-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Kuan-Hung Lu
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan.
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Xie J, Zhong Q, Wu WT, Chen JJ. Multi-omics data reveals the important role of glycerophospholipid metabolism in the crosstalk between gut and brain in depression. J Transl Med 2023; 21:93. [PMID: 36750892 PMCID: PMC9903503 DOI: 10.1186/s12967-023-03942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Gut microbiota plays a critical role in the onset and development of depression, but the underlying molecular mechanisms are unclear. This study was conducted to observe the characteristics of gut microbiota, lipid metabolism and neurotransmitters in Gut-Liver-Brain axis in depressed mice (DM), and identify some novel perceptions on relationships between gut microbiota and depression. METHODS A mouse model of depression was built used chronic unpredictable mild stress (CUMS). Fecal samples (measuring gut microbiota compositions, microbial genes and lipid metabolites), liver samples (measuring lipid metabolites), and hippocampus (measuring neurotransmitters) were collected. Both univariate and multivariate statistical analyses were used to identify the differential gut microbiota, metabolic signatures and neurotransmitters in DM. RESULTS There were significant differences on both microbial and metabolic signatures between DM and control mice (CM): 71 significantly changed operational taxonomic units (OTUs) (60.56% belonged to phylum Firmicutes) and 405 differential lipid metabolites (51.11% belonged to Glycerophospholipid (GP) metabolism) were identified. Functional analysis showed that depressive-like behaviors (DLB)-related differential microbial genes were mainly enriched in GP metabolism. Weighted correlation network analysis (WGCNA) showed that DLB-related differential metabolites mainly belonged to GPs. Meanwhile, seven differential neurotransmitters were identified. Comprehensive analysis found that Lachnospiraceae and gamma-aminobutyric acid (GABA) were significantly correlated with 94.20% and 53.14% differential GPs, respectively, and GABA was significantly correlated with three main DLB phenotypes. CONCLUSION Our results provided novel perceptions on the role of Gut-Liver-Brain axis in the onset of depression, and showed that GP metabolism might be the bridge between gut microbiota and depression. "Lachnospiraceae-GP metabolism-GABA" held the promise as a potential way between gut microbiota and brain functions in DM.
Collapse
Affiliation(s)
- Jing Xie
- grid.190737.b0000 0001 0154 0904Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, 400010 China
| | - Qi Zhong
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016 China
| | - Wen-tao Wu
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016 China
| | - Jian-jun Chen
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
33
|
The Study of a Novel Paeoniflorin-Converting Enzyme from Cunninghamella blakesleeana. Molecules 2023; 28:molecules28031289. [PMID: 36770956 PMCID: PMC9921665 DOI: 10.3390/molecules28031289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood-brain barrier into the brain.
Collapse
|
34
|
Wang YT, Wang XL, Wang ZZ, Lei L, Hu D, Zhang Y. Antidepressant effects of the traditional Chinese herbal formula Xiao-Yao-San and its bioactive ingredients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154558. [PMID: 36610123 DOI: 10.1016/j.phymed.2022.154558] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Depression is one of the most debilitating and severe psychiatric disorders and a serious public health concern. Currently, many treatments are indicated for depression, including traditional Chinese medicinal formulae such as Xiao-Yao-San (XYS), which has effective antidepressant effects in clinical and animal studies. PURPOSE To summarize current evidence of XYS in terms of the preclinical and clinical studies and to identify the multi-level, multi-approach, and multi-target potential antidepressant mechanisms of XYS and active components of XYS by a comprehensive search of the related electronic databases. METHODS The following electronic databases were searched from the beginning to April 2022: PubMed, MEDLINE, Web of Science, Google Scholar, and China National Knowledge Infrastructure. RESULTS This review summarizes the antidepressant mechanisms of XYS and its active ingredients, which are reportedly correlated with monoamine neurotransmitter regulation, synaptic plasticity, and hypothalamic-pituitary-adrenal axis, etc. CONCLUSION: XYS plays a critical role in the treatment of depression by the regulation of several factors, including the monoaminergic systems, hypothalamic-pituitary-adrenal axis, synaptic plasticity, inflammation, brain-derived neurotrophic factor levels, brain-gut axis, and other pathways. However, more clinical and animal studies should be conducted to further investigate the antidepressant function of XYS and provide more evidence and recommendations for its clinical application. Our review provides an overview of XYS and guidance for future research direction.
