1
|
Wang L, Bi S, Li Z, Liao A, Li Y, Yang L, Zhou X, Gao Y, Liu X, Zou Y, Zhang X, Shi J, Yu S, Yu Z, Guo J. Napabucasin deactivates STAT3 and promotes mitoxantrone-mediated cGAS-STING activation for hepatocellular carcinoma chemo-immunotherapy. Biomaterials 2025; 313:122766. [PMID: 39180916 DOI: 10.1016/j.biomaterials.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The immune resistance of tumor microenvironment (TME) causes immune checkpoint blockade therapy inefficient to hepatocellular carcinoma (HCC). Emerging strategies of using chemotherapy regimens to reverse the immune resistance provide the promise for promoting the efficiency of immune checkpoint inhibitors. The induction of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) in tumor cells evokes the adaptive immunity and remodels the immunosuppressive TME. In this study, we report that mitoxantrone (MIT, a chemotherapeutic drug) activates the cGAS-STING signaling pathway of HCC cells. We provide an approach to augment the efficacy of MIT using a signal transducer and activator of transcription 3 (STAT3) inhibitor called napabucasin (NAP). We prepare an aminoethyl anisamide (AEAA)-targeted polyethylene glycol (PEG)-modified poly (lactic-co-glycolic acid) (PLGA)-based nanocarrier for co-delivery of MIT and NAP. The resultant co-nanoformulation can elicit the cGAS-STING-based immune responses to reshape the immunoresistant TME in the mice orthotopically grafted with HCC. Consequently, the resultant co-nanoformulation can promote anti-PD-1 antibody for suppressing HCC development, generating long-term survival, and inhibiting tumor recurrence. This study reveals the potential of MIT to activate the cGAS-STING signaling pathway, and confirms the feasibility of nano co-delivery for MIT and NAP on achieving HCC chemo-immunotherapy.
Collapse
Affiliation(s)
- Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Shengnan Bi
- Department of Pharmacy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhuo Li
- Department of Pharmacy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xinyi Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yuqiong Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaobo Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xuemei Zhang
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Shi
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shihan Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Zhang J, Liu Z, Zhang Z, Yang H, Wang H, Yang Z, Xu Y, Li S, Yang D. Recent Advances in Silica-Based Nanomaterials for Enhanced Tumor Imaging and Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7133-7169. [PMID: 39495482 DOI: 10.1021/acsabm.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cancer remains a formidable challenge, inflicting profound physical, psychological, and financial burdens on patients. In this context, silica-based nanomaterials have garnered significant attention for their potential in tumor imaging and therapy owing to their exceptional properties, such as biocompatibility, customizable porosity, and versatile functionalization capabilities. This review meticulously examines the latest advancements in the application of silica-based nanomaterials for tumor imaging and therapy. It underscores their potential in enhancing various cancer imaging modalities, including fluorescence imaging, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasound imaging, and multimodal imaging approaches. Moreover, the review delves into their therapeutic efficacy in chemotherapy, radiotherapy, phototherapy, immunotherapy, gas therapy, sonodynamic therapy, chemodynamic therapy, starvation therapy, and gene therapy. Critical evaluations of the biosafety profiles and degradation pathways of these nanomaterials within biological environments are also presented. By discussing the current challenges and prospects, this review aims to provide a nuanced perspective on the clinical translation of silica-based nanomaterials, thereby highlighting their promise in revolutionizing cancer diagnostics, enabling real-time monitoring of therapeutic responses, and advancing personalized medicine.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yunjian Xu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
3
|
Wang Y, Wu Q, Liu J, Wang X, Xie J, Fu X, Li Y. WDR77 in Pan-Cancer: Revealing expression patterns, genetic insights, and functional roles across diverse tumor types, with a spotlight on colorectal cancer. Transl Oncol 2024; 49:102089. [PMID: 39182364 PMCID: PMC11388772 DOI: 10.1016/j.tranon.2024.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Despite its involvement in regulating various cellular functions, the expression and role of WD repeat-containing protein 77 (WDR77) in cancer remain elusive. This study aims to explore the expression and potential roles of WDR77 across multiple cancers, with a particular focus on its relevance in colorectal cancer (CRC). METHODS We obtained WDR77 RNA-seq data, mutations, CNVs, and DNA methylation data from the TCGA, GTEx, and GEO databases to investigate its expression patterns and prognostic value. Additionally, we examined the correlation between WDR77 expression and somatic mutations, copy number variations, DNA methylation, and mRNA modifications. We utilized GSVA, GSEA algorithms, and CRISPR KO data from the Dependency Map database to explore WDR77's potential biological functions. The association between WDR77 and the tumor immune microenvironment was investigated using ESTIMATE and IOBR algorithms. Finally, we assessed WDR77 expression in CRC and its impact on cell proliferation through qRT-PCR, Western blotting, immunohistochemistry, CCK8, colony formation, and EdU assays. RESULTS WDR77 was upregulated in various tumors and correlated with poor patient prognosis. Its high expression positively correlated with pathways related to cell proliferation and negatively correlated with immune-related pathways. In CRC, WDR77 expression was associated with specific clinical features, genomic alterations, and immune microenvironment characteristics. Experimental validation confirmed upregulated WDR77 expression in CRC tissues and cells, with WDR77 knockdown significantly inhibiting CRC cell proliferation. CONCLUSION WDR77 holds potential as an oncogene and biological marker in various cancers, particularly CRC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, PR China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha 410078, PR China
| | - Xuan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Jialing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, PR China; Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
4
|
Rajaram J, Kuthati Y. Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects. Cancers (Basel) 2024; 16:3581. [PMID: 39518022 PMCID: PMC11545372 DOI: 10.3390/cancers16213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: The significant expansion of nanobiotechnology and nanomedicine has led to the development of innovative and effective techniques to combat various pathogens, demonstrating promising results with fewer adverse effects. Metal peroxide nanoparticles stand out among the crucial yet often overlooked types of nanomaterials, including metals. These nanoparticles are key in producing oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, which are vital in treating various diseases. These compounds play a crucial role in boosting the effectiveness of different treatment methods and also possess unique properties due to the addition of metal ions. Methods: This review discusses and analyzes some of the most common metal peroxide nanoparticles, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. These nanosystems, characterized by their greater potential and treatment efficiency, are primarily needed in nanomedicine to combat various harmful pathogens. Researchers have extensively studied the effects of these peroxides in various treatments, such as catalytic nanotherapeutics, photodynamic therapy, radiation therapy, and some combination therapies. The tumor microenvironment (TME) is particularly unique, making the impact of nanomedicine less effective or even null. The presence of high levels of reactive oxygen species (ROS), hypoxia, low pH, and high glutathione levels makes them competitive against nanomedicine. Controlling the TME is a promising approach to combating cancer. Results: Metal peroxides with low biodegradability, toxicity, and side effects could reduce their effectiveness in treating the TME. It is important to consider the distribution of metal peroxides to effectively target cancer cells while avoiding harm to nearby normal cells. As a result, modifying the surface of metal peroxides is a key strategy to enhance their delivery to the TME, thereby improving their therapeutic benefits. Conclusions: This review discussed the various aspects of the TME and the importance of modifying the surface of metal peroxides to enhance their therapeutic advantages against cancer, as well as address safety concerns. Additionally, this review covered the current challenges in translating basic research findings into clinical applications of therapies based on metal peroxide nanoparticles.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
| |
Collapse
|
5
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2024:10.1038/s41577-024-01091-9. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Shin S, Kim CH, Son S, Lee JA, Kwon S, You DG, Lee J, Kim J, Jo DG, Ko H, Park JH. PEDF-Enriched Extracellular Vesicle for Vessel Normalization to Potentiate Immune Checkpoint Blockade Therapy. Biomater Res 2024; 28:0068. [PMID: 39355307 PMCID: PMC11443973 DOI: 10.34133/bmr.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 10/03/2024] Open
Abstract
The abnormal tumor vasculature acts as the physical and functional barrier to the infiltration and activity of effector T cells, leading to the low response rate of immune checkpoint inhibitors (ICIs). Herein, antiangiogenic extracellular vesicles that enable normalization of the tumor-associated vasculature were prepared to potentiate the efficacy of ICIs. Small extracellular vesicles were exploited as the delivery platform to protect the antiangiogenic protein, pigment epithelium-derived factor (PEDF), from proteolytic degradation. Along with the physicochemical characteristics of the PEDF-enriched extracellular vesicles (P-EVs), their inhibitory effects on migration, proliferation, and tube formation of endothelial cells were investigated in vitro. In tumor-bearing mice, it was confirmed that, compared to bare PEDFs, P-EVs efficiently reduced vessel leakiness, improved blood perfusion, and attenuated hypoxia. Consequently, when combined with anti-PD-1 antibodies, P-EVs remarkably augmented the antitumor immunity, as evidenced by increased infiltration of CD8+ T cells and reduced regulatory T cells. These results suggest that P-EVs are promising therapeutics for tumors refractory to ICIs.
