1
|
Balikov DA, Conway K, Brown NA, Camelo-Piragua S, Rao RC. Molecular Analysis of Liquid Vitreous Biopsy Reveals Occult Lymphoma Following Cytology-Negative Biopsies of the Brain and Vitreous. Ocul Immunol Inflamm 2024; 32:1689-1697. [PMID: 38109211 PMCID: PMC11182886 DOI: 10.1080/09273948.2023.2287061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE Primary central nervous system lymphoma (PCNSL) is a rare but deadly malignancy that principally affects adults in the fifth and sixth decades of life. Despite diagnostic advances in analyses of cerebral spinal fluid and neuroimaging, definitive diagnosis of PCNSL requires primary brain tissue biopsy. While small neurosurgical biopsy volumes are pursued to minimize removal of normal brain tissue, the spatial margins to precisely biopsy pathologic tissue are narrow and can result in missed diagnoses. Furthermore, prior steroid treatment can significantly reduce tumor burden increasing the likelihood of a non-diagnostic biopsy. METHODS A retrospective case report from a tertiary referral center using a combination of neuroradiological studies, sterotactic tissue biopsy, and molecular testing for genome mutations. RESULTS A 72-year-old woman with strong suspicion for PCNSL clinically and radiologically, but cerebral spinal fluid and primary brain tissue biopsy were negative for tumor. However, vitreous liquid biopsy molecular testing for a MYD88 mutation as well as B-cell clonality (IGH/IGK rearrangement) were positive, indicating the presence of secondary vitreoretinal lymphoma from PCNSL. Only after autopsy of her brain was histopathological and immunohistochemical evidence of PCNSL confirmed. CONCLUSION This case illustrates the unique contribution of liquid biopsy neuropathology-oriented molecular testing in a challenging case with high clinical suspicion of PCNSL in which gold-standard diagnostic testing failed to yield a diagnosis.
Collapse
Affiliation(s)
- Daniel A. Balikov
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Kyle Conway
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Noah A. Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Rajesh C. Rao
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Mikolajewicz N, Yee PP, Bhanja D, Trifoi M, Miller AM, Metellus P, Bagley SJ, Balaj L, de Macedo Filho LJM, Zacharia BE, Aregawi D, Glantz M, Weller M, Ahluwalia MS, Kislinger T, Mansouri A. Systematic Review of Cerebrospinal Fluid Biomarker Discovery in Neuro-Oncology: A Roadmap to Standardization and Clinical Application. J Clin Oncol 2024; 42:1961-1974. [PMID: 38608213 DOI: 10.1200/jco.23.01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Effective diagnosis, prognostication, and management of CNS malignancies traditionally involves invasive brain biopsies that pose significant risk to the patient. Sampling and molecular profiling of cerebrospinal fluid (CSF) is a safer, rapid, and noninvasive alternative that offers a snapshot of the intracranial milieu while overcoming the challenge of sampling error that plagues conventional brain biopsy. Although numerous biomarkers have been identified, translational challenges remain, and standardization of protocols is necessary. Here, we systematically reviewed 141 studies (Medline, SCOPUS, and Biosis databases; between January 2000 and September 29, 2022) that molecularly profiled CSF from adults with brain malignancies including glioma, brain metastasis, and primary and secondary CNS lymphomas. We provide an overview of promising CSF biomarkers, propose CSF reporting guidelines, and discuss the various considerations that go into biomarker discovery, including the influence of blood-brain barrier disruption, cell of origin, and site of CSF acquisition (eg, lumbar and ventricular). We also performed a meta-analysis of proteomic data sets, identifying biomarkers in CNS malignancies and establishing a resource for the research community.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patricia P Yee
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA
| | - Debarati Bhanja
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Mara Trifoi
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Alexandra M Miller
- Departments of Neurology and Pediatrics, Memorial Sloan Kettering Cancer Center, Manhattan, NY
| | - Philippe Metellus
- Department of Neurosurgery, Ramsay Santé, Hôpital Privé Clairval, Marseille, France
| | - Stephen J Bagley
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Brad E Zacharia
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Dawit Aregawi
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Michael Glantz
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| |
Collapse
|
3
|
Eugene T, Roy Sg J, S N, Rappai M. Assessment of the Efficacy of Circulating Tumor Cells by Liquid Biopsy in the Diagnosis and Prediction of Tumor Behavior of Gliomas: A Systematic Review. Cureus 2024; 16:e54101. [PMID: 38357405 PMCID: PMC10865163 DOI: 10.7759/cureus.54101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Abstract
In the realm of glioma management, the ability to accurately diagnose and predict tumor behavior remains a formidable task. Emerging as a beacon of hope, liquid biopsy (LB), with its potential to detect circulating tumor (CT) cells, offers a novel and promising avenue for addressing these challenges. This systematic review delves into the effectiveness of LB in transforming the landscape of glioma analysis as well as prognosis, shedding light on its clinical significance and implications. We conducted a comprehensive literature search from 2015 to 2023, using multiple sources. We assessed titles and abstracts first, followed by full-text review if they met our criteria. We included those studies that fulfill the inclusion criteria of the study. For bias assessment, we used a two-part tool for specific domains and a quality assessment tool for diagnostic accuracy studies. In this review, we incorporated eight studies. A total of 498 patients were identified across eight studies. The average sensitivity was 72.28% in seven of these studies, while the average specificity was 91.52% in the same seven studies. Our review revealed a sensitivity of 72.28% and an impressive specificity of 91.52%. This underscores the potential of LB as a valuable prognostic tool for detecting CT cells. However, the early detection of tumor cells and the prediction of tumor behavior in gliomas continue to be topics of debate, necessitating further research for more precise and reliable outcomes.
Collapse
Affiliation(s)
- Teena Eugene
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Jano Roy Sg
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Nivethitha S
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Meethu Rappai
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| |
Collapse
|
4
|
Batool SM, Hsia T, Beecroft A, Lewis B, Ekanayake E, Rosenfeld Y, Escobedo AK, Gamblin AS, Rawal S, Cote RJ, Watson M, Wong DTW, Patel AA, Skog J, Papadopoulos N, Bettegowda C, Castro CM, Lee H, Srivastava S, Carter BS, Balaj L. Extrinsic and intrinsic preanalytical variables affecting liquid biopsy in cancer. Cell Rep Med 2023; 4:101196. [PMID: 37725979 PMCID: PMC10591035 DOI: 10.1016/j.xcrm.2023.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/01/2022] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Liquid biopsy, through isolation and analysis of disease-specific analytes, has evolved as a promising tool for safe and minimally invasive diagnosis and monitoring of tumors. It also has tremendous utility as a companion diagnostic allowing detection of biomarkers in a range of cancers (lung, breast, colon, ovarian, brain). However, clinical implementation and validation remains a challenge. Among other stages of development, preanalytical variables are critical in influencing the downstream cellular and molecular analysis of different analytes. Although considerable progress has been made to address these challenges, a comprehensive assessment of the impact on diagnostic parameters and consensus on standardized and optimized protocols is still lacking. Here, we summarize and critically evaluate key variables in the preanalytical stage, including study population selection, choice of biofluid, sample handling and collection, processing, and storage. There is an unmet need to develop and implement comprehensive preanalytical guidelines on the optimal practices and methodologies.