Collapse
Affiliation(s)
- Ya-Ting Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao-Le Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lan Lei
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Die Hu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
35
|
Sun Y, Zhao J, Rong J. Dissecting the molecular mechanisms underlying the antidepressant activities of herbal medicines through the comprehensive review of the recent literatures. Front Psychiatry 2022; 13:1054726. [PMID: 36620687 PMCID: PMC9813794 DOI: 10.3389/fpsyt.2022.1054726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Depression is clinically defined as a mood disorder with persistent feeling of sadness, despair, fatigue, and loss of interest. The pathophysiology of depression is tightly regulated by the biosynthesis, transport and signaling of neurotransmitters [e.g., serotonin, norepinephrine, dopamine, or γ-aminobutyric acid (GABA)] in the central nervous system. The existing antidepressant drugs mainly target the dysfunctions of various neurotransmitters, while the efficacy of antidepressant therapeutics is undermined by different adverse side-effects. The present review aimed to dissect the molecular mechanisms underlying the antidepressant activities of herbal medicines toward the development of effective and safe antidepressant drugs. Our strategy involved comprehensive review and network pharmacology analysis for the active compounds and associated target proteins. As results, 45 different antidepressant herbal medicines were identified from various in vivo and in vitro studies. The antidepressant mechanisms might involve multiple signaling pathways that regulate neurotransmitters, neurogenesis, anti-inflammation, antioxidation, endocrine, and microbiota. Importantly, herbal medicines could modulate broader spectrum of the cellular pathways and processes to attenuate depression and avoid the side-effects of synthetic antidepressant drugs. The present review not only recognized the antidepressant potential of herbal medicines but also provided molecular insights for the development of novel antidepressant drugs.
Collapse
Affiliation(s)
- Yilu Sun
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jianhui Rong
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
36
|
Zhao ZX, Tang XH, Jiang SL, Pang JQ, Xu YB, Yuan DD, Zhang LL, Liu HM, Fan Q. Astragaloside IV improves the pharmacokinetics of febuxostat in rats with hyperuricemic nephropathy by regulating urea metabolism in gut microbiota. Front Pharmacol 2022; 13:1031509. [PMID: 36605404 PMCID: PMC9807765 DOI: 10.3389/fphar.2022.1031509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hyperuricemic nephropathy (HN) is a common clinical complication of hyperuricemia. The pathogenesis of HN is directly related to urea metabolism in the gut microbiota. Febuxostat, a potent xanthine oxidase inhibitor, is the first-line drug used for the treatment of hyperuricemia. However, there have been few studies on the pharmacokinetics of febuxostat in HN animal models or in patients. In this study, a high-purine diet-induced HN rat model was established. The pharmacokinetics of febuxostat in HN rats was evaluated using LC-MS/MS. Astragaloside IV (AST) was used to correct the abnormal pharmacokinetics of febuxostat. Gut microbiota diversity analysis was used to evaluate the effect of AST on gut microbiota. The results showed that the delayed elimination of febuxostat caused drug accumulation after multiple administrations. Oral but not i. p. AST improved the pharmacokinetics of febuxostat in HN rats. The mechanistic study showed that AST could regulate urea metabolism in faeces and attenuate urea-ammonia liver-intestine circulation. Urease-related genera, including Eubacterium, Parabacteroides, Ruminococcus, and Clostridia, decreased after AST prevention. In addition, the decrease in pathogenic genera and increase in short-chain fatty acids (SCFA) producing genera also contribute to renal function recovery. In summary, AST improved the pharmacokinetics of febuxostat in HN rats by comprehensive regulation of the gut microbiota, including urea metabolism, anti-calcification, and short-chain fatty acid generation. These results imply that febuxostat might accumulate in HN patients, and AST could reverse the accumulation through gut microbiota regulation.
