1
|
Li G, Wang Q, Liu H, Yang Z, Wu Y, He L, Deng X. Fabricating Composite Cell Sheets for Wound Healing: Cell Sheets Based on the Communication Between BMSCs and HFSCs Facilitate Full-Thickness Cutaneous Wound Healing. Tissue Eng Regen Med 2024; 21:421-435. [PMID: 37995084 PMCID: PMC10987453 DOI: 10.1007/s13770-023-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Insufficient angiogenesis and the lack of skin appendages are critical challenges in cutaneous wound healing. Stem cell-fabricated cell sheets have become a promising strategy, but cell sheets constructed by a single cell type are inadequate to provide a comprehensive proregenerative microenvironment for wound tissue. METHODS Based on the communication between cells, in this study, bone marrow mesenchymal stem cells (BMSCs) and hair follicle stem cells (HFSCs) were cocultured to fabricate a composite cell sheet (H/M-CS) for the treatment of full-thickness skin wounds in mice. RESULTS Experiments confirmed that there is cell-cell communication between BMSCs and HFSCs, which enhances the cell proliferation and migration abilities of both cell types. Cell-cell talk also upregulates the gene expression of pro-angiogenic-related cytokines in BMSCs and pro-hair follicle-related cytokines in HFSCs, as well as causing changes in the properties of secreted extracellular matrix components. CONCLUSIONS Therefore, the composite cell sheet is more conducive for cutaneous wound healing and promoting the regeneration of blood vessels and hair follicles.
Collapse
Affiliation(s)
- Gongjian Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qin Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hao Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zuojun Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yuhan Wu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li He
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
3
|
Bardag Gorce F, Al Dahan M, Narwani K, Terrazas J, Ferrini M, Calhoun CC, Uyanne J, Royce-Flores J, Crum E, Niihara Y. Human Oral Mucosa as a Potentially Effective Source of Neural Crest Stem Cells for Clinical Practice. Cells 2023; 12:2216. [PMID: 37759439 PMCID: PMC10526281 DOI: 10.3390/cells12182216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We report in this study on the isolation and expansion of neural crest stem cells (NCSCs) from the epithelium of oral mucosa (OM) using reagents that are GMP-certified and FDA-approved for clinical use. Characterization analysis showed that the levels of keratins K2, K6C, K4, K13, K31, and K15-specific to OM epithelial cells-were significantly lower in the experimental NCSCs. While SOX10 was decreased with no statistically significant difference, the earliest neural crest specifier genes SNAI1/2, Ap2a, Ap2c, SOX9, SOX30, Pax3, and Twist1 showed a trend in increased expression in NCSCs. In addition, proteins of Oct4, Nestin and Noth1 were found to be greatly expressed, confirming NCSC multipotency. In conclusion, our study showed that the epithelium of OM contains NCSCs that can be isolated and expanded with clinical-grade reagents to supply the demand for multipotent cells required for clinical applications in regenerative medicine. Supported by Emmaus Medical Inc.
Collapse
Affiliation(s)
- Fawzia Bardag Gorce
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mais Al Dahan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Kavita Narwani
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
| | - Jesus Terrazas
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Monica Ferrini
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Colonya C. Calhoun
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Department of Oral & Maxillofacial Surgery and Hospital Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jettie Uyanne
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, USA
| | - Jun Royce-Flores
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Eric Crum
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yutaka Niihara
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Emmaus Medical, Inc., Torrance, CA 90503, USA
| |
Collapse
|
4
|
Kim N, Lee H, Han G, Kang M, Park S, Kim DE, Lee M, Kim M, Na Y, Oh S, Bang S, Jang T, Kim H, Park J, Shin SR, Jung H. 3D-Printed Functional Hydrogel by DNA-Induced Biomineralization for Accelerated Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300816. [PMID: 37076933 PMCID: PMC10265106 DOI: 10.1002/advs.202300816] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Chronic wounds in diabetic patients are challenging because their prolonged inflammation makes healing difficult, thus burdening patients, society, and health care systems. Customized dressing materials are needed to effectively treat such wounds that vary in shape and depth. The continuous development of 3D-printing technology along with artificial intelligence has increased the precision, versatility, and compatibility of various materials, thus providing the considerable potential to meet the abovementioned needs. Herein, functional 3D-printing inks comprising DNA from salmon sperm and DNA-induced biosilica inspired by marine sponges, are developed for the machine learning-based 3D-printing of wound dressings. The DNA and biomineralized silica are incorporated into hydrogel inks in a fast, facile manner. The 3D-printed wound dressing thus generates provided appropriate porosity, characterized by effective exudate and blood absorption at wound sites, and mechanical tunability indicated by good shape fidelity and printability during optimized 3D printing. Moreover, the DNA and biomineralized silica act as nanotherapeutics, enhancing the biological activity of the dressings in terms of reactive oxygen species scavenging, angiogenesis, and anti-inflammation activity, thereby accelerating acute and diabetic wound healing. These bioinspired 3D-printed hydrogels produce using a DNA-induced biomineralization strategy are an excellent functional platform for clinical applications in acute and chronic wound repair.