Collapse
Affiliation(s)
| | - Tiffaney Hsia
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Beecroft
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Lewis
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emil Ekanayake
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulia Rosenfeld
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana K Escobedo
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Austin S Gamblin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Siddarth Rawal
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Richard J Cote
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Mark Watson
- Washington University School of Medicine, St. Louis, MO, USA
| | - David T W Wong
- University of California Los Angeles, Los Angeles, CA, USA
| | | | - Johan Skog
- Exosome Diagnostics, Waltham, MA 02451, USA
| | | | | | - Cesar M Castro
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hakho Lee
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Bob S Carter
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonora Balaj
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Precision Oncology in Pancreatic Cancer: Experiences and Challenges of the CCCMunich LMU Molecular Tumor Board. Target Oncol 2023; 18:257-267. [PMID: 36853374 PMCID: PMC10042756 DOI: 10.1007/s11523-023-00950-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND In pancreatic cancer, systemic treatment options in addition to chemotherapy remain scarce, and so far only a small proportion of patients benefit from targeted therapies. OBJECTIVE The patients with pancreatic cancer discussed in the CCCMunichLMU Molecular Tumor Board were reviewed to gain a better real-world understanding of the challenges and chances of precision oncology in this hard-to-treat cancer. METHODS Patients with pancreatic cancer who received comprehensive genomic profiling and were discussed in the interdisciplinary Molecular Tumor Board between May 2017 and July 2022 were included. These patients' medical charts, comprehensive genomic profiling results, and Molecular Tumor Board recommendations were analyzed in this retrospective cohort study. RESULTS Molecular profiles of 165 patients with pancreatic cancer were discussed in the Molecular Tumor Board. In the 149 cases where comprehensive genomic profiling was successful, KRAS mutations were detected in 87.9%, TP53 in 53.0%, and CDKN2A in 14.1%. 33.3% of KRAS wild-type patients harbored targetable mutations, while these were only found in 19.1% of patients with the KRAS mutation; however, this difference was not statistically significant. 63.8% of patients with successful testing received a targeted treatment recommendation by the Molecular Tumor Board; however, only 3.2% of these were put into practice. Compared to a historic cohort of patients with pancreatic cancer with synchronous metastatic disease diagnosed between 2010 and 2017, the patients from the pancreatic cancer cohort with synchronous metastatic disease had a longer survival. CONCLUSIONS This single-center experience emphasizes the challenges of targeted treatment in pancreatic cancer. Very few patients ultimately received the recommended therapies, highlighting the need for more and better targeted treatment options in pancreatic cancer, early comprehensive genomic profiling to allow sufficient time to put Molecular Tumor Board recommendations into practice, and close cooperation with clinical trial units to give patients access to otherwise not available targeted treatments.
Collapse
|
6
|
Wessels PH, Boelens MC, Monkhorst K, Sonke GS, van den Broek D, Brandsma D. A review on genetic alterations in CNS metastases related to breast cancer treatment. Is there a role for liquid biopsies in CSF? J Neurooncol 2023; 162:1-13. [PMID: 36820955 DOI: 10.1007/s11060-023-04261-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Acquired mutations or altered gene expression patterns in brain metastases (BM) and/or leptomeningeal metastases (LM) of breast cancer may play a role in therapy-resistance and offer new molecular targets and treatment options. Despite expanding knowledge of genetic alterations in breast cancer and their metastases, clinical applications for patients with central nervous system (CNS) metastases are currently limited. An emerging tool are DNA-techniques that may detect genetic alterations of the CNS metastases in the cerebrospinal fluid (CSF). In this review we discuss genetic studies in breast cancer and CNS metastases and the role of liquid biopsies in CSF.
Collapse
Affiliation(s)
- Peter H Wessels
- Department of Neuro-Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands. .,Department of Neurology, St. Antonius Hospital, Utrecht, Nieuwegein, The Netherlands.
| | - Mirjam C Boelens
- Department of Pathology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Takousis P, Devonshire AS, Redshaw N, von Baumgarten L, Whale AS, Jones GM, Fernandez-Gonzalez A, Martin J, Foy CA, Alexopoulos P, Huggett JF, Perneczky R. A standardised methodology for the extraction and quantification of cell-free DNA in cerebrospinal fluid and application to evaluation of Alzheimer's disease and brain cancers. N Biotechnol 2022; 72:97-106. [PMID: 36202346 DOI: 10.1016/j.nbt.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
Abstract
Cerebrospinal fluid (CSF) is a source of diagnostic biomarkers for a range of neurological conditions. Cell-free DNA (cfDNA) is detected in CSF and differences in the concentration of cell-free mitochondrial DNA have been reported in studies of neurodegenerative disorders including Alzheimer's disease (AD). However, the influence of pre-analytical steps has not been investigated for cfDNA in CSF and there is no standardised approach for quantification of total cfDNA (copies of nuclear genome or mitochondria-derived gene targets). In this study, the suitability of four extraction methods was evaluated: QIAamp Circulating Nucleic Acid (Qiagen), Quick-cfDNA Serum & Plasma (Zymo), NucleoSnap® DNA Plasma (Macherey-Nagel) and Plasma/Serum Circulating DNA Purification Mini (Norgen) kits, for cfDNA extraction from CSF of controls and AD dementia patients, utilising a spike-in control for extraction efficiency and fragment size. One of the optimal extraction methods was applied to a comparison of cfDNA concentrations in CSF from control subjects, AD dementia and primary and secondary brain tumour patients. Extraction efficiency based on spike-in recovery was similar in all three groups whilst both endogenous mitochondrial and nucleus-derived cfDNA was significantly higher in CSF from cancer patients compared to control and AD groups, which typically contained < 100 genome copies/mL. This study shows that it is feasible to measure low concentration nuclear and mitochondrial gene targets in CSF and that normalisation of extraction yield can help control pre-analytical variability influencing biomarker measurements.
Collapse
Affiliation(s)
- Petros Takousis
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Alison S Devonshire
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK.
| | - Nicholas Redshaw
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Louisa von Baumgarten
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany; Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra S Whale
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Gerwyn M Jones
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Ana Fernandez-Gonzalez
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Jan Martin
- Department of Anaesthesiology and Intensive Care Medicine, Technical University Munich, Munich, Germany
| | - Carole A Foy
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | - Panagiotis Alexopoulos
- Department of Psychiatry, University of Patras, Rion Patras, Greece; Department of Psychiatry and Psychotherapy, Technical University Munich, Munich, Germany
| | - Jim F Huggett
- Molecular and Cell Biology Team, National Measurement Laboratory, LGC, Teddington, Middlesex, UK; School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Robert Perneczky
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Flach S, Kumbrink J, Walz C, Hess J, Drexler G, Belka C, Canis M, Jung A, Baumeister P. Analysis of genetic variants of frequently mutated genes in HPV-negative primary head and neck squamous cell carcinoma, resection margins, local recurrences and corresponding circulating cell-free DNA. J Oral Pathol Med 2022; 51:738-746. [PMID: 35895622 DOI: 10.1111/jop.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) remains a substantial burden to global health. Despite evolving therapies, 5-year survival is <50% and unlike in other cancers, reliable molecular biomarkers to guide treatment do not exist. METHODS We performed targeted panel Next Generation Sequencing to analyse somatic variants from primary and recurrent tumour tissue, corresponding resection margins and cell-free DNA from intraoperatively collected plasma samples from 8 patients with HPV-negative HNSCC. Patients were primarily treated with curative-intent surgery and received subsequent adjuvant treatment. RESULTS The most frequently mutated gene was TP53. Other mutated genes included NOTCH1, NF1 and CDKN2A among others. 20.8% of variants were shared between primary tumour and resection margin. Out of all the variants detected, 37.5% were shared between cell-free DNA and primary tumour, whereas 12.5% were commonly found in cell-free DNA, primary tumour and resection margin. Mutational profiling was able to distinguish between a locoregional recurrence and a second primary tumour by identifying a different TP53 mutation in the primary tumour compared to the recurrent tumour in addition to private FBXW7 and CTNNB1 mutations. We also identified identical TP53 and PIK3CA mutations in another primary tumour and corresponding recurrence. CONCLUSION Molecular profiling of cell-free DNA and resection margins has potential applications in clinical practice to guide future treatment decisions.