Collapse
Affiliation(s)
- Zhen Xiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xiao Hui Tang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Sheng Lu Jiang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jia Qian Pang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yu Bin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Dan Dan Yuan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ling Ling Zhang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hui Min Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Fan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,*Correspondence: Qing Fan,
| |
Collapse
|
37
|
Zhang X, Li Z, Shen C, He J, Wang L, Di L, Rui B, Li N, Liu Z. Tao-Hong-Si-Wu decoction improves depressive symptoms in model rats via amelioration of BDNF-CREB-arginase I axis disorders. PHARMACEUTICAL BIOLOGY 2022; 60:1739-1750. [PMID: 36089851 PMCID: PMC9467594 DOI: 10.1080/13880209.2022.2116460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT The traditional Chinese medicine formula Tao-Hong-Si-Wu decoction (TSD), used for treating ischaemic stroke, has the potential to treat depressive disorder (DD). OBJECTIVE To explore the effective targets of TSD on DD animal models. MATERIALS AND METHODS Sprague-Dawley (SD) rats were modelled by inducing chronic unpredictable mild stress (CUMS) during 35 days and treated with three dosages of TSD (2.5, 5 and 10 g/kg) or fluoxetine (10 mg/kg) by oral gavage for 14 days. Bodyweight measurements and behavioural tests were performed to observe the effect of TSD on the CUMS animals. A gas chromatography coupled with mass spectrometry (GC-MS)-based metabolomic analysis was conducted to reveal the metabolic characteristics related to the curative effect of TSD. Levels of the proteins associated with the feature metabolites were analysed. RESULTS Reduced immobile duration and crossed squares in the behavioural tests were raised by 48.6% and 32.9%, on average, respectively, by TSD treatment (ED50=3.2 g/kg). Antidepressant effects of TSD were associated with 13 decreased metabolites and the restorations of ornithine and urea in the serum. TSD (5 g/kg) raised serum serotonin by 54.1 mg/dL but suppressed arginase I (Arg I) by 47.8 mg/dL in the CUMS rats. Proteins on the brain-derived neurotrophic factor (BDNF)-cAMP response element-binding protein (CREB) axis that modulate the inhibition of Arg I were suppressed in the CUMS rats but reversed by the TSD intervention. DISCUSSION AND CONCLUSIONS TSD improves depression-like symptoms in CUMS rats. Further study will focus on the antidepressant-like effects of effective compounds contained in TSD.
Collapse
Affiliation(s)
- Xiaoping Zhang
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Zeng Li
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Chuanpu Shen
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Jinzhi He
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Longfei Wang
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Lei Di
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Bin Rui
- School of Life Science, Anhui Agriculture University, Hefei, China
| | - Ning Li
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Zhicheng Liu
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Yang XY, Yu H, Fu J, Guo HH, Han P, Ma SR, Pan LB, Zhang ZW, Xu H, Hu JC, Zhang HJ, Bu MM, Zhang XF, Yang W, Wang JY, Jin JY, Zhang HC, Li DR, Lu JY, Lin Y, Jiang JD, Tong Q, Wang Y. Hydroxyurea ameliorates atherosclerosis in ApoE -/- mice by potentially modulating Niemann-Pick C1-like 1 protein through the gut microbiota. Theranostics 2022; 12:7775-7787. [PMID: 36451858 PMCID: PMC9706578 DOI: 10.7150/thno.76805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/28/2022] [Indexed: 12/02/2022] Open
Abstract
Rationale: The efficacy and mechanism of hydroxyurea in the treatment of atherosclerosis have rarely been reported. The goal of this study was to investigate the efficacy of hydroxyurea in high-fat diet-fed ApoE-/- mice against atherosclerosis and examine the possible mechanism underlying treatment outcomes. Methods: ApoE-/- mice were fed a high-fat diet for 1 month and then administered hydroxyurea by gavage continuously for 2 months. Aortic root hematoxylin-eosin (H&E) staining and oil red O staining were used to verify the efficacy of hydroxyurea; biochemical methods and ELISA were used to detect changes in relevant metabolites in serum. 16S rRNA was used to detect composition changes in the intestinal bacterial community of animals after treatment with hydroxyurea. Metabolomics methods were used to identify fecal metabolites and their changes. Immunohistochemical staining and ELISA were used for the localization and quantification of intestinal NPC1L1. Results: We showed that aortic root HE staining and oil red O staining determined the therapeutic efficacy of hydroxyurea in the treatment of atherosclerosis in high-fat diet-fed ApoE-/- mice. Serological tests verified the ability of hydroxyurea to lower total serum cholesterol and LDL cholesterol. The gut microbiota was significantly altered after HU treatment and was significantly different from that after antiplatelet and statin therapy. Meanwhile, a metabolomic study revealed that metabolites, including stearic acid, palmitic acid and cholesterol, were significantly enriched in mouse feces. Further histological and ELISAs verified that the protein responsible for intestinal absorption of cholesterol in mice, NPC1L1, was significantly reduced after hydroxyurea treatment. Conclusions: In high-fat diet-fed ApoE-/- mice, hydroxyurea effectively treated atherosclerosis, lowered serum cholesterol, modulated the gut microbiota at multiple levels and affected cholesterol absorption by reducing NPC1L1 in small intestinal epithelial cells.