Collapse
Affiliation(s)
- Nahyun Kim
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Hyun Lee
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Ginam Han
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Minho Kang
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Sinwoo Park
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Dong Eung Kim
- Research Institute of Advanced Manufacturing & Materials TechnologyKorea Institute of Industrial TechnologyIncheon21999Republic of Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineeringand Institute of Chemical Processes (ICP)Seoul National UniversitySeoul08826Republic of Korea
- Center for Nanoparticle ResearchInstitute of Basic Science (IBS)Seoul08826Republic of Korea
| | - Moon‐Jo Kim
- Research Institute of Advanced Manufacturing & Materials TechnologyKorea Institute of Industrial TechnologyIncheon21999Republic of Korea
| | - Yuhyun Na
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - SeKwon Oh
- Research Institute of Advanced Manufacturing & Materials TechnologyKorea Institute of Industrial TechnologyIncheon21999Republic of Korea
| | - Seo‐Jun Bang
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Tae‐Sik Jang
- Department of Materials Science and EngineeringChosun UniversityGwangju61452Republic of Korea
| | - Hyoun‐Ee Kim
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineeringand Institute of Chemical Processes (ICP)Seoul National UniversitySeoul08826Republic of Korea
- Center for Nanoparticle ResearchInstitute of Basic Science (IBS)Seoul08826Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical Schooland Brigham and Women's HospitalCambridgeMA02139USA
| | - Hyun‐Do Jung
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| |
Collapse
|
5
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
6
|
Masson-Meyers DS, Tabatabaei F, Steinhaus L, Toth JM, Tayebi L. Development of fibroblast/endothelial cell-seeded collagen scaffolds for in vitro prevascularization. J Biomed Mater Res B Appl Biomater 2023; 111:633-645. [PMID: 36262080 PMCID: PMC10585651 DOI: 10.1002/jbm.b.35182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
The development of vascularized scaffolds remains one of the major challenges in tissue engineering, and co-culturing with endothelial cells is known as one of the possible approaches for this purpose. In this approach, optimization of cell culture conditions, scaffolds, and fabrication techniques is needed to develop tissue equivalents that will enable in vitro formation of a capillary network. Prevascularized equivalents will be more physiologically comparable to the native tissues and potentially prevent insufficient vascularization after implantation. This study aimed to culture human umbilical vein endothelial cells (HUVECs), alone or in co-culture with fibroblasts, on collagen scaffolds prepared by simple fabrication approaches for in vitro prevascularization. Different concentrations and ratios of HUVECs and fibroblasts seeded on collagen gel and sponge scaffolds under several culture conditions were examined. Cell viability, scaffolds morphology, and structure were analyzed. Collagen gel scaffolds showed good cell proliferation and viability, with higher proliferation rates for cells cultured in a 2:1 (fibroblasts: HUVECs) ratio and kept in endothelial cell growth medium. However, these matrices were unable to support endothelial cell sprouting. Collagen sponges were highly porous and showed good cell viability. However, they became fragile over time in culture, and they still lack signs of vascularization. Collagen scaffolds were a good platform for cell growth and viability. However, under the experimental conditions of this study, the HUVEC/fibroblast-seeded scaffolds were not suitable platforms to generate in vitro prevascularized equivalents. Our findings will be a valuable starting point to optimize culture microenvironments and scaffolds during fabrication of prevascularized scaffolds.
Collapse
Affiliation(s)
| | | | - Lane Steinhaus
- Marquette University School of Dentistry. Milwaukee, WI 53233, USA
| | - Jeffrey M. Toth
- Marquette University School of Dentistry. Milwaukee, WI 53233, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry. Milwaukee, WI 53233, USA
| |
Collapse
|
7
|
Bastidas JG, Maurmann N, Oliveira L, Alcantara B, Pinheiro CV, Leipnitz G, Meyer F, Oliveira M, Rigon P, Pranke P. Bilayer scaffold from PLGA/fibrin electrospun membrane and fibrin hydrogel layer supports wound healing in vivo. Biomed Mater 2023; 18. [PMID: 36599168 DOI: 10.1088/1748-605x/acb02f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Hybrid scaffolds from natural and synthetic polymers have been widely used due to the complementary nature of their physical and biological properties. The aim of the present study, therefore, has been to analyzein vivoa bilayer scaffold of poly(lactide-co-glycolide)/fibrin electrospun membrane and fibrin hydrogel layer on a rat skin model. Fibroblasts were cultivated in the fibrin hydrogel layer and keratinocytes on the electrospun membrane to generate a skin substitute. The scaffolds without and with cells were tested in a full-thickness wound model in Wistar Kyoto rats. The histological results demonstrated that the scaffolds induced granulation tissue growth, collagen deposition and epithelial tissue remodeling. The wound-healing markers showed no difference in scaffolds when compared with the positive control. Activities of antioxidant enzymes were decreased concerning the positive and negative control. The findings suggest that the scaffolds contributed to the granulation tissue formation and the early collagen deposition, maintaining an anti-inflammatory microenvironment.