Collapse
Affiliation(s)
- Susanne Flach
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU Klinikum, Marchioninistrasse 15, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - Julia Hess
- Clinical Cooperation Group "Personalised Radiotherapy in Head and Neck Cancer", German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guido Drexler
- Clinical Cooperation Group "Personalised Radiotherapy in Head and Neck Cancer", German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Clinical Cooperation Group "Personalised Radiotherapy in Head and Neck Cancer", German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU Klinikum, Marchioninistrasse 15, Munich, Germany.,Clinical Cooperation Group "Personalised Radiotherapy in Head and Neck Cancer", German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Andreas Jung
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU Klinikum, Marchioninistrasse 15, Munich, Germany.,Clinical Cooperation Group "Personalised Radiotherapy in Head and Neck Cancer", German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
9
|
Kumbrink J, Bohlmann L, Mamlouk S, Redmer T, Peilstöcker D, Li P, Lorenzen S, Algül H, Kasper S, Hempel D, Kaiser F, Michl M, Bartsch H, Neumann J, Klauschen F, von Bergwelt-Baildon M, Modest DP, Stahler A, Stintzing S, Jung A, Kirchner T, Schäfer R, Heinemann V, Holch JW. Serial Analysis of Gene Mutations and Gene Expression during First-Line Chemotherapy against Metastatic Colorectal Cancer: Identification of Potentially Actionable Targets within the Multicenter Prospective Biomarker Study REVEAL. Cancers (Basel) 2022; 14:cancers14153631. [PMID: 35892888 PMCID: PMC9367450 DOI: 10.3390/cancers14153631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The emergence of resistant cells remains a major obstacle for chemotherapy treatment of metastatic colorectal cancers. Improvement of the therapeutic response requires a thorough understanding of the mechanisms of resistance as well as informative biomarkers. In the REVEAL study, we have systematically compared the mutational patterns and expression profiles of primary tumor specimens before and after first-line chemotherapy treatment in the metastatic situation. In addition, we analyzed liquid biopsies pre, during, and after treatment. Alterations in gene expression appeared as the major drivers of chemotherapy resistance. We identified a gene expression signature differentiating primary tumors and metastases and validated this signature in two independent patient cohorts. Moreover, we evaluated the expression of two signature genes, SFRP2 and SPP1, as prognostic and potentially druggable biomarkers. Abstract Most metastatic colorectal cancer (mCRC) patients succumb to refractory disease due to secondary chemotherapy resistance. To elucidate the molecular changes associated with secondary resistance, we recruited 64 patients with mCRC and hepatic metastases before standard first-line chemotherapy between 2014 and 2018. We subjected DNA from primary tumor specimens (P), hepatic metastasis specimens after treatment (M), and liquid biopsies (L) taken prior to (pre), during (intra), and after (post) treatment to next generation sequencing. We performed Nanostring expression analysis in P and M specimens. Comparative bioinformatics and statistical analysis revealed typical mutational patterns with frequent alterations in TP53, APC, and KRAS in P specimens (n = 48). P and pre-L (n = 42), as well as matched P and M (n = 30), displayed a similar mutation spectrum. In contrast, gene expression profiles classified P (n = 31) and M (n = 23), distinguishable by up-regulation of immune/cytokine receptor and autophagy programs. Switching of consensus molecular subtypes from P to M occurred in 58.3% of cases. M signature genes SFRP2 and SPP1 associated with inferior survival, as validated in an independent cohort. Molecular changes during first-line treatment were detectable by expression profiling rather than by mutational tumor and liquid biopsy analyses. SFRP2 and SPP1 may serve as biomarkers and/or actionable targets.
Collapse
Affiliation(s)
- Jörg Kumbrink
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich (LMU), 80337 Munich, Germany; (L.B.); (D.P.); (P.L.); (H.B.); (J.N.); (F.K.); (A.J.); (T.K.)
- Partner Site Munich, German Cancer Consortium (DKTK), 80336 Munich, Germany; (M.v.B.-B.); (V.H.); (J.W.H.)
- Correspondence:
| | - Lisa Bohlmann
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich (LMU), 80337 Munich, Germany; (L.B.); (D.P.); (P.L.); (H.B.); (J.N.); (F.K.); (A.J.); (T.K.)
| | - Soulafa Mamlouk
- Partner Site Berlin, German Cancer Consortium (DKTK), 10117 Berlin, Germany; (S.M.); (D.P.M.); (A.S.); (S.S.); (R.S.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Torben Redmer
- Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Daniela Peilstöcker
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich (LMU), 80337 Munich, Germany; (L.B.); (D.P.); (P.L.); (H.B.); (J.N.); (F.K.); (A.J.); (T.K.)
| | - Pan Li
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich (LMU), 80337 Munich, Germany; (L.B.); (D.P.); (P.L.); (H.B.); (J.N.); (F.K.); (A.J.); (T.K.)
| | - Sylvie Lorenzen
- Klinik und Poliklinik für Innere Medizin III, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
| | - Hana Algül
- School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Comprehensive Cancer Center Munich, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany;
| | - Dirk Hempel
- Steinbeishochschule Berlin, 12489 Berlin, Germany;
- Steinbeis Transfer Institute Clinical Hematology-Oncology, 86609 Donauwörth, Germany
| | | | - Marlies Michl
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany;
- Comprehensive Cancer Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Harald Bartsch
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich (LMU), 80337 Munich, Germany; (L.B.); (D.P.); (P.L.); (H.B.); (J.N.); (F.K.); (A.J.); (T.K.)
| | - Jens Neumann
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich (LMU), 80337 Munich, Germany; (L.B.); (D.P.); (P.L.); (H.B.); (J.N.); (F.K.); (A.J.); (T.K.)
- Partner Site Munich, German Cancer Consortium (DKTK), 80336 Munich, Germany; (M.v.B.-B.); (V.H.); (J.W.H.)
| | - Frederick Klauschen
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich (LMU), 80337 Munich, Germany; (L.B.); (D.P.); (P.L.); (H.B.); (J.N.); (F.K.); (A.J.); (T.K.)
- Partner Site Munich, German Cancer Consortium (DKTK), 80336 Munich, Germany; (M.v.B.-B.); (V.H.); (J.W.H.)
| | - Michael von Bergwelt-Baildon
- Partner Site Munich, German Cancer Consortium (DKTK), 80336 Munich, Germany; (M.v.B.-B.); (V.H.); (J.W.H.)
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Dominik Paul Modest
- Partner Site Berlin, German Cancer Consortium (DKTK), 10117 Berlin, Germany; (S.M.); (D.P.M.); (A.S.); (S.S.); (R.S.)
- Department of Hematology, Oncology and Cancer Immunology (CCM), Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Arndt Stahler
- Partner Site Berlin, German Cancer Consortium (DKTK), 10117 Berlin, Germany; (S.M.); (D.P.M.); (A.S.); (S.S.); (R.S.)