Collapse
Affiliation(s)
- Sol Shin
- Department of Health Sciences and Technology, SAIHST,
Sungkyunkwan University, Seoul 06355, Republic of Korea
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology, SAIHST,
Sungkyunkwan University, Seoul 06355, Republic of Korea
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil You
- Massachusetts General Hospital,
Harvard Medical School, Boston, MA, USA
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongyun Kim
- Department of Health Sciences and Technology, SAIHST,
Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Dong-Gyu Jo
- Biomedical Institute for Convergence at SKKU (BICS),
Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy,
Sungkyunkwan University, Suwon, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Hyewon Ko
- School of Pharmacy,
Sungkyunkwan University, Suwon, Republic of Korea
- Bionanotechnology Research Center,
Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology, SAIHST,
Sungkyunkwan University, Seoul 06355, Republic of Korea
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS),
Sungkyunkwan University, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
7
|
Um‐e‐Kalsoom, Wang S, Qu J, Liu L. Innovative optical imaging strategies for monitoring immunotherapy in the tumor microenvironments. Cancer Med 2024; 13:e70155. [PMID: 39387259 PMCID: PMC11465031 DOI: 10.1002/cam4.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in cancer progression and response to immunotherapy. Immunotherapy targeting the immune system has emerged as a promising treatment modality, but challenges in understanding the TME limit its efficacy. Optical imaging strategies offer noninvasive, real-time insights into the interactions between immune cells and the TME. OBJECTIVE This review assesses the progress of optical imaging technologies in monitoring immunotherapy within the TME and explores their potential applications in clinical trials and personalized cancer treatment. METHODS This is a comprehensive literature review based on the advances in optical imaging modalities including fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI). These modalities were analyzed for their capacity to provide high-resolution, real-time imaging of immune cell dynamics, tumor vasculature, and other critical components of the TME. RESULTS Optical imaging techniques have shown significant potential in tracking immune cell infiltration, assessing immune checkpoint inhibitors, and visualizing drug delivery within the TME. Technologies like FLI and BLI are pivotal in tracking immune responses in preclinical models, while PAI provides functional imaging with deeper tissue penetration. The integration of these modalities with immunotherapy holds promise for improving treatment monitoring and outcomes. CONCLUSION Optical imaging is a powerful tool for understanding the complexities of the TME and optimizing immunotherapy. Further advancements in imaging technologies, combined with nanomaterial-based approaches, could pave the way for enhanced diagnostic accuracy and therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Um‐e‐Kalsoom
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| |
Collapse
|
8
|
Xu C, Wang M, Chen C, Xu Y, Liu F, Wang G. Immunoprognostic analysis of indoleamine 2,3-dioxygenase 1 in patients with cervical cancer. Medicine (Baltimore) 2024; 103:e39733. [PMID: 39312339 PMCID: PMC11419511 DOI: 10.1097/md.0000000000039733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
The incidence of cervical cancer is increasing. Immunotherapies show better patient outcomes than monotherapies; however, the mainstay treatment for cervical cancer remains surgery and chemotherapy. Indoleamine 2,3-dioxygenase 1 (IDO1) acts on multiple tryptophan substrates, exhibiting antitumor, immunomodulatory, and antioxidant activities. Despite the association of elevated IDO1 expression with unfavorable outcomes in various cancers, its precise function in cervical cancer remains ambiguous. Here, we explored the prognostic significance of IDO1 in cervical carcinoma. Gene expression datasets were obtained from The Cancer Genome Atlas. Gene Expression Omnibus datasets were used for differential expression and functional correlation analyses. Using Human Protein Atlas alongside Tumor-Immune System Interaction Database, we assessed the association of IDO1 with survival rates. Given the link between cervical cancer prognosis and immune invasion, CIBERSORT was used to assess the connection between immune cells and IDO1, while the percentage of tumor-penetrating immune cells based on IDO1 expression in cervical cancer patients was analyzed using Tumor-Immune System Interaction Database. Incorporating a clinicopathological characteristic-based risk score model with IDO1 risk score, we devised a nomogram to predict cervical cancer patient survival. The effects of IDO1 in immune regulation and its prognostic significance were validated using data from patients with cervical cancer obtained from The Cancer Imaging Archive database. Compared with that in normal cervical tissues, IDO1 expression was significantly upregulated in cervical cancer tissues and significantly correlated with cervical cancer progression and prognosis. IDO1 expression showed a positive association with monocyte and macrophage abundance, while exhibiting a negative correlation with that of endothelial cells and eosinophils. Cox regression analyses highlighted IDO1 as the core immune gene implicated in cervical cancer. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed an association of IDO1 with the metabolic pathways of tryptophan, phenylalanine, and tyrosine. Univariate and multivariate analyses revealed that elevated IDO1 expression correlates markedly with cervical cancer outcomes, suggesting it as a promising therapeutic target. The Cancer Imaging Archive data analysis revealed that the impact of anti-PD1 and CTLA4 therapy is more pronounced in cervical cancer patients exhibiting elevated IDO1 expression. IDO1 is a potential target for immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Cong Xu
- School of Clinical Medicine, Dali University, Dali, Yunnan, People’s Republic of China
| | - Min Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, People’s Republic of China
| | - Chaowen Chen
- Chinese People’s Life Safety Research Institute, Huaxi Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yonghong Xu
- Department of General Surgery, Banan Hospital Affiliated to Chongqing Medical University, Banan, Chongqing, People’s Republic of China
| | - Fang Liu
- School of Clinical Medicine, Dali University, Dali, Yunnan, People’s Republic of China
| | - Guangming Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, People’s Republic of China
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, People’s Republic of China
| |
Collapse
|
9
|
Xu X, Yan SL, Yo YT, Chiang P, Tsai CY, Lin LL, Qin A. A Novel Monoclonal Antibody against PD-1 for the Treatment of Viral Oncogene-Induced Tumors or Other Cancer. Cancers (Basel) 2024; 16:3052. [PMID: 39272910 PMCID: PMC11393876 DOI: 10.3390/cancers16173052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Programmed cell death 1 (PD-1) and programmed death-ligand 1 (PD-L1) interact to form an immune checkpoint fostering viral infection and viral oncogene-induced tumorigenesis. We generated a novel anti-human PD-1, humanized monoclonal antibody P1801 and investigated its pharmacologic, pharmacokinetic (PK), and pharmacodynamic properties. In vitro binding assays revealed that P1801 uniquely binds to human PD-1 and inhibits its interaction with PD-L1/2. It showed a minor effect on the induction of antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). P1801 significantly induced the release of IL-2 from activated T-cells but not from nonactivated T-cells. A dose-dependent linear PK profile was observed for the cynomolgus monkeys treated with repeated doses of P1801 at 5 mg/kg to 200 mg/kg once weekly. A four-week repeat-dose toxicity study revealed that P1801 given weekly was safe and well tolerated at doses ranging from 5 to 200 mg/kg/dose. No pathological abnormalities were noted. In humanized PD-1 mice harboring human PD-L1-expressing colon tumor cells, P1801 administered intraperitoneally twice per week at 12 mg/kg significantly inhibited tumor growth and prolonged mouse survival. P1801 displayed unique binding properties different from pembrolizumab and nivolumab. Therefore, it showed distinctive immunological reactions and significant antitumor activities. We are initiating a Phase 1 clinical study to test its combination use with ropeginterferon alfa-2b, which also has antiviral and antitumor activities, for the treatment of cancer.
Collapse
Affiliation(s)
- Xu Xu
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Shih-Long Yan
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Yi-Te Yo
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Peiyu Chiang
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Chan-Yen Tsai
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Lih-Ling Lin
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Albert Qin
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei 115, Taiwan
| |
Collapse
|
10
|
Cai Q, He Y, Zhou Y, Zheng J, Deng J. Nanomaterial-Based Strategies for Preventing Tumor Metastasis by Interrupting the Metastatic Biological Processes. Adv Healthc Mater 2024; 13:e2303543. [PMID: 38411537 DOI: 10.1002/adhm.202303543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Tumor metastasis is the primary cause of cancer-related deaths. The prevention of tumor metastasis has garnered notable interest and interrupting metastatic biological processes is considered a potential strategy for preventing tumor metastasis. The tumor microenvironment (TME), circulating tumor cells (CTCs), and premetastatic niche (PMN) play crucial roles in metastatic biological processes. These processes can be interrupted using nanomaterials due to their excellent physicochemical properties. However, most studies have focused on only one aspect of tumor metastasis. Here, the hypothesis that nanomaterials can be used to target metastatic biological processes and explore strategies to prevent tumor metastasis is highlighted. First, the metastatic biological processes and strategies involving nanomaterials acting on the TME, CTCs, and PMN to prevent tumor metastasis are briefly summarized. Further, the current challenges and prospects of nanomaterials in preventing tumor metastasis by interrupting metastatic biological processes are discussed. Nanomaterial-and multifunctional nanomaterial-based strategies for preventing tumor metastasis are advantageous for the long-term fight against tumor metastasis and their continued exploration will facilitate rapid progress in the prevention, diagnosis, and treatment of tumor metastasis. Novel perspectives are outlined for developing more effective strategies to prevent tumor metastasis, thereby improving the outcomes of patients with cancer.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yijia He
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
11
|
Xu S, Xu Y, Chai W, Liu X, Li J, Sun L, Pan H, Yan M. KLRB1 expression is associated with lung adenocarcinoma prognosis and immune infiltration and regulates lung adenocarcinoma cell proliferation and metastasis through the MAPK/ERK pathway. J Thorac Dis 2024; 16:3764-3781. [PMID: 38983163 PMCID: PMC11228747 DOI: 10.21037/jtd-24-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/10/2024] [Indexed: 07/11/2024]
Abstract
Background Lung cancer is the most common primary malignant tumor of the lung, and as one of the malignant tumors that pose the greatest threat to the health of the population, the incidence rate has remained high in recent years. Previous studies have shown that KLRB1 is transcriptionally repressed in lung adenocarcinoma and correlates with lung adenocarcinoma prognosis. The objective of this study is to investigate the intrinsic mechanisms by which KLRB1 affects the malignant phenotypes of lung adenocarcinoma such as immune infiltration, proliferation, growth and metastasis. Methods We assessed the expression levels of KLRB1 in publicly available databases and investigated its associations with clinical and pathological variables. Enrichment analysis was subsequently conducted to investigate possible signaling pathways and their associated biological functions. Statistical analysis, including Spearman correlation and the application of multigene prediction models, was utilized to assess the relationship between the expression of KLRB1 and the infiltration of immune cells. The diagnostic and prognostic value of KLRB1 was evaluated using Kaplan-Meier survival curves, diagnostic receptor operating characteristic (ROC) curves, histogram models, and Cox regression analysis. Specimens from lung adenocarcinoma (LUAD) patients were collected, the expression level of KLRB1 was detected by protein blotting analysis, and the expression level of KLRB1 was detected at the mRNA level by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Small interfering RNA (siRNA) was used to silence gene expression, and Transwell, Cell Counting Kit-8 (CCK-8) and colony formation assays were subsequently performed to analyze the effects of KLRB1 on LUAD cell migration, invasion and proliferation. Results KLRB1 expression was lower in lung cancer tissue than in surrounding healthy tissue. Genes differentially expressed in the low and high KLRB1 expression groups were found to be significantly enriched in pathways related to immunity. KLRB1 exerted an impact on the MAPK/ERK signaling pathway, thereby modulating the growth and proliferation of LUAD cells. KLRB1 expression is linked to prognosis, immune infiltration, and cell migration and proliferation in LUAD. Conclusions The evidence revealed a correlation between KLRB1 and both prognosis and immune infiltration in LUAD patients.