Collapse
Affiliation(s)
- Juliana Girón Bastidas
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil
| | - Natasha Maurmann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil
| | - Luiza Oliveira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Alcantara
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Vieira Pinheiro
- Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil.,Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil.,Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil.,Post Graduation Program in Biological Sciences: Biochemistry, Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Fabíola Meyer
- Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Maikel Oliveira
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil
| | - Paula Rigon
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil.,Stem Cell Research Institute (Instituto de Pesquisa com Células-tronco), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Yan J, Zheng D, Gu H, Yu Y, Zeng J, Chen Q, Yu A, Zhang X. In Situ Sprayed Biotherapeutic Gel Containing Stable Microbial Communities for Efficient Anti-Infection Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205480. [PMID: 36479844 PMCID: PMC9896078 DOI: 10.1002/advs.202205480] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/20/2022] [Indexed: 06/09/2023]
Abstract
Systematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug-resistant bacteria. Here, an in situ-formed biotherapeutic gel that controls multidrug-resistant bacterial infections and accelerates wound healing is reported. This biotherapeutic gel is constructed by incorporating stable microbial communities (kombucha) capable of producing antimicrobial substances and organic acids into thermosensitive Pluronic F127 (polyethylene-polypropylene glycol) solutions. Furthermore, it is found that the stable microbial communities-based biotherapeutic gel possesses a broad antimicrobial spectrum and strong antibacterial effects in diverse pathogenic bacteria-derived xenograft infection models, as well as in patient-derived multidrug-resistant bacterial xenograft infection models. The biotherapeutic gel system considerably outperforms the commercial broad-spectrum antibacterial gel (0.1% polyaminopropyl biguanide) in pathogen removal and infected wound healing. Collectively, this biotherapeutic strategy of exploiting stable symbiotic consortiums to repel pathogens provides a paradigm for developing efficient antibacterial biomaterials and overcomes the failure of antibiotics to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jian‐Hua Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Di‐Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Hui‐Yun Gu
- Department of Orthopedic Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| | - Yun‐Jian Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Jin‐Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Qi‐Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Ai‐Xi Yu
- Department of Orthopedic Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
- Department of Orthopedic Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| |
Collapse
|
9
|
Smart surface-based cell sheet engineering for regenerative medicine. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Masson-Meyers DS, Bertassoni LE, Tayebi L. Oral mucosa equivalents, prevascularization approaches, and potential applications. Connect Tissue Res 2022; 63:514-529. [PMID: 35132918 PMCID: PMC9357199 DOI: 10.1080/03008207.2022.2035375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Oral mucosa equivalents (OMEs) have been used as in vitro models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs. PURPOSE The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and in vitro and clinical potential applications. STUDY SELECTION Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs. CONCLUSIONS Several studies have reported the development and in vitro and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.
Collapse
Affiliation(s)
| | - Luiz E. Bertassoni
- School of Dentistry, Oregon Health and Science University. Portland, OR 97201, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry. Milwaukee, WI 53233, USA
| |
Collapse
|
11
|
Zhou L, Min T, Bian X, Dong Y, Zhang P, Wen Y. Rational Design of Intelligent and Multifunctional Dressing to Promote Acute/Chronic Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:4055-4085. [PMID: 35980356 DOI: 10.1021/acsabm.2c00500] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, the clinic's treatment of acute/chronic wounds is still unsatisfactory due to the lack of functional and appropriate wound dressings. Intelligent and multifunctional dressings are considered the most advanced wound treatment modalities. It is essential to design and develop wound dressings with required functions according to the wound microenvironment in the clinical treatment. This work summarizes microenvironment characteristics of various common wounds, such as acute wound, diabetic wound, burns wound, scalded wound, mucosal wound, and ulcers wound. Furthermore, the factors of transformation from acute wounds to chronic wounds were analyzed. Then we focused on summarizing how researchers fully and thoroughly combined the complex microenvironment with modern advanced technology to ensure the usability and value of the dressing, such as photothermal-sensitive dressings, microenvironment dressing (pH-sensitive dressings, ROS-sensitive dressings, and osmotic pressure dressings), hemostatic dressing, guiding tissue regeneration dressing, microneedle dressings, and 3D/4D printing dressings. Finally, the revolutionary development of wound dressings and how to transform the existing advanced functional dressings into clinical needs as soon as possible have carried out a reasonable and meaningful outlook.
Collapse
Affiliation(s)
- Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Tiantian Min
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
12
|
Gao C, Lu C, Qiao H, Zhang Y, Liu H, Jian Z, Guo Z, Liu Y. Strategies for vascularized skin models in vitro. Biomater Sci 2022; 10:4724-4739. [PMID: 35861381 DOI: 10.1039/d2bm00784c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As the largest organ of the human body, the skin has a complex multi-layered structure. The composition of the skin includes cells, extracellular matrix (ECM), vascular networks, and other appendages. Because of the shortage of donor sites, skin substitutes are of great significance in the field of skin tissue repair. Moreover, skin models for disease research, drug screening, and cosmetic testing fall far short of the demand. Skin tissue engineering has made remarkable progress in developing skin models over the years. However, there are still several problems to be resolved. One of the crucial aspects is the lack of vascular systems for nutrient transport and waste disposal. Here, we will focus on the discussion and analysis of advanced manufacturing strategies for prevascularized skin, such as a scaffold-based method, cell coating technology, cell sheet engineering, skin-on-a-chip, and three-dimensional (3D) bioprinting. These key challenges, which restrict the prevascularized skin and provide perspectives on future directions will also be highlighted.