Collapse
Affiliation(s)
- Xin-Yu Yang
- The First Hospital of Jilin University, Changchun, 130021, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hao-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xian-Feng Zhang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Yang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Yue Wang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Yu Jin
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Hui-Cong Zhang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Dong-Rui Li
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| | - Qian Tong
- The First Hospital of Jilin University, Changchun, 130021, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| |
Collapse
|
39
|
Chen M, Xie CR, Shi YZ, Tang TC, Zheng H. Gut microbiota and major depressive disorder: A bidirectional Mendelian randomization. J Affect Disord 2022; 316:187-193. [PMID: 35961601 DOI: 10.1016/j.jad.2022.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/22/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Observational studies showed an association between gut microbiota and depression, but the causality relationship between them is unclear. We aimed to determine whether there is a bidirectional causal relationship between the composition of gut microbiota and major depressive disorders (MDD) and explore the role of gut microbiota in decreasing the risk of MDD. METHODS Our two-sample Mendelian randomization (MR) study acquired top SNPs associated with the composition of gut microbiota (n = 18,340) and with MDDs (n = 480,359) from publicly available genome-wide association studies (GWAS). The SNPs estimates were pooled using inverse-variance weighted meta-analysis, with sensitivity analyses-weighted median, MR Egger, and MR Pleiotropy Residual Sum and Outlier (PRESSO). RESULTS The Actinobacteria class had protective causal effects on MDD (OR 0.88, 95%CI 0.87 to 0.9). The Bifidobacterium (OR 0.89, 95%CI 0.88 to 0.91) were further found to have similar effects as the Actinobacteria class. The genus Ruminococcus1 had a protective effect on MDD (OR 0.88, 95%CI 0.76 to 0.99) while the Streptococcaceae family and its genus had an anti-protective effect on MDD (OR 1.07, 95%CI 1.01 to 1.13), but these findings were not supported by the MR-Egger analysis. Bidirectional MR showed no effect of MDD on gut microbiota composition. LIMITATIONS The use of summary-level data, the risk of sample overlap and low statistical power are the major limiting factors. CONCLUSIONS Our MR analysis showed a protective effect of Actinobacteria, Bifidobacterium, and Ruminococcus and a potentially anti-protective effect of Streptococcaceae on MDD pathogenesis. Further studies are needed to transform the findings into practice.
Collapse
Affiliation(s)
- Min Chen
- Department of colorectal diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Chao-Rong Xie
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yun-Zhou Shi
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Tai-Chun Tang
- Department of colorectal diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hui Zheng
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
40
|
Paeonia lactiflora Pallas extract alleviates antibiotics and DNCB-induced atopic dermatitis symptoms by suppressing inflammation and changing the gut microbiota composition in mice. Biomed Pharmacother 2022; 154:113574. [DOI: 10.1016/j.biopha.2022.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
|
41
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
42
|
Application of Intranasal Administration in the Delivery of Antidepressant Active Ingredients. Pharmaceutics 2022; 14:pharmaceutics14102070. [PMID: 36297505 PMCID: PMC9611373 DOI: 10.3390/pharmaceutics14102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
As a mental disease in modern society, depression shows an increasing occurrence, with low cure rate and high recurrence rate. It has become the most disabling disease in the world. At present, the treatment of depression is mainly based on drug therapy combined with psychological therapy, physical therapy, and other adjuvant therapy methods. Antidepressants are primarily administered peripherally (oral and intravenous) and have a slow onset of action. Antidepressant active ingredients, such as neuropeptides, natural active ingredients, and some chemical agents, are limited by factors such as the blood–brain barrier (BBB), first-pass metabolism, and extensive adverse effects caused by systemic administration. The potential anatomical link between the non-invasive nose–brain pathway and the lesion site of depression may provide a more attractive option for the delivery of antidepressant active ingredients. The purpose of this article is to describe the specific link between intranasal administration and depression, the challenges of intranasal administration, as well as studies of intranasal administration of antidepressant active ingredients.