Collapse
Affiliation(s)
- Siwei Xu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yujian Xu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Chai
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoli Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Sun
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Pan
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingxia Yan
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Aljabali AAA, Obeid MA, Gammoh O, El-Tanani M, Mishra V, Mishra Y, Kapre S, Srivatsa Palakurthi S, Hassan SS, Nawn D, Lundstrom K, Hromić-Jahjefendić A, Serrano-Aroca Á, Redwan EM, Uversky VN, Tambuwala MM. Nanomaterial-Driven Precision Immunomodulation: A New Paradigm in Therapeutic Interventions. Cancers (Basel) 2024; 16:2030. [PMID: 38893150 PMCID: PMC11171400 DOI: 10.3390/cancers16112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan; (A.A.A.A.); (M.A.O.)
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan; (A.A.A.A.); (M.A.O.)
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.K.); (S.S.P.)
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.K.); (S.S.P.)
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India;
| | - Debaleena Nawn
- Indian Research Institute for Integrated Medicine (IRIIM), Unsani, Howrah 711302, West Bengal, India;
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M. Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
13
|
Souza VGP, Telkar N, Lam WL, Reis PP. Comprehensive Analysis of Lung Adenocarcinoma and Brain Metastasis through Integrated Single-Cell Transcriptomics. Int J Mol Sci 2024; 25:3779. [PMID: 38612588 PMCID: PMC11012108 DOI: 10.3390/ijms25073779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional therapies that offer limited survival benefits with neurotoxic side effects. The tumor microenvironment (TME) is a complex system where cancer cells interact with various elements, significantly influencing tumor behavior. Immunotherapies, particularly immune checkpoint inhibitors, target the TME for cancer treatment. Despite their effectiveness, it is crucial to understand metastatic lung cancer and the specific characteristics of the TME, including cell-cell communication mechanisms, to refine treatments. Herein, we investigated the tumor microenvironment of brain metastasis from lung adenocarcinoma (LUAD-BM) and primary tumors across various stages (I, II, III, and IV) using single-cell RNA sequencing (scRNA-seq) from publicly available datasets. Our analysis included exploring the immune and non-immune cell composition and the expression profiles and functions of cell type-specific genes, and investigating the interactions between different cells within the TME. Our results showed that T cells constitute the majority of immune cells present in primary tumors, whereas microglia represent the most dominant immune cell type in BM. Interestingly, microglia exhibit a significant increase in the COX pathway. Moreover, we have shown that microglia primarily interact with oligodendrocytes and endothelial cells. One significant interaction was identified between DLL4 and NOTCH4, which demonstrated a relevant association between endothelial cells and microglia and between microglia and oligodendrocytes. Finally, we observed that several genes within the HLA complex are suppressed in BM tissue. Our study reveals the complex molecular and cellular dynamics of BM-LUAD, providing a path for improved patient outcomes with personalized treatments and immunotherapies.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
14
|
Yu Z, Huang L, Guo J. Anti-stromal nanotherapeutics for hepatocellular carcinoma. J Control Release 2024; 367:500-514. [PMID: 38278367 DOI: 10.1016/j.jconrel.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hepatocellular carcinoma (HCC), the most commonly diagnosed primary liver cancer, has become a leading cause of cancer-related death worldwide. Accumulating evidence confirms that the stromal constituents within the tumor microenvironment (TME) exacerbate HCC malignancy and set the barriers to current anti-HCC treatments. Recent developments of nano drug delivery system (NDDS) have facilitated the application of stroma-targeting therapeutics, disrupting the stromal TME in HCC. This review discusses the stromal activities in HCC development and therapy resistance. In addition, it addresses the delivery challenges of NDDS for stroma-targeting therapeutics (termed anti-stromal nanotherapeutics in this review), and provides recent advances in anti-stromal nanotherapeutics for safe, effective, and specific HCC therapy.
Collapse
Affiliation(s)
- Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
15
|
Schwartz-Duval A, Mackeyev Y, Mahmud I, Lorenzi PL, Gagea M, Krishnan S, Sokolov KV. Intratumoral Biosynthesis of Gold Nanoclusters by Pancreatic Cancer to Overcome Delivery Barriers to Radiosensitization. ACS NANO 2024; 18:1865-1881. [PMID: 38206058 PMCID: PMC10811688 DOI: 10.1021/acsnano.3c04260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Nanoparticle delivery to solid tumors is a prime challenge in nanomedicine. Here, we approach this challenge through the lens of biogeochemistry, the field that studies the flow of chemical elements within ecosystems as manipulated by living cellular organisms and their environments. We leverage biogeochemistry concepts related to gold cycling against pancreatic cancer, considering mammalian organisms as drivers for gold nanoparticle biosynthesis. Sequestration of gold nanoparticles within tumors has been demonstrated as an effective strategy to enhance radiotherapy; however, the desmoplasia of pancreatic cancer impedes nanoparticle delivery. Our strategy overcomes this barrier by applying an atomic-scale agent, ionic gold, for intratumoral gold nanoparticle biosynthesis. Our comprehensive studies showed the cancer-specific synthesis of gold nanoparticles from externally delivered gold ions in vitro and in a murine pancreatic cancer model in vivo; a substantial colocalization of gold nanoparticles (GNPs) with cancer cell nuclei in vitro and in vivo; a strong radiosensitization effect by the intracellularly synthesized GNPs; a uniform distribution of in situ synthesized GNPs throughout the tumor volume; a nearly 40-day total suppression of tumor growth in animal models of pancreatic cancer treated with a combination of gold ions and radiation that was also associated with a significantly higher median survival versus radiation alone (235 vs 102 days, respectively).
Collapse
Affiliation(s)
- Aaron
S. Schwartz-Duval
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Yuri Mackeyev
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center, Houston, Texas 77030, United States
| | - Iqbal Mahmud
- Department
of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Philip L. Lorenzi
- Department
of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Mihai Gagea
- Department
of Veterinary Medicine & Surgery, The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Sunil Krishnan
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center, Houston, Texas 77030, United States
| | - Konstantin V. Sokolov
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| |
Collapse
|
16
|
Duarte Mendes A, Freitas AR, Vicente R, Ferreira R, Martins T, Ramos MJ, Baptista C, Silva BM, Margarido I, Vitorino M, Silva M, Braga S. Beta-Adrenergic Blockade in Advanced Non-Small Cell Lung Cancer Patients Receiving Immunotherapy: A Multicentric Study. Cureus 2024; 16:e52194. [PMID: 38348009 PMCID: PMC10859721 DOI: 10.7759/cureus.52194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction The standard treatment of cancer has dramatically improved with immune checkpoint inhibitors (ICIs). Despite their proven advantage, many patients fail to exhibit a meaningful and lasting response. The beta-adrenergic signalling pathway may hold significant promise due to its role in promoting an immunosuppressive milieu within the tumour microenvironment. Inhibiting β-adrenergic signalling could enhance ICI activity; however, blocking this pathway for this purpose has yielded conflicting results. The primary objective of this study was to evaluate the effect of beta-blocker use on overall survival and progression-free survival during ICI therapy. Methods A multicentric, retrospective, observational study was conducted in four Portuguese institutions. Patients with advanced non-small cell lung cancer treated with ICIs between January 2018 and December 2019 were included. Those using beta blockers for non-oncological reasons were compared with non-users. Results Among the 171 patients included, 36 concomitantly received beta blockers and ICIs. No significant increase was found in progression-free survival among patients who took β-blockers (HR 0.74, 95% confidence interval (CI) 0.48-1.12, p = 0.151), and no statistically significant difference was found in overall survival. An apparent trend was observed towards better outcomes in the beta-blocker group, with a median overall survival of 9.93 months in the group not taking β-blockers versus 14.90 months in the β-blocker group (p = 0.291) and a median progression-free survival of 5.37 in the group not taking β-blockers versus 10.87 months in the β-blocker group (p = 0.151). Nine (25%) patients in the beta-blocker group and 16 (12%) in the non-beta-blocker group were progressive disease-free at the end of follow-up. This difference between the two groups is statistically significant (p = 0.047). Conclusion Our study found no statistically significant evidence that beta blockers enhance the effectiveness of immunotherapy. Using adrenergic blockade to modulate the immune system shows promise, warranting the need to develop prospective clinical studies.