Collapse
Affiliation(s)
- Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhian Jian
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Zilong Guo
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China. .,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
13
|
Huang J, Han Q, Cai M, Zhu J, Li L, Yu L, Wang Z, Fan G, Zhu Y, Lu J, Zhou G. Effect of Angiogenesis in Bone Tissue Engineering. Ann Biomed Eng 2022; 50:898-913. [PMID: 35525871 DOI: 10.1007/s10439-022-02970-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/17/2022] [Indexed: 12/20/2022]
Abstract
The reconstruction of large skeletal defects is still a tricky challenge in orthopedics. The newly formed bone tissue migrates sluggishly from the periphery to the center of the scaffold due to the restrictions of exchange of oxygen and nutrition impotent cells osteogenic differentiation. Angiogenesis plays an important role in bone reconstruction and more and more studies on angiogenesis in bone tissue engineering had been published. Promising advances of angiogenesis in bone tissue engineering by scaffold designs, angiogenic factor delivery, in vivo prevascularization and in vitro prevascularization are discussed in detail. Among all the angiogenesis mode, angiogenic factor delivery is the common methods of angiogenesis in bone tissue engineering and possible research directions in the future.
Collapse
Affiliation(s)
- Jianhao Huang
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, People's Republic of China
| | - Qixiu Han
- Department of Orthopedics, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Meng Cai
- Department of Orthopedics, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210002, People's Republic of China
| | - Jie Zhu
- Department of Orthopedics, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Lingfeng Yu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Zhen Wang
- Department of Orthopedics, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Gentao Fan
- Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China
| | - Yan Zhu
- Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China
| | - Jingwei Lu
- Department of Orthopedics, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China. .,Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China.
| | - Guangxin Zhou
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, People's Republic of China. .,Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China. .,Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China. .,The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
14
|
ŞAHİN Y, GÜN GÖK Z, ALÇIĞIR ME, ÇINAR M. Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.990270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Jiang RC, Zheng XY, Yang SL, Shi HJ, Xi JH, Zou YJ, Dou HQ, Wang YJ, Qin Y, Zhang XL, Xiao Q. CD146 mediates the anti-apoptotic role of Netrin-1 in endothelial progenitor cells under hypoxic conditions. Mol Med Rep 2021; 25:5. [PMID: 34738629 PMCID: PMC8600420 DOI: 10.3892/mmr.2021.12521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023] Open
Abstract
Modulating the biological status of endothelial progenitor cells (EPCs), such as function and survival, is essential for therapeutic angiogenesis in ischemic vascular disease environments. This study aimed to explore the role and molecular mechanisms underlying Netrin-1 in the viability and angiogenic function of EPCs. EPCs were isolated from the bone barrow of adult C57/BL6 mice. The apoptosis and various functions of EPCs were analyzed in vitro by manipulating the expression of Netrin-1. The TUNEL assay was performed to detect apoptotic EPCs. Cell migration and tube formation assays were performed to detect EPC function. Trypan blue staining was performed to detect cell viability. Western blot analysis was performed to detect the protein expression levels of Netrin-1, CD146 and apoptotic factors. Quantitative PCR analysis was performed to detect the expression levels of Netrin-1 receptors. The results demonstrated that treatment with exogenous Netrin-1 promoted EPC migration and tube formation, whereas transfection with small interfering (si)RNA targeting Netrin-1 exhibited the opposite effects. Exogenous Netrin-1 protected EPCs from hypoxia-induced apoptosis, whereas the interruption of endogenous Netrin-1 enhancement under hypoxia by Netrin-1-siRNA exacerbated the apoptosis of EPCs. Furthermore, CD146, one of the immunoglobulin receptors activated by Netrin-1, was screened for in the present study. Results demonstrated that CD146 did not participate in Netrin-1-promoted EPC function, but mediated the anti-apoptotic effects of Netrin-1 in EPCs. In conclusion, Netrin-1 enhanced the angiogenic function of EPCs and alleviated hypoxia-induced apoptosis, which was mediated by CD146. This biological function of Netrin-1 may provide a potential therapeutic option to promote EPCs for the treatment of ischemic vascular diseases.