Collapse
|
43
|
Li X, Hou R, Qin X, Wu Y, Wu X, Tian J, Gao X, Du G, Zhou Y. Synergistic neuroprotective effect of saikosaponin A and albiflorin on corticosterone-induced apoptosis in PC12 cells via regulation of metabolic disorders and neuroinflammation. Mol Biol Rep 2022; 49:8801-8813. [PMID: 36002654 DOI: 10.1007/s11033-022-07730-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Saikosaponin A (SSA) and albiflorin (AF) are major bioactive compounds of Radix Bupleuri and Radix Paeoniae alba respectively, which possess antidepressant effects in pharmacological experiments. However, whether SSA and AF have synergistic neuroprotective effects and the synergistic mechanisms are still unknown. METHODS AND RESULTS The corticosterone-induced PC12 cells apoptosis model was employed to assess the neuroprotective effects of SSA and AF, and the synergistic effect was analyzed using three mathematical models. Meanwhile, cell metabolomics was used to detect the effects on metabolite regulation of SSA and AF. Furthermore, the key metabolites, metabolic enzymes, and cellular markers were verified by ELISA and Western blotting. The results showed that the combination of SSA and AF has a synergistic neuroprotective effect. Besides, the combination could regulate more metabolites than a single agent and possessed a stronger adjustment effect on metabolites. The TCA cycle was regulated by SSA and AF via improving mitochondrial function. The purine metabolism was regulated by SSA via inhibition xanthine oxidase activity and the glutamate metabolism was regulated by AF via inhibition glutaminase activity. Moreover, the oxidative stress induced by the purine metabolism was attenuated by SSA via a reduction in the ROS level. Additionally, the inflammation induced by the oxidative stress was attenuated by the SSA and AF via inhibition of the NLRP3 protein expression. CONCLUSIONS This study for the first time demonstrated the synergistic neuroprotective effects of SSA and AF, and the synergistic mechanisms were involved in metabolic disorders regulation and neuroinflammation inhibition.
Collapse
Affiliation(s)
- Xiao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Ruihong Hou
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China.
| | - Yanfei Wu
- Department of Traditional Chinese Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Guanhua Du
- Institute of Material Medical, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| |
Collapse
|
44
|
Bi C, Guo S, Hu S, Chen J, Ye M, Liu Z. The microbiota-gut-brain axis and its modulation in the therapy of depression: comparison of efficacy of conventional drugs and traditional Chinese medicine approaches. Pharmacol Res 2022; 183:106372. [PMID: 35908662 DOI: 10.1016/j.phrs.2022.106372] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Depression is a common and severe mental disease that places a heavy burden on human society, which can lead to decreased cognitive function, energy loss, insomnia, and even suicide. Although medication plays an important role in improving the symptoms of depression, approximately one third of people with depression do not significantly benefit from medication and experience various adverse reactions. Recently, increasing evidence has shown that gut microbes play an important role in the occurrence and development of depression. There have been illuminating studies previously conducted on the relationship between antidepressant chemicals, traditional Chinese medicine, and the microbiota-gut-brain axis (MGBA). Therefore, in this review, we summarize the role of the MGBA in the occurrence and development of depression, especially the important role of the MGBA in the mechanism of action of antidepressants. Modulation of the MGBA is proposed to enhance the efficacy of antidepressant drugs and reduce their side effects and disease recurrence, so as to provide a new method for the treatment of depression.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Shitian Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shijia Hu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China; Department of Behavioral Neurosciences, Science Research Center of Medical College, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