Collapse
Affiliation(s)
- Ana Duarte Mendes
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Ana Rita Freitas
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Rodrigo Vicente
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Ricardo Ferreira
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Telma Martins
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Maria João Ramos
- Medical Oncology Department, Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Carlota Baptista
- Medical Oncology Department, Hospital Beatriz Ângelo, Loures, PRT
| | | | - Inês Margarido
- Medical Oncology Department, Hospital da Luz Lisboa, Lisboa, PRT
| | - Marina Vitorino
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Michelle Silva
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| | - Sofia Braga
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT
| |
Collapse
|
17
|
Li Y, Guo Y, Zhang K, Zhu R, Chen X, Zhang Z, Yang W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306580. [PMID: 37984863 PMCID: PMC10797449 DOI: 10.1002/advs.202306580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cancer immunotherapy has become a mainstream cancer treatment over traditional therapeutic modes. Cancer cells can undergo programmed cell death including ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis which are find to have intrinsic relationships with host antitumor immune response. However, direct use of cell death inducers or regulators may bring about severe side effects that can also be rapidly excreted and degraded with low therapeutic efficacy. Nanomaterials are able to carry them for long circulation time, high tumor accumulation and controlled release to achieve satisfactory therapeutic effect. Nowadays, a large number of studies have focused on nanomedicines-based strategies through modulating cell death modalities to potentiate antitumor immunity. Herein, immune cell types and their function are first summarized, and state-of-the-art research progresses in nanomedicines mediated cell death pathways (e.g., ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis) with immune response provocation are highlighted. Subsequently, the conclusion and outlook of potential research focus are discussed.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450001China
- The center of Infection and ImmunityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Yichen Guo
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Kaixin Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Rongrong Zhu
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineering, and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Weijing Yang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
18
|
Ritu, Chandra P, Das A. Immune checkpoint targeting antibodies hold promise for combinatorial cancer therapeutics. Clin Exp Med 2023; 23:4297-4322. [PMID: 37804358 DOI: 10.1007/s10238-023-01201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Through improving the immune system's ability to recognize and combat tumor cells as well as its receptivity to changes in the tumor microenvironment, immunotherapy has emerged as a highly successful addition to the treatment of cancer. However, tumor heterogeneity poses a significant challenge in cancer therapy as it can undermine the anti-tumor immune response through the manipulation of the extracellular matrix. To address these challenges and improve targeted therapies and combination treatments, the food and drug administration has approved several immunomodulatory antibodies to suppress immunological checkpoints. Combinatorial therapies necessitate the identification of multiple targets that regulate the intricate communication between immune cells, cytokines, chemokines, and cellular responses within the tumor microenvironment. The purpose of this study is to provide a comprehensive overview of the ongoing clinical trials involving immunomodulatory antibodies in various cancer types. It explores the potential of these antibodies to modulate the immune system and enhance anti-tumor responses. Additionally, it discusses the perspectives and prospects of immunomodulatory therapeutics in cancer treatment. Although immunotherapy shows great promise in cancer treatment, it is not exempt from side effects that can arise due to hyperactivity of the immune system. Therefore, understanding the intricate balance between immune activation and regulation is crucial for minimizing these adverse effects and optimizing treatment outcomes. This study aims to contribute to the growing body of knowledge surrounding immunomodulatory antibodies and their potential as effective therapeutic options in cancer treatment, ultimately paving the way for improved patient outcomes and deepening our perception of the intricate interactivity between the immune system and tumors.
Collapse
Affiliation(s)
- Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India.
| |
Collapse
|
19
|
Sun Y, Cronin MF, Mendonça MCP, Guo J, O’Driscoll CM. M2pep-Modified Cyclodextrin-siRNA Nanoparticles Modulate the Immunosuppressive Tumor Microenvironment for Prostate Cancer Therapy. Mol Pharm 2023; 20:5921-5936. [PMID: 37874541 PMCID: PMC10630955 DOI: 10.1021/acs.molpharmaceut.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Prostate cancer (PCa) is the most prevalent cause of cancer deaths in men. Conventional strategies, such as surgery, radiation, or chemotherapy, face challenges including poor prognosis and resistance. Therefore, the development of new improved strategies is vital to enhance patient outcomes. Recently, immunotherapy has shown potential in the treatment of a range of cancers, including PCa. Tumor-associated macrophages (TAMs) play an important role in the tumor microenvironment (TME) and reprogramming of TAMs is associated with remodeling the TME. The colony-stimulating factor-1/colony stimulating factor-1 receptor (CSF-1/CSF-1R) signaling pathway is closely related to the polarization of TAMs. The downregulation of CSF-1R, using small interfering RNA (siRNA), has been shown to achieve the reprogramming of TAMs, from the immunosuppressive M2 phenotype to the immunostimulatory M1 one. To maximize specific cellular delivery an M2 macrophage-targeting peptide, M2pep, was formulated with an amphiphilic cationic β-Cyclodextrin (CD) incorporating CSF-1R siRNA. The resulting nanoparticles (NPs) increased M2 macrophage targeting both in vitro and in vivo, promoting the release of M1 factors and simultaneously downregulating the levels of M2 factors through TAM reprogramming. The subsequent remodeling of the TME resulted in a reduction in tumor growth in a subcutaneous PCa mouse model mainly mediated through the recruitment of cytotoxic T cells. In summary, this M2pep-targeted CD-based delivery system demonstrated significant antitumor efficacy, thus presenting an alternative immunotherapeutic strategy for PCa treatment.
Collapse
Affiliation(s)
- Yao Sun
- School
of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| | | | | | - Jianfeng Guo
- School
of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | | |
Collapse
|
20
|
Chakraborty S, Ye J, Wang H, Sun M, Zhang Y, Sang X, Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front Immunol 2023; 14:1227833. [PMID: 37936697 PMCID: PMC10626551 DOI: 10.3389/fimmu.2023.1227833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in various immune cell types and perform multiple purposes and duties involved in the induction of innate and adaptive immunity. Their capability to propagate immunity makes them attractive targets for the expansion of numerous immunotherapeutic approaches targeting cancer. These immunotherapeutic strategies include using TLR ligands/agonists as monotherapy or combined therapeutic strategies. Several TLR agonists have demonstrated significant efficacy in advanced clinical trials. In recent years, multiple reports established the applicability of TLR agonists as adjuvants to chemotherapeutic drugs, radiation, and immunotherapies, including cancer vaccines. Cancer vaccines are a relatively novel approach in the field of cancer immunotherapy and are currently under extensive evaluation for treating different cancers. In the present review, we tried to deliver an inclusive discussion of the significant TLR agonists and discussed their application and challenges to their incorporation into cancer immunotherapy approaches, particularly highlighting the usage of TLR agonists as functional adjuvants to cancer vaccines. Finally, we present the translational potential of rWTC-MBTA vaccination [irradiated whole tumor cells (rWTC) pulsed with phagocytic agonists Mannan-BAM, TLR ligands, and anti-CD40 agonisticAntibody], an autologous cancer vaccine leveraging membrane-bound Mannan-BAM, and the immune-inducing prowess of TLR agonists as a probable immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Samik Chakraborty
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NE1 Inc., New York, NY, United States
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mitchell Sun
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yaping Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueyu Sang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Gong M, Feng S, Zhou D, Luo J, Lin T, Qiu S, Yuan R, Dong W. Upregulation of BMP1 through ncRNAs correlates with adverse outcomes and immune infiltration in clear cell renal cell carcinoma. Eur J Med Res 2023; 28:440. [PMID: 37848987 PMCID: PMC10580559 DOI: 10.1186/s40001-023-01422-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) accounts for approximately 2-3% of all adult malignancies. Clear cell renal cell carcinoma (ccRCC), which comprises 70-80% of all RCC cases, is the most common histological subtype. METHODS ccRCC transcriptome data and clinical information were downloaded from the TCGA database. We used the TCGA and GEPIA databases to analyze relative expression of BMP1 in various types of human cancer. GEPIA was used to perform survival analysis for BMP1 in various cancer types. Upstream binding miRNAs of BMP1 were obtained through several important target gene prediction tools. StarBase was used to predict candidate miRNAs that may bind to BMP1 and candidate lncRNAs that may bind to hsa-miR-532-3p. We analyzed the association between expression of BMP1 and immune cell infiltration levels in ccRCC using the TIMER website. The relationship between BMP1 expression levels and immune checkpoint expression levels was also investigated. RESULTS BMP1 was upregulated in GBM, HNSC, KIRC, KIRP and STAD and downregulated in KICH and PRAD. Combined with OS and DFS, BMP1 can be used as a biomarker for poor prognosis among patients with KIRC. Through expression analysis, survival analysis and correlation analysis, LINC00685, SLC16A1-AS1, PVT1, VPS9D1-AS1, SNHG15 and the CCDC18-AS1/hsa-miR-532-3p/BMP1 axis were established as the most potential upstream ncRNA-related pathways of BMP1 in ccRCC. Furthermore, we found that BMP1 levels correlated significantly positively with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression. CONCLUSION Our results demonstrate that ncRNA-mediated high expression of BMP1 is associated with poor prognosis and tumor immune infiltration in ccRCC.