- Department of Hematology, Oncology and Cancer Immunology (CCM), Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sebastian Stintzing
- Partner Site Berlin, German Cancer Consortium (DKTK), 10117 Berlin, Germany; (S.M.); (D.P.M.); (A.S.); (S.S.); (R.S.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Hematology, Oncology and Cancer Immunology (CCM), Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Jung
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich (LMU), 80337 Munich, Germany; (L.B.); (D.P.); (P.L.); (H.B.); (J.N.); (F.K.); (A.J.); (T.K.)
- Partner Site Munich, German Cancer Consortium (DKTK), 80336 Munich, Germany; (M.v.B.-B.); (V.H.); (J.W.H.)
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich (LMU), 80337 Munich, Germany; (L.B.); (D.P.); (P.L.); (H.B.); (J.N.); (F.K.); (A.J.); (T.K.)
- Partner Site Munich, German Cancer Consortium (DKTK), 80336 Munich, Germany; (M.v.B.-B.); (V.H.); (J.W.H.)
| | - Reinhold Schäfer
- Partner Site Berlin, German Cancer Consortium (DKTK), 10117 Berlin, Germany; (S.M.); (D.P.M.); (A.S.); (S.S.); (R.S.)
- Charité Comprehensive Cancer Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Volker Heinemann
- Partner Site Munich, German Cancer Consortium (DKTK), 80336 Munich, Germany; (M.v.B.-B.); (V.H.); (J.W.H.)
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany;
- Comprehensive Cancer Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Julian W. Holch
- Partner Site Munich, German Cancer Consortium (DKTK), 80336 Munich, Germany; (M.v.B.-B.); (V.H.); (J.W.H.)
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany;
- Comprehensive Cancer Center, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
10
|
Heinrich K, Miller-Phillips L, Ziemann F, Hasselmann K, Rühlmann K, Flach M, Biro D, von Bergwelt-Baildon M, Holch J, Herold T, von Baumgarten L, Greif PA, Jeremias I, Wuerstlein R, Casuscelli J, Spitzweg C, Seidensticker M, Renz B, Corradini S, Baumeister P, Goni E, Tufman A, Jung A, Kumbrink J, Kirchner T, Klauschen F, Metzeler KH, Heinemann V, Westphalen CB. Lessons learned: the first consecutive 1000 patients of the CCCMunich LMU Molecular Tumor Board. J Cancer Res Clin Oncol 2022; 149:1905-1915. [PMID: 35796778 PMCID: PMC9261163 DOI: 10.1007/s00432-022-04165-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022]
Abstract
Purpose In 2016, the University of Munich Molecular Tumor Board (MTB) was implemented to initiate a precision oncology program. This review of cases was conducted to assess clinical implications and functionality of the program, to identify current limitations and to inform future directions of these efforts. Methods Charts, molecular profiles, and tumor board decisions of the first 1000 consecutive cases (01/2016–03/2020) were reviewed. Descriptive statistics were applied to describe relevant findings. Results Of the first 1000 patients presented to the MTB; 914 patients received comprehensive genomic profiling. Median age of patients was 56 years and 58% were female. The most prevalent diagnoses were breast (16%) and colorectal cancer (10%). Different types of targeted or genome-wide sequencing assays were used; most of them offered by the local department of pathology. Testing was technically successful in 88%. In 41% of cases, a genomic alteration triggered a therapeutic recommendation. The fraction of patients receiving a tumor board recommendation differed significantly between malignancies ranging from over 50% in breast or biliary tract to less than 30% in pancreatic cancers. Based on a retrospective chart review, 17% of patients with an MTB recommendation received appropriate treatment. Conclusion Based on these retrospective analyses, patients with certain malignancies (breast and biliary tract cancer) tend to be more likely to have actionable variants. The low rate of therapeutic implementation (17% of patients receiving a tumor board recommendation) underscores the importance of meticulous follow-up for these patients and ensuring broad access to innovative therapies for patients receiving molecular tumor profiling. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04165-0.
Collapse
Affiliation(s)
- Kathrin Heinrich
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Lisa Miller-Phillips
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Frank Ziemann
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Korbinian Hasselmann
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Katharina Rühlmann
- Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
| | - Madeleine Flach
- Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
| | - Dorottya Biro
- Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Julian Holch
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Tobias Herold
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology and Comprehensive Cancer Center (CCC Munich LMU), Ludwig Maximilians University, Munich, Germany
| | - Philipp A Greif
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Irmela Jeremias
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany
- Department of Pediatrics, Dr Von Hauner Children's Hospital, LMU, Munich, Germany
| | - Rachel Wuerstlein
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Jozefina Casuscelli
- Department of Urology and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Medicine IV and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Bernhard Renz
- Department of General, Visceral und Transplantation Surgery and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Elisabetta Goni
- Department of Medicine II and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Amanda Tufman
- Department of Medicine V and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Andreas Jung
- Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Jörg Kumbrink
- Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Thomas Kirchner
- Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Klaus H Metzeler
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Hematology, Cell Therapy and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Volker Heinemann
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
| | - C Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany.
| |
Collapse
|
11
|
Fischer LE, Stintzing S, Heinemann V, Keilholz U, Keune D, Vollbrecht C, Burmeister T, Kind A, Weiss L, Horst D, Kirchner T, Klauschen F, Jung A, Westphalen CB, Jelas I. Liquid Biopsy in Colorectal Cancer: Quo Vadis? Implementation of Liquid Biopsies in Routine Clinical Patient Care in Two German Comprehensive Cancer Centers. Front Oncol 2022; 12:870411. [PMID: 35646657 PMCID: PMC9134071 DOI: 10.3389/fonc.2022.870411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives The use of liquid biopsies (LB) in patients with solid malignancies enables comprehensive genomic profiling (CGP) of circulating tumor DNA (ctDNA) and has the potential to guide therapy stratification and support disease monitoring. To examine clinical uptake of LB in a real-world setting, LB implementation was analyzed at two German cancer centers (LMU Munich and Charité - Universitätsmedizin Berlin) between 2017 and 2021, with focus on colorectal cancer (CRC) patients. Methods In this retrospective analysis, all patients who received a LB between January 2017 and December 2021 as part of routine clinical management were included. To provide adequate context, we collected disease characteristics and technical specifications of the LB methods applied. Additionally, we examined the concordance of RAS status in tumor tissue and LB. Finally, we discuss the potential of LB as a diagnostic tool to drive personalized treatment in CRC patients and how to implement LB in clinical routine. Results In total, our cohort included 86 CRC patients and 161 LB conducted in these patients between 2017 and 2021. In 59 patients, comparison between tissue-based and liquid-based molecular diagnostics, revealed a divergence in 23 (39%) of the evaluable samples. Conclusion Our real-world data analysis indicates that the possibilities of LB are not yet exploited in everyday clinical practice. Currently, the variety of methods and lack of standardization, as well as restricted reimbursement for liquid based CGP hinder the use of LB in clinical routine. To overcome these issues, prospective clinical trials are needed to provide evidence driving the implementation of LB into the management of CRC patients and to support their implementation into clinical guidelines.