45
|
Ma SR, Tong Q, Lin Y, Pan LB, Fu J, Peng R, Zhang XF, Zhao ZX, Li Y, Yu JB, Cong L, Han P, Zhang ZW, Yu H, Wang Y, Jiang JD. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota. Signal Transduct Target Ther 2022; 7:207. [PMID: 35794102 PMCID: PMC9259588 DOI: 10.1038/s41392-022-01027-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) derived from the gut microbiota is an atherogenic metabolite. This study investigates whether or not berberine (BBR) could reduce TMAO production in the gut microbiota and treat atherosclerosis. Effects of BBR on TMAO production in the gut microbiota, as well as on plaque development in atherosclerosis were investigated in the culture of animal intestinal bacterial, HFD-fed animals and atherosclerotic patients, respectively. We found that oral BBR in animals lowers TMAO biosynthesis in intestine through interacting with the enzyme/co-enzyme of choline-trimethylamine lyase (CutC) and flavin-containing monooxygenase (FMO) in the gut microbiota. This action was performed by BBR’s metabolite dihydroberberine (a reductive BBR by nitroreductase in the gut microbiota), via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway. Oral BBR decreased TMAO production in animal intestine, lowered blood TMAO and interrupted plaque formation in blood vessels in the HFD-fed hamsters. Moreover, 21 patients with atherosclerosis exhibited the average decrease of plaque score by 3.2% after oral BBR (0.5 g, bid) for 4 months (*P < 0.05, n = 21); whereas the plaque score in patients treated with rosuvastatin plus aspirin, or clopidogrel sulfate or ticagrelor (4 months, n = 12) increased by 1.9%. TMA and TMAO in patients decreased by 38 and 29% in faeces (*P < 0.05; *P < 0.05), and 37 and 35% in plasma (***P < 0.001; *P < 0.05), after 4 months on BBR. BBR might treat atherosclerotic plaque at least partially through decreasing TMAO in a mode of action similar to that of vitamins.
Collapse
Affiliation(s)
- Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qian Tong
- The First Hospital of Jilin University, Changchun, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | | | - Zhen-Xiong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Li
- The First Hospital of Jilin University, Changchun, China
| | - Jin-Bo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lin Cong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| |
Collapse
|
46
|
Zhao N, Liu Z, Xing J, Zheng Z, Song F, Liu S. A novel strategy for high-specificity, high-sensitivity, and high-throughput study for gut microbiome metabolism of aromatic carboxylic acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Peng R, Han P, Fu J, Zhang ZW, Ma SR, Pan LB, Xia YY, Yu H, Xu H, Liu CX, Wang Y. Esterases From Bifidobacteria Exhibit the Conversion of Albiflorin in Gut Microbiota. Front Microbiol 2022; 13:880118. [PMID: 35464989 PMCID: PMC9019491 DOI: 10.3389/fmicb.2022.880118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Bifidobacteria is an important microbe that inhabits the human gut. It is capable of metabolizing complex compounds in the human diet. Albiflorin, an antidepressant natural product from Radix Paeoniae Alba in China, is difficult to absorb after oral administration, and its metabolism has been proven to be closely related to the gut microbiota. In this study, we demonstrated in vitro that several Bifidobacteria species were able to convert albiflorin to benzoic acid, and four esterases (B2, B3, B4, and BL) from Bifidobacterium breve and Bifidobacterium longum were found through genome mining and modeled by SWISS-MODEL. B2 and B3 presented the strongest albiflorin metabolism ability. The optimal conditions, including temperature, buffer, and pH, for the conversion of albiflorin by the four esterases were investigated. Furthermore, the effect of esterase on the metabolism of albiflorin in vivo was confirmed by transplanting bacteria containing esterase B2. This study demonstrated the vital role of esterases from Bifidobacteria in the metabolism of natural compounds containing ester bonds, which could contribute to the development of new enzymes, microbial evolution, and probiotic adjuvant compounds for treatment.