Collapse
Affiliation(s)
- Mancheng Gong
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, 528403, Guangdong, China
| | - Shengxing Feng
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, 528403, Guangdong, China
| | - Dongsheng Zhou
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, 528403, Guangdong, China
| | - Jinquan Luo
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, 528403, Guangdong, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, 510080, Guangdong, China
| | - Shaopeng Qiu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Runqiang Yuan
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, 528403, Guangdong, China.
| | - Wenjing Dong
- Department of Oncology, The People's Hospital of Zhongshan, No. 2 Sunwen East Road, Zhongshan, 528403, Guangdong, China.
| |
Collapse
|
22
|
Farhana A, Alsrhani A, Khan YS, Rasheed Z. Cancer Bioenergetics and Tumor Microenvironments-Enhancing Chemotherapeutics and Targeting Resistant Niches through Nanosystems. Cancers (Basel) 2023; 15:3836. [PMID: 37568652 PMCID: PMC10416858 DOI: 10.3390/cancers15153836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Qassim, Saudi Arabia
| |
Collapse
|
23
|
Yi W, Yan D, Wang D, Li Y. Smart drug delivery systems to overcome drug resistance in cancer immunotherapy. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0009. [PMID: 37144580 PMCID: PMC10157806 DOI: 10.20892/j.issn.2095-3941.2023.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Cancer immunotherapy, a therapeutic approach that inhibits tumors by activating or strengthening anti-tumor immunity, is currently an important clinical strategy for cancer treatment; however, tumors can develop drug resistance to immune surveillance, resulting in poor response rates and low therapeutic efficacy. In addition, changes in genes and signaling pathways in tumor cells prevent susceptibility to immunotherapeutic agents. Furthermore, tumors create an immunosuppressive microenvironment via immunosuppressive cells and secrete molecules that hinder immune cell and immune modulator infiltration or induce immune cell malfunction. To address these challenges, smart drug delivery systems (SDDSs) have been developed to overcome tumor cell resistance to immunomodulators, restore or boost immune cell activity, and magnify immune responses. To combat resistance to small molecules and monoclonal antibodies, SDDSs are used to co-deliver numerous therapeutic agents to tumor cells or immunosuppressive cells, thus increasing the drug concentration at the target site and improving efficacy. Herein, we discuss how SDDSs overcome drug resistance during cancer immunotherapy, with a focus on recent SDDS advances in thwarting drug resistance in immunotherapy by combining immunogenic cell death with immunotherapy and reversing the tumor immunosuppressive microenvironment. SDDSs that modulate the interferon signaling pathway and improve the efficacy of cell therapies are also presented. Finally, we discuss potential future SDDS perspectives in overcoming drug resistance in cancer immunotherapy. We believe that this review will contribute to the rational design of SDDSs and development of novel techniques to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Wenzhe Yi
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| |
Collapse
|
24
|
Shui Y, Hu X, Hirano H, Tsukamoto H, Guo WZ, Hasumi K, Ijima F, Fujino M, Li XK. Combined phospholipids adjuvant augments anti-tumor immune responses through activated tumor-associated dendritic cells. Neoplasia 2023; 39:100893. [PMID: 36893559 PMCID: PMC10018555 DOI: 10.1016/j.neo.2023.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Dendritic cells (DCs) can initiate both naïve and memory T cell activation, as the most potent antigen-presenting cells. For efficient anti-tumor immunity, it is essential to enhance the anti-tumoral activity of tumor-associated DCs (TADCs) or to potently restrain TADCs so that they remain immuno-stimulating cells. Combined phospholipids (cPLs) adjuvant may act through the activation of DCs. This study demonstrated the potential mechanism of tumor growth inhibition of cPLs adjuvant, and confirmed that cPLs adjuvant could induce the maturation and activation (upregulation of MHC-II, CD80, CD40, IL-1β, IL-12, IL-6 expression) of BMDCs in vitro. Then we isolated tumor infiltrating lymphocytes (TILs) from solid tumor and analyzed the phenotype and cytokines of TILs. The examination of the TILs revealed that cPLs adjuvant upregulated the expression of co-stimulatory molecules (MHC-II, CD86), phosphatidylserine (PS) receptor (TIM-4) on TADCs and enhanced the cytotoxic effect (CD107a), as well as pro-inflammatory cytokine production (IFN-γ, TNF-α, IL-2) by the tumor-resident T cells. Taken together, cPLs adjuvant may be an immune-potentiating adjuvant for cancer immunotherapy. This reagent may lead to the development of new approaches in DC-targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Yifang Shui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | | | | | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
25
|
Chen C, Hu M, Cao Y, Zhu B, Chen J, Li Y, Shao J, Zhou S, Shan P, Zheng C, Li Z, Li Z. Combination of a STING Agonist and Photothermal Therapy Using Chitosan Hydrogels for Cancer Immunotherapy. Biomacromolecules 2023. [PMID: 37125731 DOI: 10.1021/acs.biomac.3c00196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cyclic dinucleotides (CDNs) are a promising class of immune agonists that trigger the stimulator of interferon genes (STING) to activate both innate and acquired immunity. However, the efficacy of CDNs is limited by drug delivery barriers. Therefore, we developed a combined immunotherapy strategy based on injectable reactive oxygen species (ROS)-responsive hydrogels, which sustainably release 5,6-dimethylxanthenone-4-acetic acid (DMXAA) as known as a STING agonist and indocyanine green (ICG) by utilizing a high level of ROS in the tumor microenvironment (TME). The STING agonist combined with photothermal therapy (PTT) can improve the biological efficacy of DMXAA, transform the immunosuppressive TME into an immunogenic and tumoricidal microenvironment, and completely kill tumor cells. In addition, this bioreactive gel can effectively leverage local ROS to facilitate the release of immunotherapy drugs, thereby enhancing the efficacy of combination therapy, improving the TME, inhibiting tumor growth, inducing memory immunity, and protecting against tumor rechallenge.
Collapse
Affiliation(s)
- Cunguo Chen
- Department of Dermatology and Venereology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P. R. China
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Murong Hu
- Department of Dermatology and Venereology, Hangzhou Third Hospital, Hangzhou, Zhejiang 321000, P. R. China
| | - Yunyun Cao
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Binbin Zhu
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Jiashe Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yashi Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Junyi Shao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Sen Zhou
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Pengfei Shan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Chen Zheng
- Department of Breast Cancer Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Zhongyu Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
26
|
Guo J, Zou Y, Huang L. Nano Delivery of Chemotherapeutic ICD Inducers for Tumor Immunotherapy. SMALL METHODS 2023; 7:e2201307. [PMID: 36604976 DOI: 10.1002/smtd.202201307] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD, also known as immunogenic apoptosis) of malignant cells is confirmed to activate the host immune system to prevent, control, and eliminate tumors. Recently, a range of chemotherapeutic drugs have been repurposed as ICD inducers and applied for tumor immunotherapy. However, several hurdles to the widespread application of chemotherapeutic ICD inducers remain, namely poor water solubility, short blood circulation, non-specific tissue distribution, and severe toxicity. Recent advances in nanotechnology and pharmaceutical formulation foster the development of nano drug delivery systems to tackle the aforementioned hurdles and expedite safe, effective, and specific delivery. This review will describe delivery barriers to chemical ICD inducers and highlight recent nanoformulations for these drugs in tumor immunotherapy.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
27
|
Yang W, Yi J, Zhu R, Guo Y, Zhang K, Cao Y, Li X, Zhang J, Zhang Z, Li Y, Chen X. Transformable prodrug nanoplatform via tumor microenvironment modulation and immune checkpoint blockade potentiates immunogenic cell death mediated cancer immunotherapy. Theranostics 2023; 13:1906-1920. [PMID: 37064869 PMCID: PMC10091884 DOI: 10.7150/thno.83912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Rationale: Chemoimmunotherapy is a promising approach in cancer immunotherapy. However, its therapeutic efficacy is restricted by high reactive oxygen species (ROS) levels, an abundance of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME) as well as immune checkpoints for escaping immunosurveillance. Methods: Herein, a new type of TME and reduction dual-responsive polymersomal prodrug (TRPP) nanoplatform was constructed when the D-peptide antagonist (DPPA-1) of programmed death ligand-1 was conjugated onto the surface, and talabostat mesylate (Tab, a fibroblast activation protein inhibitor) was encapsulated in the watery core (DPPA-TRPP/Tab). Doxorubicin (DOX) conjugation in the chain served as an immunogenic cell death (ICD) inducer and hydrophobic part. Results: DPPA-TRPP/Tab reassembled into a micellar structure in vivo with TME modulation by Tab, ROS consumption by 2, 2'-diselanediylbis(ethan-1-ol), immune checkpoint blockade by DPPA-1 and ICD generation by DOX. This resolved the dilemma between a hydrophilic Tab release in the TME for CAF inhibition and intracellular hydrophobic DOX release for ICD via re-assembly in weakly acidic TME with polymersome-micelle transformation. In vivo results indicated that DPPA-TRPP/Tab could improve tumor accumulation, suppress CAF formation, downregulate regulatory T cells and promote T lymphocyte infiltration. In mice, it gave a 60% complete tumor regression ratio and a long-term immune memory response. Conclusion: The study offers potential in tumor eradication via exploiting an "all-in-one" smart polymeric nanoplatform.