Collapse
Affiliation(s)
- Laura E Fischer
- Department of Medicine III, University Hospital, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, Heidelberg, Germany
| | - Volker Heinemann
- Department of Medicine III, University Hospital, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
| | - Ulrich Keilholz
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, Heidelberg, Germany.,Charité Comprehensive Cancer Center, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Keune
- Charité Comprehensive Cancer Center, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Vollbrecht
- Institute of Pathology Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Burmeister
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Labor Berlin - Charité Vivantes, GmbH, Molekulardiagnostik - Hämatologie, Berlin, Germany
| | - Andreas Kind
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lena Weiss
- Department of Medicine III, University Hospital, Munich, Germany
| | - David Horst
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, Heidelberg, Germany.,Institute of Pathology Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Kirchner
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany.,Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, München, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany.,Institute of Pathology Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, München, Germany
| | - Andreas Jung
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany.,Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, München, Germany
| | - Christoph Benedikt Westphalen
- Department of Medicine III, University Hospital, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital Munich, Munich, Germany
| | - Ivan Jelas
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, Heidelberg, Germany
| |
Collapse
|
12
|
Wang Y, Li Y, Liang X, Xin S, Yang L, Cao P, Jiang M, Xin Y, Zhang S, Yang Y, Lu J. The implications of cell-free DNAs derived from tumor viruses as biomarkers of associated cancers. J Med Virol 2022; 94:4677-4688. [PMID: 35652186 DOI: 10.1002/jmv.27903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer is still ranked as a leading cause of death according to estimates from the World Health Organization (WHO) and the strong link between tumor viruses and human cancers have been proved for almost six decades. Cell-free DNA (cfDNA) has drawn enormous attention for its dynamic, instant, and noninvasive advantages as one popular type of cancer biomarker. cfDNAs are mainly released from apoptotic cells and exosomes released from cancer cells, including those infected with viruses. Although cfDNAs are present at low concentrations in peripheral blood, they can reflect tumor load with high sensitivity. Considering the relevance of the tumor viruses to the associated cancers, cfDNAs derived from viruses may serve as good biomarkers for the early screening, diagnosis, and treatment monitoring. In this review, we summarize the methods and newly developed analytic techniques for the detection of cfDNAs from different body fluids, and discuss the implications of cfDNAs derived from different tumor viruses in the detection and treatment monitoring of virus-associated cancers. A better understanding of cfDNAs derived from tumor viruses may help formulate novel anti-tumoral strategies to decrease the burden of cancers that attributed to viruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yiwei Wang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xinyu Liang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China
| | - Mingjuan Jiang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yujie Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Senmiao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yang Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
13
|
Bonosi L, Ferini G, Giammalva GR, Benigno UE, Porzio M, Giovannini EA, Musso S, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Graziano F, Scalia G, Umana GE, Di Bonaventura R, Sturiale CL, Iacopino DG, Maugeri R. Liquid Biopsy in Diagnosis and Prognosis of High-Grade Gliomas; State-of-the-Art and Literature Review. Life (Basel) 2022; 12:life12030407. [PMID: 35330158 PMCID: PMC8950809 DOI: 10.3390/life12030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Gliomas, particularly high-grade gliomas, represent the most common and aggressive tumors of the CNS and are still burdened by high mortality and a very poor prognosis, regardless of the type of therapy. Their diagnosis and monitoring rely on imaging techniques and direct biopsy of the pathological tissue; however, both procedures have inherent limitations. To address these limitations, liquid biopsies have been proposed in this field. They could represent an innovative tool that could help clinicians in the early diagnosis, monitoring, and prognosis of these tumors. Furthermore, the rapid development of next-generation sequencing (NGS) technologies has led to a significant reduction in sequencing cost, with improved accuracy, providing a molecular profile of cancer and leading to better survival results and less disease burden. This paper focuses on the current clinical application of liquid biopsy in the early diagnosis and prognosis of cancer, introduces NGS-related methods, reviews recent progress, and summarizes challenges and future perspectives.
Collapse
Affiliation(s)
- Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
- Correspondence: ; Tel.: +39-0916554656
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, 95125 Catania, Italy;
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Massimiliano Porzio
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Evier Andrea Giovannini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Francesca Graziano
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Gianluca Scalia
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95125 Catania, Italy;
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
14
|
Singh PK, Patel A, Kaffenes A, Hord C, Kesterson D, Prakash S. Microfluidic Approaches and Methods Enabling Extracellular Vesicle Isolation for Cancer Diagnostics. MICROMACHINES 2022; 13:139. [PMID: 35056304 PMCID: PMC8778688 DOI: 10.3390/mi13010139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
Advances in cancer research over the past half-century have clearly determined the molecular origins of the disease. Central to the use of molecular signatures for continued progress, including rapid, reliable, and early diagnosis is the use of biomarkers. Specifically, extracellular vesicles as biomarker cargo holders have generated significant interest. However, the isolation, purification, and subsequent analysis of these extracellular vesicles remain a challenge. Technological advances driven by microfluidics-enabled devices have made the challenges for isolation of extracellular vesicles an emerging area of research with significant possibilities for use in clinical settings enabling point-of-care diagnostics for cancer. In this article, we present a tutorial review of the existing microfluidic technologies for cancer diagnostics with a focus on extracellular vesicle isolation methods.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Aarti Patel
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Anastasia Kaffenes
- Department of Neuroscience, College of Arts and Sciences and College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Catherine Hord
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Delaney Kesterson
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Choudhary R, Elabbas A, Vyas A, Osborne D, Chigurupati HD, Abbas LF, Kampa P, M H F, Sarwar H, Alfonso M. Utilization of Cerebrospinal Fluid Proteome Analysis in the Diagnosis of Meningioma: A Systematic Review. Cureus 2021; 13:e20707. [PMID: 34966627 PMCID: PMC8710292 DOI: 10.7759/cureus.20707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Meningiomas have been classified as the most commonly occurring primary brain tumors. Although the majority of meningiomas are benign and slow-progressing, the tumors that grow to a larger size are associated with various risks during surgical procedures. Early detection of meningiomas is crucial to the treatment as those detected early can be treated through non-invasive methods. Due to their benign nature, meningiomas contain homogeneous protein biomarkers that can be easily identified. Cerebrospinal fluid (CSF) has a high protein composition which can be used to diagnose various brain tumors. Because CSF comes into direct contact with the brain during its functioning, it is one of the factors that makes it an important source of different biomarkers. An analysis of biochemical changes occurring in the CSF can be useful in assessing the condition of the periventricular white matter and the parenchyma. In this review, PubMed, Medline, PubMed Central, and Google Scholar were used to identify studies discussing meningiomas regarding their assessment, types, diagnosis, and treatment, with more attention directed towards the application of CSF proteome analysis in diagnosis. Priority was given to studies published within the last 15 years. The following keywords were used in the literature search: “cerebrospinal fluid,” “meningiomas,” “brain tumors,” “primary brain tumors,” “protein biomarkers,” “proteome analysis,” and “diagnosis.” Subsequently, the 15 most relevant studies were selected for inclusion in the review. We excluded studies discussing different types of non-brain tumors as well as older articles. The selected studies also underwent a quality appraisal process using corresponding assessment tools. The selected articles were highly informative about meningiomas and the processes of diagnosis and treatment that are currently in use as well as those that are being developed or implemented. The use of CSF proteins in the diagnostic process is also discussed in this review. The studies also describe proteomics as a less invasive procedure that allows for the analysis of entire proteins and the projection of diagnostic images with higher resolutions that aid in the diagnosis.