Collapse
Affiliation(s)
- Ru-Chao Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Xue-Ying Zheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Sheng-Lan Yang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Hai-Jie Shi
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Jia-Hui Xi
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Yong-Jian Zou
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Hua-Qian Dou
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Yun-Jing Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Yuan Qin
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Ling Zhang
- Department of Neonatology, Maternal and Children Hospital of Guangdong Province, Guangzhou, Guangdong 510260, P.R. China
| | - Qing Xiao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
16
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
cG-CAOMECS-clinical-grade cultured autologous oral mucosal epithelial cell sheet. Cell Tissue Res 2021; 386:47-57. [PMID: 34302219 DOI: 10.1007/s00441-021-03507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
The present study reports the feasibility and successful production of rabbit cG-CAOMECS, designed to reconstruct corneal epithelium of patients with bilateral limbal stem cell deficiency. To produce a safe, chemically defined and FDA compliant cG-CAOMECS, oral mucosal epithelial cells were isolated from a biopsy of rabbit buccal tissue and seeded on a cGMP-certified cell culture surface coated with GMP-grade extracellular matrix. A newly designed clinical-grade medium (KaFa™ medium) was utilized to carry out cell expansion. Detachment and harvesting of the produced cell sheet was accomplished using collagenase treatment. Live cell imaging and morphological analysis techniques were used to examine cell growth. Cells attached onto the surface and self-assembled into colony-forming units (CFUs). Microscopic examination showed that CFUs formed during the first 5 days, and basal monolayer cell sheet formed in less than 10 days. Cells expanded to form a multilayered epithelial cell sheet that was harvested after 17-19 days in culture. Immunostaining and Western blot analyses showed that deltaNp63 was expressed in the basal cells and K3/K12 was expressed in the apical cells, indicating the presence of corneal epithelial-like cells in the produced cell sheet. Adhesion molecules, E-cadherin, beta-catenin, and Cnx43 were also expressed and exhibited the epithelial integrity of the cell sheet. The expression of integrin-beta1 and beta4 confirmed that the collagenase treatment used for detaching and harvesting the cell sheet did not have adverse effects. Our results showed that the utilization of clinical-grade and FDA-approved reagents successfully supported the production of cG-CAMECS.
Collapse
|
18
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Masson-Meyers DS, Tayebi L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J Tissue Eng Regen Med 2021; 15:747-762. [PMID: 34058083 DOI: 10.1002/term.3225] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
Insufficient vascularization during tissue repair is often associated with poor clinical outcomes. This is a concern especially when patients have critical-sized injuries, where the size of the defect restricts vascularity, or even in small defects that have to be treated under special conditions, such as after radiation therapy (relevant to tumor resection) that hinders vascularity. In fact, poor vascularization is one of the major obstacles for clinical application of tissue engineering methods in soft tissue repair. As a key issue, lack of graft integration, caused by inadequate vascularization after implantation, can lead to graft failure. Moreover, poor vascularization compromises the viability of cells seeded in deep portions of scaffolds/graft materials, due to hypoxia and insufficient nutrient supply. In this article we aim to review vascularization strategies employed in tissue engineering techniques to repair soft tissues. For this purpose, we start by providing a brief overview of the main events during the physiological wound healing process in soft tissues. Then, we discuss how tissue repair can be achieved through tissue engineering, and considerations with regards to the choice of scaffold materials, culture conditions, and vascularization techniques. Next, we highlight the importance of vascularization, along with strategies and methods of prevascularization of soft tissue equivalents, particularly cell-based prevascularization. Lastly, we present a summary of commonly used in vitro methods during the vascularization of tissue-engineered soft tissue constructs.
Collapse
Affiliation(s)
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
20
|
Sezgin B, Tatar S, Karahuseyinoglu S, Sahin GN, Ergun Y, Meric G, Ersoy K. The effects of oral mucosa-derived heterotopic fibroblasts on cutaneous wound healing. J Plast Reconstr Aesthet Surg 2021; 74:2751-2758. [PMID: 33935009 DOI: 10.1016/j.bjps.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
An intriguing observation that has recently found support through clinical and experimental studies is that wounds of the oral mucosa tend to display faster healing and result in less scarring than in the skin. We aimed to investigate the potential of heterotopic oral mucosal fibroblasts in cutaneous wounds while determining the main differences between wounds conditioned with either the oral mucosa or dermis-derived human fibroblasts. A total of 48 nude mice were divided into four groups: control, sham, dermal fibroblast (DF), and oral fibroblast (OF). Fibroblasts were isolated, cultured, and seeded onto fibrin scaffolds for transfer to full-thickness dorsal wounds. Cell viability, wound area, healing rate, vascularization, cellular proliferation, dermal thickness, collagen architecture, and subtypes were evaluated. Both cell groups had a viability of 95% in fibrin gel prior to transfer. None of the wounds fully epithelialized on day 10, while all were epithelialized by day 21, which resulted in scars of different sizes and quality. Healing rate and scars were similar between the control and sham groups, whereas fastest healing and least scarring were noted in the OF group. Dermal thickness was highest in the DF group, which was also supported by highest levels of collagen types I and III. Proliferative cells and vascular density were highest in the OF group. DF result in healing through a thick dermal component, while oral fibroblasts result in faster healing and less scarring through potentially privileged angiogenic and regenerative gene expression.