Collapse
Affiliation(s)
- Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Xia
- Tianjin Institute of Pharmaceutical Research, Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Tianjin, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-Xiao Liu
- Tianjin Institute of Pharmaceutical Research, Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Zhou Y, Feng Y, Cen R, Hou X, Yu H, Sun J, Zhou L, Ji Q, Zhao L, Wang Y, Li Q. San-Wu-Huang-Qin decoction attenuates tumorigenesis and mucosal barrier impairment in the AOM/DSS model by targeting gut microbiome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153966. [PMID: 35158238 DOI: 10.1016/j.phymed.2022.153966] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A classic herbal formula San-Wu-Huang-Qin (SWHQ) decoction has been widely used in clinical practices to prevent and treat colorectal cancer (CRC) for years, but its anti-tumorigenic properties and the underlying mechanisms remain undetermined. PURPOSE The present study used a CRC mouse model to clarify whether and how SWHQ suppresses tumorigenesis. METHODS Different doses of SWHQ were gavaged to the AOM/DSS model mice to examine its anti-tumor efficacy in comparison with the positive control drug Aspirin. The underlying microbiota-driven anti-tumor action of SWHQ was proven with bacterial manipulations by fecal microbial transplantation (FMT) in vivo and anaerobic culturing in vitro. RESULTS SWHQ decoction dose-dependently reduced colonic tumor numbers/loads of AOM/DSS models and suppressed their disease activity index scores. SWHQ also recovered epithelial MUC2 secretion and colonic tight junction protein (ZO-1 and claudin1) expression in the mouse model. Such inhibitory impact on tumorigenesis and mucosal barrier impairment was found to be associated with modulation of gut dysbiosis, particularly for suppressing lipopolysaccharide (LPS) producers. The FMT experiment confirmed the substantial contribution of SWHQ-reshaped microbiota to anti-tumor function and mucosal barrier protection. Moreover, LPS-activated TLR4/NF-κB signaling and its downstream pro-inflammatory factors were significantly suppressed in the colon of SWHQ-treated models and SWHQ-reshaped microbiota recipients. CONCLUSIONS We demonstrated that the SWHQ effectively inhibited tumorigenesis and protect mucosal barrier in CRC at least partially by targeting gut microbiota. This study provides scientific basis for the clinical usage of SWHQ in CRC intervention and prevention.
Collapse
Affiliation(s)
- Yelu Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Cen
- Endoscopy center of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Yu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Sun
- Laboratory Department of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
49
|
Zhang ZW, Gao CS, Zhang H, Yang J, Wang YP, Pan LB, Yu H, He CY, Luo HB, Zhao ZX, Zhou XB, Wang YL, Fu J, Han P, Dong YH, Wang G, Li S, Wang Y, Jiang JD, Zhong W. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota. Acta Pharm Sin B 2022; 12:3298-3312. [PMID: 35967282 PMCID: PMC9366226 DOI: 10.1016/j.apsb.2022.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/23/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Affiliation(s)
- Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Chun-Sheng Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Ya-Ping Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Chi-Yu He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Zhen-Xiong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xin-Bo Zhou
- National Engineering Research Center for the Emergence Drugs, Beijing 100000, China
| | - Yu-Li Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Song Li
- School of Pharmaceutical Sciences, Hainan University, Hainan 570228, China
- Corresponding authors.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors.
| | - Wu Zhong
- National Engineering Research Center for the Emergence Drugs, Beijing 100000, China
- Corresponding authors.
| |
Collapse
|
50
|
He X, Wang N, Li Z, Zhang S, Yao Z, Xie X, Yang Z, Qiao S, Hui Z, Chen J, Du X. Network pharmacology and GEO database-based analysis of Sini powder in the prevention of depression among shift workers. ALL LIFE 2022. [DOI: 10.1080/26895293.2021.2019130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xu He
- Shaanxi University of Traditional Chinese Medicine, Xian yang, People’s Republic of China
| | - Nanding Wang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, People’s Republic of China
| | - Zhe Li
- Department of First Clinical Medicine, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xian Yang, People’s Republic of China
| | - Sha Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xian Yang, People’s Republic of China
| | - Zhen Yao
- Shaanxi University of Traditional Chinese Medicine, Xian yang, People’s Republic of China
| | - Xiaoxia Xie
- Shaanxi University of Traditional Chinese Medicine, Xian yang, People’s Republic of China
| | - Zhengning Yang
- Shaanxi University of Traditional Chinese Medicine, Xian yang, People’s Republic of China
| | - Shuzhen Qiao
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi Huamen, Xi’an, People’s Republic of China
| | - Zhenliang Hui
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi Huamen, Xi’an, People’s Republic of China
| | - Jun Chen
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi Huamen, Xi’an, People’s Republic of China
| | - Xia Du
- Shaanxi Academy of Traditional Chinese Medicine, Xi an, People’s Republic of China
- Chinese Academy of Traditional Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|