Collapse
Affiliation(s)
- Rabia Choudhary
- Emergency Medicine, Internal Medicine, Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adil Elabbas
- Radiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abhishek Vyas
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Darin Osborne
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Himaja Dutt Chigurupati
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lawahiz F Abbas
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prathima Kampa
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Farzana M H
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hooria Sarwar
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Michael Alfonso
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
16
|
Karschnia P, Le Rhun E, Vogelbaum MA, van den Bent M, Grau SJ, Preusser M, Soffietti R, von Baumgarten L, Westphal M, Weller M, Tonn JC. The evolving role of neurosurgery for central nervous system metastases in the era of personalized cancer therapy. Eur J Cancer 2021; 156:93-108. [PMID: 34425408 DOI: 10.1016/j.ejca.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Recent therapeutic advances involving the use of systemic targeted treatments and immunotherapeutic agents in patients with advanced cancers have translated into improved survival rates. Despite the emergence of such promising pharmacological therapies and extended survival, the frequency of metastases in the central nervous system has steadily increased. Effective medical and surgical therapies are available for many patients with brain metastases and need to be incorporated into multi-disciplinary care protocols. The role of neurosurgeons is evolving within these multi-disciplinary care teams. Surgical resection of brain metastases can provide immediate relief from neurological symptoms due to large lesions and provides the histopathological diagnosis in cases of no known primary malignancy. In situations where immunotherapy is part of the oncological treatment plan, surgery may be proposed for expeditious relief of edema to remove the need for steroids. In patients with multiple brain metastases and mixed response to therapeutics or radiosurgery, tumour resampling allows tissue analysis for druggable targets or to distinguish radiation effects from progression. Ventriculo-peritoneal shunting may improve quality of life in patients with hydrocephalus associated with leptomeningeal tumour dissemination and may allow for time to administer more therapy thus prolonging overall survival. Addressing the limited efficacy of many oncological drugs for brain metastases due to insufficient blood-brain barrier penetrance, clinical trial protocols in which surgical specimens are analysed after pre-surgical administration of therapeutics offer pharmacodynamic insights. Comprehensive neurosurgical assessment remains an integral element of multi-disciplinary oncological care of patients with brain metastases and is integral to tumour biology research and therapeutic advancement.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University School of Medicine, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Emilie Le Rhun
- Department of Neurosurgery & Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stefan J Grau
- Department of Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians-University School of Medicine, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg, Hamburg, Germany
| | - Michael Weller
- Department of Neurology & Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University School of Medicine, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
17
|
Clinical Experience of Cerebrospinal Fluid-Based Liquid Biopsy Demonstrates Superiority of Cell-Free DNA over Cell Pellet Genomic DNA for Molecular Profiling. J Mol Diagn 2021; 23:742-752. [PMID: 33781965 DOI: 10.1016/j.jmoldx.2021.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) offers unique opportunities for genomic profiling of tumors involving the central nervous system but remains uncommonly used in clinical practice. We describe our clinical experience using cfDNA from CSF for routine molecular testing using Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets (targeting 468 cancer-related genes). In all, 148 cfDNA samples were assessed, comparing results of cfDNA versus genomic DNA (gDNA; gDNA from cell pellets) derived from the same CSF sample and the primary tumor. Of these, 71.6% (106/148) were successfully sequenced. Somatic alterations (mutations and fusions) were observed in 70.8% (75/106) of the samples; 97.3% (73/75) comprised variants confirming central nervous system involvement by a previously diagnosed tumor, 14.7% (11/75) had additional variants consistent with a therapy-related resistance mechanism, and 2.7% (2/75) had variants that independently diagnosed a new primary. Among samples with paired cfDNA and gDNA sequencing results, cfDNA was more frequently positive for at least one mutation [43.6% (55/126) versus 19.8% (25/126)] and harbored 1.6× more mutations (6.94 versus 4.65; P = 0.005), with higher mean variant allele fractions (41.1% versus 13.0%; P < 0.0001). Among mutation-positive cfDNAs, the corresponding gDNA was frequently negative (44.6%; 25/55) or failed sequencing (17.8%; 9/55). Routine molecular profiling of cfDNA is superior to gDNA from CSF, facilitating the capture of mutations at high variant allele frequency, even in the context of a negative cytology.
Collapse
|
18
|
Tsamis KI, Sakkas H, Giannakis A, Ryu HS, Gartzonika C, Nikas IP. Evaluating Infectious, Neoplastic, Immunological, and Degenerative Diseases of the Central Nervous System with Cerebrospinal Fluid-Based Next-Generation Sequencing. Mol Diagn Ther 2021; 25:207-229. [PMID: 33646562 PMCID: PMC7917176 DOI: 10.1007/s40291-021-00513-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Cerebrospinal fluid (CSF) is a clear and paucicellular fluid that circulates within the ventricular system and the subarachnoid space of the central nervous system (CNS), and diverse CNS disorders can impact its composition, volume, and flow. As conventional CSF testing suffers from suboptimal sensitivity, this review aimed to evaluate the role of next-generation sequencing (NGS) in the work-up of infectious, neoplastic, neuroimmunological, and neurodegenerative CNS diseases. Metagenomic NGS showed improved sensitivity—compared to traditional methods—to detect bacterial, viral, parasitic, and fungal infections, while the overall performance was maximized in some studies when all diagnostic modalities were used. In patients with primary CNS cancer, NGS findings in the CSF were largely concordant with the molecular signatures derived from tissue-based molecular analysis; of interest, additional mutations were identified in the CSF in some glioma studies, reflecting intratumoral heterogeneity. In patients with metastasis to the CNS, NGS facilitated diagnosis, prognosis, therapeutic management, and monitoring, exhibiting higher sensitivity than neuroimaging, cytology, and plasma-based molecular analysis. Although evidence is still rudimentary, NGS could enhance the diagnosis and pathogenetic understanding of multiple sclerosis in addition to Alzheimer and Parkinson disease. To conclude, NGS has shown potential to aid the research, facilitate the diagnostic approach, and improve the management outcomes of all the aforementioned CNS diseases. However, to establish its role in clinical practice, the clinical validity and utility of each NGS protocol should be determined. Lastly, as most evidence has been derived from small and retrospective studies, results from randomized control trials could be of significant value.
Collapse
Affiliation(s)
- Konstantinos I Tsamis
- Department of Neurology, University Hospital of Ioannina, 45500, Ioannina, Greece. .,School of Medicine, European University Cyprus, 2404, Nicosia, Cyprus.
| | - Hercules Sakkas
- Microbiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Alexandros Giannakis
- Department of Neurology, University Hospital of Ioannina, 45500, Ioannina, Greece
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, 03080, Korea
| | - Constantina Gartzonika
- Microbiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Ilias P Nikas
- School of Medicine, European University Cyprus, 2404, Nicosia, Cyprus
| |
Collapse
|
19
|
Rodler S, Jung A, Greif PA, Rühlmann K, Apfelbeck M, Tamalunas A, Kretschmer A, Schulz GB, Szabados B, Stief C, Heinemann V, Westphalen CB, Casuscelli J. Routine application of next-generation sequencing testing in uro-oncology-Are we ready for the next step of personalised medicine? Eur J Cancer 2021; 146:1-10. [PMID: 33535139 DOI: 10.1016/j.ejca.2020.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022]
Abstract
AIM OF THE STUDY Next-generation sequencing (NGS) might represent a valuable diagnostic tool to identify somatic alterations and enable personalised medicine in uro-oncology. We aim to determine feasibility and impact of routine NGS in clinical practice. METHODS Tumours from patients with genitourinary cancers were subjected to NGS. Results were discussed in a dedicated molecular tumour board. Statistical analyses included chi-square test and Mann-Whitney U test. RESULTS Between 2017 and 2020, 65 patients with advanced genitourinary cancers were consecutively enrolled. Number of tests increased (28 tests in 2020) and diagnostic turnaround time for generating output decreased (17.5 days [range 13-35]). Median patient's age was 62 years (range 33-84), and most NGS assays were performed upon start of systemic treatment (range 0-6 of treatment lines). 62/66 sequenced samples generated a report. Fifty samples (80.6%) showed at least one molecular alteration. Most prevalent alterations were TP53 (32.3%), PIK3CA (14.5%) and TMPRSS2-ERG (9.7%). Sequencing revealed potentially druggable targets in 29 samples (46.8%). Based on NGS results, six patients underwent therapy change, whereas for three patients, coverage of recommended off-label therapy was denied by health insurances. CONCLUSIONS NGS is increasingly feasible in clinical routine for patients with genitourinary cancers. Number of performed analyses is constantly growing, and turnaround time to therapy recommendation is decreasing. While the majority of tumours harbour clinically relevant mutations, alterations related to urologic cancers are underrepresented, thus treatment changes occurred only in a minority of patients. Further, access to target agents remains a considerable obstacle in the consequent implementation of precision uro-oncology.