Collapse
Affiliation(s)
- Weijing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China
| | - Jinmeng Yi
- The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Rongrong Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China
| | - Yichen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China
| | - Kaixin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China
| | - Xinyan Li
- The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jinjie Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China
| | - Yongjuan Li
- The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
28
|
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023; 355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths worldwide, however, current clinical diagnostic and treatment approaches remain relatively limited, creating an urgent need for the development of effective technologies. Immunotherapy has emerged as a powerful treatment strategy for advanced cancer. The number of clinically approved drugs for HCC immunotherapy has been increasing. However, it remains challenging to improve their transport and therapeutic efficiency, control their targeting and release, and mitigate their adverse effects. Nanotechnology has recently gained attention for improving the effectiveness of precision therapy for HCC. We summarize the key features of HCC associated with nanoparticle (NPs) targeting, release, and uptake, the roles and limitations of several major immunotherapies in HCC, the use of NPs in immunotherapy, the properties of NPs that influence their design and application, and current clinical trials of NPs in HCC, with the aim of informing the design of delivery platforms that have the potential to improve the safety and efficacy of HCC immunotherapy,and thus, ultimately improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoqin He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Xiong
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayi Li
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dedong Cao
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
29
|
Han S, Chi Y, Yang Z, Ma J, Wang L. Tumor Microenvironment Regulation and Cancer Targeting Therapy Based on Nanoparticles. J Funct Biomater 2023; 14:136. [PMID: 36976060 PMCID: PMC10053410 DOI: 10.3390/jfb14030136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Although we have made remarkable achievements in cancer awareness and medical technology, there are still tremendous increases in cancer incidence and mortality. However, most anti-tumor strategies, including immunotherapy, show low efficiency in clinical application. More and more evidence suggest that this low efficacy may be closely related to the immunosuppression of the tumor microenvironment (TME). The TME plays a significant role in tumorigenesis, development, and metastasis. Therefore, it is necessary to regulate the TME during antitumor therapy. Several strategies are developing to regulate the TME as inhibiting tumor angiogenesis, reversing tumor associated macrophage (TAM) phenotype, removing T cell immunosuppression, and so on. Among them, nanotechnology shows great potential for delivering regulators into TME, which further enhance the antitumor therapy efficacy. Properly designed nanomaterials can carry regulators and/or therapeutic agents to eligible locations or cells to trigger specific immune response and further kill tumor cells. Specifically, the designed nanoparticles could not only directly reverse the primary TME immunosuppression, but also induce effective systemic immune response, which would prevent niche formation before metastasis and inhibit tumor recurrence. In this review, we summarized the development of nanoparticles (NPs) for anti-cancer therapy, TME regulation, and tumor metastasis inhibition. We also discussed the prospect and potential of nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Li X, Liu Z, Xu S, Ma X, Zhao Z, Hu H, Deng J, Peng C, Wang Y, Ma S. A drug delivery system constructed by a fusion peptide capturing exosomes targets to titanium implants accurately resulting the enhancement of osseointegration peri-implant. Biomater Res 2022; 26:89. [PMID: 36575503 PMCID: PMC9795642 DOI: 10.1186/s40824-022-00331-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) have been shown triggering osteogenic differentiation and mineralization of MSCs, but exosomes administered via bolus injections are rapidly sequestered and cleared. Therefore, we considered the implant as a new organ of patient's body and expected to find a method to treat implant with BMSC-exos in vivo directly. METHODS A fusion peptide (PEP), as a drug delivery system (DDS) which contained a titanium-binding peptide (TBP) possessing the ability to selectively bind to the titanium surface and another peptide CP05 being able to capture exosomes expertly, is constructed to modify the titanium surface. RESULTS Both in vitro and in vivo experiments prove PEP retains the ability to bind titanium and exosome simultaneously, and the DDS gain the ability to target exosomes to titanium implants surface following enhancing osseointegration post-implantation. Moreover, the DDS constructed by exosomes of diverse origins shows the similar combination rate and efficiency of therapy. CONCLUSION This drug delivery system demonstrates the concept that EXO-PEP system can offer an accurate and efficient therapy for treating implants with long-term effect.
Collapse
Affiliation(s)
- Xuewen Li
- grid.265021.20000 0000 9792 1228Department of Stomatology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Tianjin, 300211 China ,grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Zihao Liu
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Shendan Xu
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Xinying Ma
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Zhezhe Zhao
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Han Hu
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Jiayin Deng
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Cheng Peng
- grid.265021.20000 0000 9792 1228Department of Stomatology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Tianjin, 300211 China
| | - Yonglan Wang
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Shiqing Ma
- grid.265021.20000 0000 9792 1228Department of Stomatology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Tianjin, 300211 China
| |
Collapse
|
31
|
Nayak A, Warrier NM, Kumar P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev Rep 2022; 18:2209-2233. [PMID: 35876959 PMCID: PMC9489588 DOI: 10.1007/s12015-022-10426-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
The physiological state of the tumor microenvironment (TME) plays a central role in cancer development due to multiple universal features that transcend heterogeneity and niche specifications, like promoting cancer progression and metastasis. As a result of their preponderant involvement in tumor growth and maintenance through several microsystemic alterations, including hypoxia, oxidative stress, and acidosis, TMEs make for ideal targets in both diagnostic and therapeutic ventures. Correspondingly, methodologies to target TMEs have been investigated this past decade as stratagems of significant potential in the genre of focused cancer treatment. Within targeted oncotherapy, nanomedical derivates-nanocarriers (NCs) especially-have emerged to present notable prospects in enhancing targeting specificity. Yet, one major issue in the application of NCs in microenvironmental directed therapy is that TMEs are too broad a spectrum of targeting possibilities for these carriers to be effectively employed. However, cancer stem cells (CSCs) might portend a solution to the above conundrum: aside from being quite heavily invested in tumorigenesis and therapeutic resistance, CSCs also show self-renewal and fluid clonogenic properties that often define specific TME niches. Further scrutiny of the relationship between CSCs and TMEs also points towards mechanisms that underly tumoral characteristics of metastasis, malignancy, and even resistance. This review summarizes recent advances in NC-enabled targeting of CSCs for more holistic strikes against TMEs and discusses both the current challenges that hinder the clinical application of these strategies as well as the avenues that can further CSC-targeting initiatives. Central role of CSCs in regulation of cellular components within the TME.
Collapse
Affiliation(s)
- Aadya Nayak
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
32
|
Fang X, Lan H, Jin K, Gong D, Qian J. Nanovaccines for Cancer Prevention and Immunotherapy: An Update Review. Cancers (Basel) 2022; 14:3842. [PMID: 36010836 PMCID: PMC9405528 DOI: 10.3390/cancers14163842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer immunotherapy has received more and more attention from cancer researchers over the past few decades. Various methods such as cell therapy, immune checkpoint blockers, and cancer vaccines alone or in combination therapies have achieved relatively satisfactory results in cancer therapy. Among these immunotherapy-based methods, cancer vaccines alone have not yet had the necessary efficacy in the clinic. Therefore, nanomaterials have increased the efficacy and ef-fectiveness of cancer vaccines by increasing their half-life and durability, promoting tumor mi-croenvironment (TME) reprogramming, and enhancing their anti-tumor immunity with minimal toxicity. In this review, according to the latest studies, the structure and different types of nanovaccines, the mechanisms of these vaccines in cancer treatment, as well as the advantages and disadvantages of these nanovaccines are discussed.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Huanrong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Daojun Gong
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hosptial, Wenzhou Medical University, Xinchang 312500, China
| |
Collapse
|
33
|
Zhang T, Yu H, Dai X, Zhang X. CMTM6 and CMTM4 as two novel regulators of PD-L1 modulate the tumor microenvironment. Front Immunol 2022; 13:971428. [PMID: 35958549 PMCID: PMC9359082 DOI: 10.3389/fimmu.2022.971428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) plays crucial roles in regulating tumor occurrence, progress, metastasis and drug resistance. However, it remains largely elusive how the components of TME are regulated to govern its functions in tumor biology. Here, we discussed how the two novel functional proteins, chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing 6 (CMTM6) and CMTM4, which involved in the post-translational regulation of PD-L1, modulate the TME functions. The roles of CMTM6 and CMTM4 in regulating TME components, including immune cells and tumor cells themselves were discussed in this review. The potential clinical applications of CMTM6 and CMTM4 as biomarkers to predict therapy efficacy and as new or combined immunotherapy targets are also highlighted. Finally, the current hot topics for the biological function of CMTM6/4 and several significant research directions for CMTM6/4 are also briefly summarized in the review.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Xiaoling Zhang,
| |
Collapse
|
34
|
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol 2022; 13:925985. [PMID: 35936003 PMCID: PMC9355792 DOI: 10.3389/fimmu.2022.925985] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a progressive new pillar in immune cell therapy for cancer. It has yielded remarkable clinical responses in patients with B-cell leukemia or lymphoma. Unfortunately, many challenges remain to be addressed to overcome its ineffectiveness in the treatment of other hematological and solidtumor malignancies. The major hurdles of CAR T-cell therapy are the associated severe life-threatening toxicities such as cytokine release syndrome and limited anti-tumor efficacy. In this review, we briefly discuss cancer immunotherapy and the genetic engineering of T cells and, In detail, the current innovations in CAR T-cell strategies to improve efficacy in treating solid tumors and hematologic malignancies. Furthermore, we also discuss the current challenges in CAR T-cell therapy and new CAR T-cell-derived nanovesicle therapy. Finally, strategies to overcome the current clinical challenges associated with CAR T-cell therapy are included as well.