Collapse
Affiliation(s)
- Billur Sezgin
- Koc University School of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey.
| | - Sedat Tatar
- Koc University School of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | | | - Gizem Nur Sahin
- Koc University Graduate School of Health Sciences, Department of Reproductive Medicine/Biology, Istanbul, Turkey
| | - Yagmur Ergun
- Koc University Graduate School of Health Sciences, Department of Reproductive Medicine/Biology, Istanbul, Turkey
| | - Gizem Meric
- Koc University School of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | - Kaan Ersoy
- Koc University School of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| |
Collapse
|
21
|
Identification of the Potential Biomarkers Involved in the Human Oral Mucosal Wound Healing: A Bioinformatic Study. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6695245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective. To identify the key genetic and epigenetic mechanisms involved in the wound healing process after injury of the oral mucosa. Materials and Methods. Gene expression profiling datasets pertaining to rapid wound healing of oral mucosa were identified using the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed to identify differentially expressed genes (DEGs) during oral mucosal wound healing. Next, functional enrichment analysis was performed to identify the biological processes (BPs) and signaling pathways relevant to these DEGs. A protein-protein interaction (PPI) network was constructed to identify hub DEGs. Interaction networks were constructed for both miRNA-target DEGs and DEGs-transcription factors. A DEGs-chemical compound interaction network and a miRNA-small molecular interaction network were also constructed. Results. DEGs were found significantly enriched in several signaling pathways including arachidonic acid metabolism, cell cycle, p53, and ECM-receptor interaction. Hub genes, GABARAPL1, GABARAPL2, HDAC5, MAP1LC3A, AURKA, and PLK1, were identified via PPI network analysis. Two miRNAs, miR-34a-5p and miR-335-5p, were identified as pivotal players in the miRNA-target DEGs network. Four transcription factors FOS, PLAU, BCL6, and RORA were found to play key roles in the TFs-DEGs interaction network. Several chemical compounds including Valproic acid, Doxorubicin, Nickel, and tretinoin and small molecular drugs including atorvastatin, 17β-estradiol, curcumin, and vitamin D3 were noted to influence oral mucosa regeneration by regulating the expression of healing-associated DEGs/miRNAs. Conclusion. Genetic and epigenetic mechanisms and specific drugs were identified as significant molecular mechanisms and entities relevant to oral mucosal healing. These may be valuable potential targets for experimental research.
Collapse
|
22
|
Fan Z, Xie X, Zhu S, Liao X, Yin Z, Zhang Y, Liu F. Novel pre-vascularized tissue-engineered dermis based on stem cell sheet technique used for dermis-defect healing. Regen Biomater 2020; 7:627-638. [PMID: 33365148 PMCID: PMC7748445 DOI: 10.1093/rb/rbaa039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 08/23/2020] [Indexed: 12/28/2022] Open
Abstract
Insufficient donor dermis and the shortage of three-dimensional vascular networks are the main limitations in the tissue-engineered dermis (TED). To solve these problems, we initially constructed pre-vascularized bone marrow mesenchymal stem cell sheet (PBMCS) and pre-vascularized fibroblasts cell sheet (PFCS) by cell sheet technology, and then superimposed or folded them together to construct a pre-vascularized TED (PTED), aiming to mimic the real dermis structure. The constructed PTED was implanted in nude mice dorsal dermis-defect wound and the wound-healing effect was quantified at Days 1, 7 and 14 via the methods of histochemistry and immunohistochemistry. The results showed that PTED could rapidly promote the wound closure, especially at Day 14, and the wound-healing rate of three-layer PTED could reach 97.2% (P < 0.01), which was faster than the blank control group (89.1%), PBMCS (92.4%), PFCS (93.8%) and six-layer PTED (92.3%). In addition, the vessel density in the PTED group was higher than the other groups on the 14th day. Taken together, it is proved that the PTED, especially three-layer PTED, is more conducive to the full-thickness dermis-defect repair and the construction of the three-dimensional vascular networks, indicating its potential application in dermis-defect repair.