Collapse
Affiliation(s)
- Severin Rodler
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Jung
- Pathologisches Institut, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium, DKTK, Heidelberg, Munich, Germany; Comprehensive Cancer Center, Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Maria Apfelbeck
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Gerald B Schulz
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | - Christian Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Volker Heinemann
- German Cancer Consortium, DKTK, Heidelberg, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Comprehensive Cancer Center, Munich, Germany
| | - Christoph B Westphalen
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Comprehensive Cancer Center, Munich, Germany
| | - Jozefina Casuscelli
- Department of Urology, University Hospital, LMU Munich, Munich, Germany; Comprehensive Cancer Center, Munich, Germany.
| |
Collapse
|
20
|
Shah M, Takayasu T, Zorofchian Moghadamtousi S, Arevalo O, Chen M, Lan C, Duose D, Hu P, Zhu JJ, Roy-Chowdhuri S, Riascos RF, Chen H, Luthra R, Esquenazi Y, Ballester LY. Evaluation of the Oncomine Pan-Cancer Cell-Free Assay for Analyzing Circulating Tumor DNA in the Cerebrospinal Fluid in Patients with Central Nervous System Malignancies. J Mol Diagn 2021; 23:171-180. [PMID: 33531134 DOI: 10.1016/j.jmoldx.2020.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Available tools to evaluate patients with central nervous system (CNS) tumors such as magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) cytology, and brain biopsies, have significant limitations. MRI and CSF cytology have poor specificity and sensitivity, respectively, and brain biopsies are invasive. Circulating tumor DNA in CSF (CSF-ctDNA) could be used as a biomarker in patients with CNS tumors, but studies in this area are limited. We evaluated four CSF-ctDNA extraction methods and analyzed mutations in CSF-ctDNA with the Oncomine Pan-Cancer cell-free assay. CSF-ctDNA was extracted from 38 patients with primary or metastatic CNS tumors and 10 patients without CNS malignancy. Commercial ctDNA controls were used for assay evaluation. CSF-ctDNA yields ranged from 3.65 to 3120 ng. Mutations were detected in 39.5% of samples. TP53 was the most commonly mutated gene and copy number alterations were detected in CCND1, MYC, and ERBB2/HER2. Twenty-five percent of CSF-cytology-negative samples showed mutations in CSF-ctDNA. There was good concordance between mutations in CSF-ctDNA and matching tumors. The QIAamp Circulating Nucleic Acid Kit was the optimal method for extraction of CSF-ctDNA and the Oncomine cell-free DNA assay is suitable for detection of mutations in CSF-ctDNA. Analysis of CSF-ctDNA is more sensitive than CSF-cytology and has the potential to improve the diagnosis and monitoring of patients with CNS tumors.
Collapse
Affiliation(s)
- Mauli Shah
- Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Takeshi Takayasu
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Soheil Zorofchian Moghadamtousi
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Octavio Arevalo
- Department of Radiology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Melissa Chen
- Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chieh Lan
- Division of Pathology and Laboratory Medicine, Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dzifa Duose
- Division of Pathology and Laboratory Medicine, Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Hu
- Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay-Jiguang Zhu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, Texas; Memorial Hermann Hospital, Texas Medical Center, Houston, Texas
| | - Sinchita Roy-Chowdhuri
- Division of Pathology and Laboratory Medicine, Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roy F Riascos
- Department of Radiology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Hui Chen
- Division of Pathology and Laboratory Medicine, Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajyalakshmi Luthra
- Division of Pathology and Laboratory Medicine, Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas; Division of Pathology and Laboratory Medicine, Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yoshua Esquenazi
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, Texas; Memorial Hermann Hospital, Texas Medical Center, Houston, Texas.
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, Texas; Memorial Hermann Hospital, Texas Medical Center, Houston, Texas.
| |
Collapse
|
21
|
Gristina V, La Mantia M, Iacono F, Galvano A, Russo A, Bazan V. The Emerging Therapeutic Landscape of ALK Inhibitors in Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2020; 13:E474. [PMID: 33352844 PMCID: PMC7766858 DOI: 10.3390/ph13120474] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
The treatment of metastatic non-small cell lung cancer (NSCLC) has undergone a paradigm shift over the last decade. Better molecular characterization of the disease has led to the rapid improvement of personalized medicine and the prompt delivery of targeted therapies to patients with NSCLC. The discovery of the EML4-ALK fusion gene in a limited subset of patients affected by NSCLC and the subsequent clinical development of crizotinib in 2011 has been an impressive milestone in lung cancer research. Unfortunately, acquired resistances regularly develop, hence disease progression occurs. Afterward, modern tyrosine kinase inhibitors (TKIs), such as ceritinib, alectinib, brigatinib, and lorlatinib, have been approved by the Food and Drug Administration (FDA) for the management of anaplastic lymphoma kinase (ALK)-positive NSCLCs. Several compounds are currently under investigation to achieve the optimal strategy of therapy. Additionally, the results of ongoing clinical trials with novel-generation TKI will provide more evidence on the best sequence in the treatment of ALK-positive NSCLC patients. In this review, we provide a comprehensive overview of the state-of-the-art targeted therapy options in ALK-positive NSCLCs. Resistance, potential therapeutic strategies to overcome drug resistance, and future perspectives for this subset of patients are critically analyzed and summarized.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Maria La Mantia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Federica Iacono
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
22
|
Pös Z, Pös O, Styk J, Mocova A, Strieskova L, Budis J, Kadasi L, Radvanszky J, Szemes T. Technical and Methodological Aspects of Cell-Free Nucleic Acids Analyzes. Int J Mol Sci 2020; 21:ijms21228634. [PMID: 33207777 PMCID: PMC7697251 DOI: 10.3390/ijms21228634] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Analyzes of cell-free nucleic acids (cfNAs) have shown huge potential in many biomedical applications, gradually entering several fields of research and everyday clinical care. Many biological properties of cfNAs can be informative to gain deeper insights into the function of the organism, such as their different types (DNA, RNAs) and subtypes (gDNA, mtDNA, bacterial DNA, miRNAs, etc.), forms (naked or vesicle bound NAs), fragmentation profiles, sequence composition, epigenetic modifications, and many others. On the other hand, the workflows of their analyzes comprise many important steps, from sample collection, storage and transportation, through extraction and laboratory analysis, up to bioinformatic analyzes and statistical evaluations, where each of these steps has the potential to affect the outcome and informational value of the performed analyzes. There are, however, no universal or standard protocols on how to exactly proceed when analyzing different cfNAs for different applications, at least according to our best knowledge. We decided therefore to prepare an overview of the available literature and products commercialized for cfNAs processing, in an attempt to summarize the benefits and limitations of the currently available approaches, devices, consumables, and protocols, together with various factors influencing the workflow, its processes, and outcomes.