Collapse
Affiliation(s)
- Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
- *Correspondence: Prakash Gangadaran, ; Byeong-Cheol Ahn,
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
- *Correspondence: Prakash Gangadaran, ; Byeong-Cheol Ahn,
| |
Collapse
|
35
|
Zhu L, Mao H, Yang L. Advanced iron oxide nanotheranostics for multimodal and precision treatment of pancreatic ductal adenocarcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1793. [PMID: 35396932 PMCID: PMC9373845 DOI: 10.1002/wnan.1793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Despite current advances in new approaches for cancer detection and treatment, pancreatic cancer remains one of the most lethal cancer types. Difficult to detect early, aggressive tumor biology, and resistance to chemotherapy, radiotherapy, and immunotherapy result in a poor prognosis of pancreatic cancer patients with a 5-year survival of 10%. With advances in cancer nanotechnology, new imaging and drug delivery approaches that allow the development of multifunctional nanotheranostic agents offer opportunities for improving pancreatic cancer treatment using precision oncology. In this review, we will introduce potential applications of innovative theranostic strategies to address major challenges in the treatment of pancreatic cancer at different disease stages. Several important issues concerning targeted delivery of theranostic nanoparticles and tumor stromal barriers are discussed. We then focus on the development of a magnetic iron oxide nanoparticle platform for multimodal therapy of pancreatic cancer, including MRI monitoring targeted nanoparticle/drug delivery, therapeutic response, and tumor re-staging, activation of tumor immune response by immunoactivating nanoparticle and magnetic hyperthermia therapy, and intraoperative interventions for improving the outcome of targeted therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Jayaseelan VP, A.S SG, Arumugam P. Engineered therapeutic bacteria for the treatment of oral squamous cell carcinoma. Oral Oncol 2022; 130:105874. [DOI: 10.1016/j.oraloncology.2022.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
|
37
|
Kim M, Lee JS, Kim W, Lee JH, Jun BH, Kim KS, Kim DE. Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression. J Control Release 2022; 348:893-910. [PMID: 35760233 DOI: 10.1016/j.jconrel.2022.06.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Cancer cells have various immune evasion mechanisms that resist the immune cells by reprogramming the tumor microenvironment (TME), such as programmed death-ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase-1 (IDO1) overexpression. One of the approaches to restore antitumor immune response by T-cells is through induction of immunogenic cell death (ICD). Thus, drug carrier containing IDO1 siRNA and ICD inducer would be effective anticancer regimen to modulate the immunosuppressive TME by reversing the IDO1-mediated immunosuppression in a synergistic combination with ICD induction. However, numerous nanocarrier platforms for co-delivery of multiple drugs mostly depend on the enhanced permeation and retention (EPR), which is insufficient to achieve selectivity in tumor sites harboring various types of cells. We designed a targeted drug delivery system using nano-sized liposomes functionalized with anti-CD44 and anti-PD-L1 DNA aptamers, which target breast cancer cells and inhibit PD-1/PD-L1 interaction between cancer cells and T-cells. To reverse immunosuppressive TME and reactivate immune response, cancer-targeting nano-liposomes were prepared to contain immunogenic cell death inducer (Doxorubicin, DOX) and IDO1 siRNA, namely Aptm[DOX/IDO1]. The Aptm[DOX/IDO1] specifically delivered the loaded DOX and IDO1 siRNA into target breast cancer cells through aptamer-mediated endocytosis. Cancer-targeted DOX/IDO1 siRNA delivery enhanced ICD and suppressed IDO1 expression with significantly high toxicity in cancer cells. We demonstrated that Aptm[DOX/IDO1] could achieve synergistic antitumor effects by facilitating ICD response and simultaneous reversal of the immunosuppressive TME with IDO1 knockdown in the subcutaneous breast cancer model mice, thus reducing tumor size. These antitumor effects were exerted with intratumoral infiltration of CD8+ cytotoxic T lymphocyte as well as attenuation of regulatory T-cell recruitment in the tumor sites. We further proved that our Aptm[DOX/IDO1] strategy significantly reduced tumor metastasis in tumor-xenograft mice through a synergistic combination of cancer cell-targeted ICD induction and reversal of the IDO1-mediated immunosuppressive TME. Our nanocarrier platform based on cationic liposomes containing DOX and IDO1 siRNA, which are conjugated with two DNA aptamers targeting the cancer cell surface, accomplished synergistic chemoimmunotherapy through tumor-specific immune modulation into immune-favorable TME in vivo.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Sam Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
38
|
Tan P, Li M, Liu Z, Li T, Zhao L, Fu W. Glycolysis-Related LINC02432/Hsa-miR-98–5p/HK2 Axis Inhibits Ferroptosis and Predicts Immune Infiltration, Tumor Mutation Burden, and Drug Sensitivity in Pancreatic Adenocarcinoma. Front Pharmacol 2022; 13:937413. [PMID: 35795552 PMCID: PMC9251347 DOI: 10.3389/fphar.2022.937413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a malignant cancer with high incidence and mortality. Glycometabolic rearrangements (aerobic glycolysis) is a hallmark of PAAD and contributes to tumorigenesis and progression through numerous mechanisms. This study aimed to identify a novel glycolysis-related lncRNA-miRNA-mRNA ceRNA signature in PAAD and explore its potential molecular function. We first calculated the glycolysis score for each PAAD patient by the ssGSEA algorithm and found that patients with higher hallmark glycolysis scores had poorer prognosis. Subsequently, we obtained a novel glycolysis-related LINC02432/hsa-miR-98–5p/HK2 axis from the TCGA and GEO databases using comprehensive bioinformatics analysis and developed a nomogram to predict overall survival. Furthermore, functional characterization analysis revealed that LINC02432/hsa-miR-98–5p/HK2 axis risk score was negatively correlated with ferroptosis. The tumor immune infiltration analysis suggested positive correlations between ceRNA risk score and infiltrated M0 macrophage levels in PAAD. Correlation analysis found that ceRNA risk scores were positively correlated with four chemokines (CXCL3, CXCL5, CXCL8 and CCL20) and one immune checkpoint gene (SIGLEC15). Meanwhile, tumor mutation burden (TMB), an indicator for predicting response to immunotherapy, was positively correlated with ceRNA risk score. Finally, the drug sensitivity analysis showed that the high-risk score patients might be more sensitive to EGFR, MEK and ERK inhibitors than low-risk score patients. In conclusion, our study suggested that LINC02432/hsa-miR-98–5p/HK2 axis may serve as a novel diagnostic, prognostic, and therapeutic target in PAAD treatment.
Collapse
Affiliation(s)
- Peng Tan
- Department of Cell Biology and Genetics / Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuoran Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tongxi Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics / Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lingyu Zhao, ; Wenguang Fu,
| | - Wenguang Fu
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Lingyu Zhao, ; Wenguang Fu,
| |
Collapse
|
39
|
Rostamizadeh L, Molavi O, Rashid M, Ramazani F, Baradaran B, Lavasanaifar A, Lai R. Recent advances in cancer immunotherapy: Modulation of tumor microenvironment by Toll-like receptor ligands. BIOIMPACTS : BI 2022; 12:261-290. [PMID: 35677663 PMCID: PMC9124882 DOI: 10.34172/bi.2022.23896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
![]()
Immunotherapy is considered a promising approach for cancer treatment. An important strategy for cancer immunotherapy is the use of cancer vaccines, which have been widely used for cancer treatment. Despite the great potential of cancer vaccines for cancer treatment, their therapeutic effects in clinical settings have been limited. The main reason behind the lack of significant therapeutic outcomes for cancer vaccines is believed to be the immunosuppressive tumor microenvironment (TME). The TME counteracts the therapeutic effects of immunotherapy and provides a favorable environment for tumor growth and progression. Therefore, overcoming the immunosuppressive TME can potentially augment the therapeutic effects of cancer immunotherapy in general and therapeutic cancer vaccines in particular. Among the strategies developed for overcoming immunosuppression in TME, the use of toll-like receptor (TLR) agonists has been suggested as a promising approach to reverse immunosuppression. In this paper, we will review the application of the four most widely studied TLR agonists including agonists of TLR3, 4, 7, and 9 in cancer immunotherapy.
Collapse
Affiliation(s)
- Leila Rostamizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramazani
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Lavasanaifar
- Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Canada
| | - Raymond Lai
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
40
|
Han S, Bi S, Guo T, Sun D, Zou Y, Wang L, Song L, Chu D, Liao A, Song X, Yu Z, Guo J. Nano co-delivery of Plumbagin and Dihydrotanshinone I reverses immunosuppressive TME of liver cancer. J Control Release 2022; 348:250-263. [PMID: 35660631 DOI: 10.1016/j.jconrel.2022.05.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is resistant to current immunotherapy. This poor outcome mainly results from the immunosuppressive characteristics of tumor microenvironment (TME). Accumulating evidence indicates that some chemotherapy agents trigger immunogenic cell death (ICD), providing a promising strategy to remodel the immunosuppressive TME. The role of Plumbagin (PLB, a naphthoquinone compound from Plumbago zeylanica L.) as the ICD inducer for HCC cells was confirmed in this study. Dihydrotanshinone I (DIH, a phenanthraquinone compound of Salvia miltiorrhiza) functioned as the ICD enhancer by generating the reactive oxygen species (ROS). A poly(D,L-lactic-co-glycolic acid) (PLGA)-based nanoparticle (NP) was used to co-encapsulate PLB, DIH and NH4HCO3 (a pH sensitive adjuvant). This NP was further coated with the mannose-inserted erythrocyte membrane to produce a nanoformulation. This nanoformulation significantly increased the half-life and tumor targeting of two drugs in orthotopic HCC mice, generating chemo-immunotherapeutic effects for reversal of immunosuppressive TME. Consequently, the biomimetic nanoformulation loaded with low doses of PLB and DIH achieved significantly longer survival of HCC mice, without causing toxic signs. Our study demonstrates a promising strategy for remodeling the immunosuppressive TME of liver cancer.