Collapse
Affiliation(s)
- Zengjie Fan
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Xuzhuzi Xie
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Shengqian Zhu
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Xiaozhu Liao
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Zhengrong Yin
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Yujue Zhang
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| |
Collapse
|
23
|
Bryja A, Latosiński G, Jankowski M, Angelova Volponi A, Mozdziak P, Shibli JA, Bryl R, Spaczyńska J, Piotrowska-Kempisty H, Krawiec K, Kempisty B, Dyszkiewicz-Konwińska M. Transcriptomic and Morphological Analysis of Cells Derived from Porcine Buccal Mucosa-Studies on an In Vitro Model. Animals (Basel) 2020; 11:ani11010015. [PMID: 33374146 PMCID: PMC7824432 DOI: 10.3390/ani11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Domestic pigs express high phylogenetic similarity to humans and are often used as a compatible model in biomedical research. Porcine tissues are used as an accessible biomaterial in human skin transplants and tissue architecture reconstruction. We used transcriptional analysis to investigate the dynamics of complex biological system of the mucosa. Additionally, we performed computer analysis of microscopic images of cultured cells in vitro. Computer analysis of images identified epithelial cells and connective tissue cells in in vitro culture. Abstract Transcriptional analysis and live-cell imaging are a powerful tool to investigate the dynamics of complex biological systems. In vitro expanded porcine oral mucosal cells, consisting of populations of epithelial and connective lineages, are interesting and complex systems for study via microarray transcriptomic assays to analyze gene expression profile. The transcriptomic analysis included 56 ontological groups with particular focus on 7 gene ontology groups that are related to the processes of differentiation and development. Most analyzed genes were upregulated after 7 days and downregulated after 15 and 30 days of in vitro culture. The performed transcriptomic analysis was then extended to include automated analysis of differential interference contrast microscopy (DIC) images obtained during in vitro culture. The analysis of DIC imaging allowed to identify the different populations of keratinocytes and fibroblasts during seven days of in vitro culture, and it was possible to evaluate the proportion of these two populations of cells. Porcine mucosa may be a suitable model for reference research on human tissues. In addition, it can provide a reference point for research on the use of cells, scaffolds, or tissues derived from transgenic animals for applications in human tissues reconstruction.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Grzegorz Latosiński
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07030-010, SP, Brazil;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Julia Spaczyńska
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Krzysztof Krawiec
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
24
|
Guo HL, Peng XF, Bao XQ, Wang L, Jia ZM, Huang YC, Zhou JM, Xie H, Chen F. Bladder reconstruction using autologous smooth muscle cell sheets grafted on a pre-vascularized capsule. Theranostics 2020; 10:10378-10393. [PMID: 32929355 PMCID: PMC7482816 DOI: 10.7150/thno.47006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/08/2020] [Indexed: 01/20/2023] Open
Abstract
Rationale: Construction of functional vascularized three-dimensional tissues has been a longstanding objective in the field of tissue engineering. The efficacy of using a tissue expander capsule as an induced vascular bed to prefabricate functional vascularized smooth muscle tissue flaps for bladder reconstruction in a rabbit model was tested. Methods: Skin tissue expanders were inserted into the groin to induce vascularized capsule pouch formation. Smooth muscle cells and endothelial progenitor cells were harvested and cocultured to form pre-vascularized smooth muscle cell sheet. Then repeated transplantation of triple-layer cell sheet grafts onto the vascularized capsular tissue was performed at 2-day intervals to prefabricate functional vascularized smooth muscle tissue flaps. Bladder muscular wall defects were created and repaired by six-layer cell sheet graft (sheet only), capsule flap (capsule only) and vascularized capsule prelaminated with smooth muscle cell sheet (sheet plus capsule). The animals were followed for 3 months after implantation and their bladders were explanted serially. Results: Bladder capacity and compliance were maintained in sheet plus capsule group throughout the 3 months. Tissue bath stimulation demonstrated that contractile responses to carbachol and KCl among the three groups revealed a significant difference (p < 0.05). Histologically, inflammation was evident in the capsule only group at 1 month and fibrosis was observed in sheet only group at 3 months. The vessel density in capsule only and sheet plus capsule group were significantly higher than in the sheet only group at each time point (p < 0.05). Comparison of the smooth muscle content among the three groups revealed a significant difference (p < 0.05). Conclusion: These results proved that the capsule may serve as an induced vascular bed for vascularized smooth muscle tissue flap prefabrication. The prefabricated functional vascularized smooth muscle tissue flap has the potential for reliable bladder reconstruction and may create new opportunities for vascularization in 3-D tissue engineering.
Collapse
|
25
|
Wang X, Huang G, Mu J, Cong Z, Chen S, Fu D, Qi J, Li Z. Arrb2 promotes endothelial progenitor cell-mediated postischemic neovascularization. Am J Cancer Res 2020; 10:9899-9912. [PMID: 32863967 PMCID: PMC7449919 DOI: 10.7150/thno.45133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/19/2020] [Indexed: 11/05/2022] Open
Abstract
Background and aim: Modulating biological functions of endothelial progenitor cells (EPCs) is essential for therapeutic angiogenesis in ischemic vascular diseases. This study aimed to explore the role and molecular mechanisms of β-arrestin 2 (Arrb2) in EPCs biology and angiogenic therapy. Methods: The influence of Arrb2 on postischemic neovascularization was evaluated in Arrb2-deficient mice. The proliferation, apoptosis, and various functions of EPCs were analyzed in vitro by manipulating the expression of Arrb2. Finally, the in vivo effect of Arrb2 on EPC-mediated neovascularization was investigated in a mouse model of hind-limb ischemia (HLI). Results: Arrb2-deficient mice exhibited impaired blood flow recovery based on laser Doppler measurements and reduced capillary density in the adductor muscle after unilateral HLI. Arrb2-deficient mice also showed restricted intraplug angiogenesis in subcutaneously implanted Matrigel plugs. In vitro, lentivirus-mediated Arrb2 overexpression promoted EPC proliferation, migration, adhesion, and tube formation, whereas Arrb2 knockdown had opposite effects. In addition, the overexpression of Arrb2 in EPCs protected them from hypoxia-induced apoptosis and improved intraplug angiogenesis ex vivo. Mechanistically, Arrb2 interacted with and activated extracellular signal-regulated kinase (ERK)1/2 and protein kinase B (Akt) signaling pathways. Finally, the transplantation of EPCs overexpressing Arrb2 resulted in a significantly higher blood flow restoration in ischemic hind limb and higher capillary density during histological analysis compared with control or Arrb2-knockdown EPC-treated nude mice. Conclusions: The data indicated that Arrb2 augmented EPC-mediated neovascularization through the activation of ERK and Akt signaling pathways. This novel biological function of Arrb2 might provide a potential therapeutic option to promote EPCs in the treatment of ischemic vascular diseases.