Collapse
Affiliation(s)
- Zuzana Pös
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
| | - Ondrej Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
| | - Jakub Styk
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, 811 08 Bratislava, Slovakia
| | - Angelika Mocova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
| | | | - Jaroslav Budis
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Slovak Center of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Ludevit Kadasi
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
| | - Jan Radvanszky
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Correspondence: (J.R.); (T.S.); Tel.: +421-2-60296637 (J.R.); +421-2-9026-8807 (T.S.)
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Correspondence: (J.R.); (T.S.); Tel.: +421-2-60296637 (J.R.); +421-2-9026-8807 (T.S.)
| |
Collapse
|
23
|
Ramkissoon LA, Pegram W, Haberberger J, Danziger N, Lesser G, Strowd R, Dahiya S, Cummings TJ, Bi WL, Abedalthagafi M, Sathyan P, McGregor K, Reddy P, Severson E, Williams E, Lin D, Edgerly C, Huang RSP, Hemmerich A, Creeden J, Brown C, Venstrom J, Hegde P, Ross JS, Alexander BM, Elvin J, Ramkissoon SH. Genomic Profiling of Circulating Tumor DNA From Cerebrospinal Fluid to Guide Clinical Decision Making for Patients With Primary and Metastatic Brain Tumors. Front Neurol 2020; 11:544680. [PMID: 33192972 PMCID: PMC7604477 DOI: 10.3389/fneur.2020.544680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/09/2020] [Indexed: 12/04/2022] Open
Abstract
Despite advances in systemic therapies for solid tumors, the development of brain metastases remains a significant contributor to overall cancer mortality and requires improved methods for diagnosing and treating these lesions. Similarly, the prognosis for malignant primary brain tumors remains poor with little improvement in overall survival over the last several decades. In both primary and metastatic central nervous system (CNS) tumors, the challenge from a clinical perspective centers on detecting CNS dissemination early and understanding how CNS lesions differ from the primary tumor, in order to determine potential treatment strategies. Acquiring tissue from CNS tumors has historically been accomplished through invasive neurosurgical procedures, which restricts the number of patients to those who can safely undergo a surgical procedure, and for which such interventions will add meaningful value to the care of the patient. In this review we discuss the potential of analyzing cell free DNA shed from tumor cells that is contained within the cerebrospinal fluid (CSF) as a sensitive and minimally invasive method to detect and characterize primary and metastatic tumors in the CNS.
Collapse
Affiliation(s)
- Lori A Ramkissoon
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Worthy Pegram
- Foundation Medicine, Inc., Morrisville, NC, United States
| | | | | | - Glenn Lesser
- Section of Medical Oncology and Hematology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Roy Strowd
- Section of Medical Oncology and Hematology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MI, United States
| | - Thomas J Cummings
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | | | | - Eric Severson
- Foundation Medicine, Inc., Morrisville, NC, United States
| | - Erik Williams
- Foundation Medicine, Inc., Morrisville, NC, United States
| | - Douglas Lin
- Foundation Medicine, Inc., Cambridge, MA, United States
| | - Claire Edgerly
- Foundation Medicine, Inc., Morrisville, NC, United States
| | | | | | - James Creeden
- Foundation Medicine, Inc., Cambridge, MA, United States
| | | | | | - Priti Hegde
- Foundation Medicine, Inc., Cambridge, MA, United States
| | | | | | - Julia Elvin
- Foundation Medicine, Inc., Cambridge, MA, United States
| | - Shakti H Ramkissoon
- Foundation Medicine, Inc., Morrisville, NC, United States.,Department of Pathology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
24
|
Liskova A, Samec M, Koklesova L, Giordano FA, Kubatka P, Golubnitschaja O. Liquid Biopsy is Instrumental for 3PM Dimensional Solutions in Cancer Management. J Clin Med 2020; 9:E2749. [PMID: 32854390 PMCID: PMC7563444 DOI: 10.3390/jcm9092749] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
One in every four deaths is due to cancer in Europe. In view of its increasing incidence, cancer became the leading cause of death and disease burden in Denmark, France, the Netherlands, and the UK. Without essential improvements in cancer prevention, an additional 775,000 cases of annual incidence have been prognosed until 2040. Between 1995 and 2018, the direct costs of cancer doubled from EUR 52 billion to EUR 103 billion in Europe, and per capita health spending on cancer increased by 86% from EUR 105 to EUR 195 in general, whereby Austria, Germany, Switzerland, Benelux, and France spend the most on cancer care compared to other European countries. In view of the consequent severe socio-economic burden on society, the paradigm change from a reactive to a predictive, preventive, and personalized medical approach in the overall cancer management is essential. Concepts of predictive, preventive, and personalized medicine (3PM) demonstrate a great potential to revise the above presented trends and to implement cost-effective healthcare that benefits the patient and society as a whole. At any stage, application of early and predictive diagnostics, targeted prevention, and personalization of medical services are basic pillars making 3PM particularly attractive for the patients as well as ethical and cost-effective healthcare. Optimal 3PM approach requires novel instruments such as well-designed liquid biopsy application. This review article highlights current achievements and details liquid biopsy approaches specifically in cancer management. 3PM-relevant expert recommendations are provided.
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
25
|
Shi J, Zhang R, Li J, Zhang R. Size profile of cell-free DNA: A beacon guiding the practice and innovation of clinical testing. Theranostics 2020; 10:4737-4748. [PMID: 32308746 PMCID: PMC7163439 DOI: 10.7150/thno.42565] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
Cell-free DNA (cfDNA) has pioneered the development of noninvasive prenatal testing and liquid biopsy, its emerging applications include organ transplantation, autoimmune diseases, and many other disorders; size profile of cfDNA is a crucial biological property and is essential for its clinical applications. Therefore, a thorough mastery of the characteristic and potential applications of cfDNA size profile is needed. Methods: Based on the recent researches, we summarized the size profile of cfDNA in pregnant women, tumor patients, transplant recipients and systemic lupus erythematosus (SLE) patients to explore the common features. We also concluded the applications of size profile in pre-analytical phases, analytical phases for novel assays, and preparation of quality control materials (QCMs). Results: The size profile of cfDNA shared common features in different populations, and was distributed as a "ladder" pattern with a dominant peak at ~166 bp. However, cfDNA entailed slightly discrepant characteristics due to specific tissues of origin. The dominant peaks of fetal and maternal cfDNA fragments in pregnant women were at 143 bp and 166 bp, respectively. The plasma cfDNA in tumor patients, transplant recipients, and SLE patients had a peak of around 166 bp. In pre-analytical phases, size profile served as a vital indicator to judge the eligibility of specimens, thus ensuring the successful implementation of assays. More importantly, the size profile had the potential to enrich short fragments, calculate fetal fraction, detect fetal abnormalities, predict tumor progress in analytical phase and to guide the preparation of QCMs. Conclusions: Our finding summarized the characteristics and potential applications of cfDNA size profile, providing clinical researchers with novel assays by the extensive application of cfDNA.
Collapse
Affiliation(s)
- Jiping Shi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Runling Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
- ✉ Corresponding author: Rui Zhang, Ph.D, Mailing address: National Center for Clinical Laboratories, Beijing Hospital, No.1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China. Tel: 86-10-58115053; Fax: 86-10-65212064; E-mail:
| |
Collapse
|