Collapse
|
26
|
Smirani R, Rémy M, Devillard R, Naveau A. Engineered Prevascularization for Oral Tissue Grafting: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:383-398. [DOI: 10.1089/ten.teb.2020.0093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rawen Smirani
- Univ. Bordeaux, INSERM, Laboratoire Bioingénierie Tissulaire (BioTis), U1026, CHU Bordeaux, 33000, Bordeaux, France
| | - Murielle Rémy
- Univ. Bordeaux, INSERM, Laboratoire Bioingénierie Tissulaire (BioTis), U1026, 33000, Bordeaux, France
| | - Raphael Devillard
- Univ. Bordeaux, INSERM, Laboratoire Bioingénierie Tissulaire (BioTis), U1026, CHU Bordeaux, 33000, Bordeaux, France
| | - Adrien Naveau
- Univ. Bordeaux, INSERM, Laboratoire Bioingénierie Tissulaire (BioTis), U1026, CHU Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
27
|
Ex vivo culture of head and neck cancer explants in cell sheet for testing chemotherapeutic sensitivity. J Cancer Res Clin Oncol 2020; 146:2497-2507. [PMID: 32620987 DOI: 10.1007/s00432-020-03306-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/27/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Tumor explant culture systems can mimic the in vivo tumor microenvironment, proposing as a substitute for preclinical studies for prediction of individual treatment response. Therefore, our study evaluated the potential usefulness of ex vivo tumor explants culture assembled into the cell sheets by anticancer drug screening in patients with head and neck squamous cell carcinoma (HNSCC). METHODS Our model included tumor explants incorporated into cell sheet composing of epithelium and subepithelial stroma using tumor and mucosal samples obtained from the HNSCC patients who underwent surgery. Cell growth, viability, and hypoxia were measured by cell counting kit-8, live/dead assay, propidium iodide, and LOX-1 staining, and were compared among the different treatment groups with vehicle, cisplatin or docetaxel. RESULTS Tumor explants stably survived in the cell sheet over 10 days after explantation, whereas most of the explants in non-matrix culture became nonviable within 5-8 days with the significant daily decrease of viability. The live tissue areas of tumor explants in the cell sheet maintained over 30 days without significant changes although hypoxic cell areas gradually increased up to 5 days. Tissue viability and live cancer tissue areas significantly decreased after the treatment of cisplatin or docetaxel in the dose and time-dependent manners. CONCLUSION Our cell sheet-based tumor explants model might be applied to the reliable ex vivo screening for anticancer chemotherapeutics for HNSCC.
Collapse
|
28
|
Zhou X, Ning K, Ling B, Chen X, Cheng H, Lu B, Gao Z, Xu J. Multiple Injections of Autologous Adipose-Derived Stem Cells Accelerate the Burn Wound Healing Process and Promote Blood Vessel Regeneration in a Rat Model. Stem Cells Dev 2020; 28:1463-1472. [PMID: 31530229 DOI: 10.1089/scd.2019.0113] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapies have the potential to heal burn wounds, but thus far have had limited success in clinical practice. This study aimed to test and improve the therapeutic effects of adipose-derived stem cells (ASCs) on burn wound healing in a rat model. We also explored the role of ASCs in burn wound healing We first isolated the autologous ASCs of each Sprague-Dawley rat used in this experiment and expanded them in vitro. Then, a 2-cm2 burn wound was made on the dorsal skin of each rat using a specialized heating iron. The treated rats received either one or three injections of 2 × 106 green fluorescent protein-labeled autologous ASCs, and the control rats received injections of the same volume of phosphate-buffered saline. A digital camera was employed to capture images of the wound area. We explored the role of ASCs in burn wound healing by cell tracing, evaluation of blood vessel number, analysis of a rat cytokine array panel, and cell proliferation in vivo. Multiple injections of autologous ASCs accelerated the wound healing process more efficiently compared with that observed in the control treatment. A rat cytokine array test showed that transplanting ASCs led to significantly elevated expression of VEGF. Therefore, angiogenesis was significantly improved in ASC-treated rats, as more microvessels were observed in the wound skin of the experimental rats than in that of the control rats. Transplanted ASCs not only survived in the wound bed but also participated in the blood vessel regeneration process. ASCs also accelerated the wound healing process by increasing the rate of cell proliferation in the wound skin. Our data suggest that autologous ASCs transplantation accelerated the burn wound healing process and promoted blood vessel regeneration. ASCs could potentially be used in burn wound healing treatment.
Collapse
Affiliation(s)
- Xiaolong Zhou
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Bin Ling
- The Second People's Hospital of Yunnan Province, Kunming, China
| | - Xu Chen
- Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Hongbin Cheng
- Department of Cell Transplantation, General Hospital of Chinese People's Armed, Beijing, China
| | - Bing Lu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|