Collapse
Affiliation(s)
- Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shengnan Bi
- Department of Pharmacy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Tingting Guo
- Department of Pharmacy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xiaohuan Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Third-Grade Laboratory of Chinese Medicine Chemistry, National Administration of Traditional Chinese Medicine, Jilin University, Changchun 130021, China; Jilin Provincial Key Experiment Education Center for Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
41
|
Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. Adv Drug Deliv Rev 2022; 187:114360. [PMID: 35636568 DOI: 10.1016/j.addr.2022.114360] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022]
Abstract
The development of two-dimensional (2D) nanomaterials for cancer therapy has attracted increasing attention due to their high specific surface area, unique ultrathin structure, electronic and photonic properties. For biomedical applications, investigations into the family of 2D materials have been sparked by graphene and its derivatives. Many 2D nanomaterials, including layered double hydroxides, transition metal dichalcogenides, nitrides and carbonitrides, black phosphorus nanosheets, and metal-organic framework nanosheets, are extensively explored as cancer theranostic platforms. In addition to the high drug loading, 2D nanomaterials are featured with improved physiological properties of drugs, prolonged blood circulation, and increased tumor accumulation and bioavailability. As a consequence, 2D nanomaterials have been widely examined in pre-clinical tumor therapy, particularly through the tumor microenvironment (TME) modulation. This review summarizes recent progresses in developing 2D nanomaterials for TME modulating-based cancer diagnosis and therapy. It is anticipated that this review will benefit researchers to obtain a deeper understanding of interactions between 2D nanomaterials and TME components and develop rational and reliable 2D nanomedicines for pre/clinical cancer theranostics.
Collapse
|
42
|
Abdel Sater AH, Bouferraa Y, Amhaz G, Haibe Y, Lakkiss AE, Shamseddine A. From Tumor Cells to Endothelium and Gut Microbiome: A Complex Interaction Favoring the Metastasis Cascade. Front Oncol 2022; 12:804983. [PMID: 35600385 PMCID: PMC9117727 DOI: 10.3389/fonc.2022.804983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Metastasis is a complicated process through which tumor cells disseminate to distant organs and adapt to novel tumor microenvironments. This multi-step cascade relies on the accumulation of genetic and epigenetic alterations within the tumor cells as well as the surrounding non-tumor stromal cells. Endothelial cells constitute a major player in promoting metastasis formation either by inducing the growth of tumor cells or by directing them towards dissemination in the blood or lymph. In fact, the direct and indirect interactions between tumor and endothelial cells were shown to activate several mechanisms allowing cancer cells’ invasion and extravasation. On the other side, gastrointestinal cancer development was shown to be associated with the disruption of the gut microbiome. While several proposed mechanisms have been investigated in this regard, gut and tumor-associated microbiota were shown to impact the gut endothelial barrier, increasing the dissemination of bacteria through the systemic circulation. This bacterial dislocation allows the formation of an inflammatory premetastatic niche in the distant organs promoting the metastatic cascade of primary tumors. In this review, we discuss the role of the endothelial cells in the metastatic cascade of tumors. We will focus on the role of the gut vascular barrier in the regulation metastasis. We will also discuss the interaction between this vascular barrier and the gut microbiota enhancing the process of metastasis. In addition, we will try to elucidate the different mechanisms through which this bacterial dislocation prepares the favorable metastatic niche at distant organs allowing the dissemination and successful deposition of tumor cells in the new microenvironments. Finally, and given the promising results of the studies combining immune checkpoint inhibitors with either microbiota alterations or anti-angiogenic therapy in many types of cancer, we will elaborate in this review the complex interaction between these 3 factors and their possible therapeutic combination to optimize response to treatment.
Collapse
Affiliation(s)
- Ali H Abdel Sater
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Youssef Bouferraa
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghid Amhaz
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yolla Haibe
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ahmed El Lakkiss
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
43
|
Jin X, Zhang S, Wang N, Guan L, Shao C, Lin Y, Liu J, Li Y. High Expression of TGF-β1 Contributes to Hepatocellular Carcinoma Prognosis via Regulating Tumor Immunity. Front Oncol 2022; 12:861601. [PMID: 35547872 PMCID: PMC9082360 DOI: 10.3389/fonc.2022.861601] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Background Transforming growth factor-beta (TGF-β) signaling is essential in initialization and progression of hepatocellular carcinoma (HCC). Therefore, a treatment targeting TGF-β pathway may be a promising option for HCC control. Methods First, publicly available RNA-seq datasets and clinical characteristics of 374 HCC patients in The Cancer Genome Atlas (TCGA) database were downloaded. Then, Cox regression analysis and LASSO analysis were used to construct a prognostic model for TGF-β family genes. The area under the curve (AUC) of the risk signature was calculated to evaluate the predictive power of the model. Cox regression analysis was applied to predict whether TGF-β1 can be an independent prognosis factor for HCC. Next, hazard ratio and survival analyses were performed to investigate the correlation between TGF-β1 expression and survival time. Furthermore, differential expression level of TGF-β1 in HCC tissues and cells was determined. In addition, Gene Set Enrichment Analysis (GSEA) identified the top significantly activated and inhibited signal pathways related to high expression of TGF-β1. Finally, the CIBERSORT tool was adopted to correlate the tumor-infiltrating immune cells (TICs) with TGF-β1 expression in HCC cohorts. Results Cox regression analysis and LASSO analysis revealed that seven TGF-β family members (including TGF-β1) could be used as prognostic factors for HCC. Interestingly, TGF-β1 was demonstrated to be an independent prognostic factor of HCC. RT-qPCR and immunofluorescence staining confirmed the high expression of TGF-β1 in HCC cell lines and tissues, which is significantly related to pathological classifications, poor prognosis, and short survival time. Finally, GSEA and CIBERSORT analyses suggested that TGF-β1 may interact with various immune cells and influence the prognosis of HCC patients through Tregs and γδ T cells. Conclusion We established a novel prognostic prediction method to predict the risk scores of TGF-β genes in HCC prognosis. TGF-β1 is highly expressed in HCC cell lines and tissues, correlates to poor prognosis, and thus can be used as a potential biomarker to predict HCC prognosis. We showed that TGF-β1 may play its roles in HCC prognosis by modulating the immune microenvironment of tumor cells. Our data may shed more light on better understanding the role of TGF-β1 in HCC prognosis.
Collapse
Affiliation(s)
- Xiuli Jin
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuairan Zhang
- Department of Medical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ningning Wang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Guan
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chuanli Shao
- Emergency Department, Bengbu First People's Hospital, Bengbu, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jianping Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Gong M, Li Y, Song E, Li M, Qiu S, Dong W, Yuan R. OIP5 Is a Novel Prognostic Biomarker in Clear Cell Renal Cell Cancer Correlating With Immune Infiltrates. Front Immunol 2022; 13:805552. [PMID: 35242130 PMCID: PMC8886046 DOI: 10.3389/fimmu.2022.805552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Opa interacting protein 5 (OIP5), overexpressed in some types of human cancers, has been reported to be associated with the carcinogenesis of human cancer. However, its contribution to cancer immunity remains unknown. Furthermore, the relationship between OIP5 and cancer immunity remains uncertain. In our research, we explored the different expression of OIP5 between 539 ccRCC and 72 normal renal tissues base on TCGA data set. We analyzed the associations between OIP5 expression with ccRCC progression and survival. Next, we compared immune cell profiles in cancer tissues and normal tissues in the Cancer Genome Atlas (TCGA) ccRCC cohort. We found that the level of immune cell infiltration was correlated with the copy number of OIP5 gene in ccRCC. The effect of OIP5 on immune activity was verified by Gene Set Enrichment Analysis of RNA-seq data from 32 ccRCC cell lines in the public database. Moreover, a pathway enrichment analysis of 49 OIP5-associated immunomodulators demonstrated the involvement of the T cell receptor signaling pathway, the JAK-STAT signaling pathway, the NF-kappa B signaling pathway and the primary immunodeficiency pathway. In addition, using OIP5-associated immunomodulators, we constructed multiple-gene risk prediction signatures using the Cox regression model. Our results provided insights into the role of OIP5 in tumor immunity and revealed that OIP5 may be a potential immunotherapeutic target for ccRCC. Designated immune signature is a promising prognostic biomarker in ccRCC.
Collapse
Affiliation(s)
- Mancheng Gong
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, China
| | - Yongxiang Li
- Department of Urology, Weifang People's Hospital, Weifang, China
| | - Erlin Song
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoyuan Li
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, China
| | - Shaopeng Qiu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjing Dong
- Department of Oncology, The People's Hospital of Zhongshan, Zhongshan, China
| | - Runqiang Yuan
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, China
| |
Collapse
|
45
|
Shariatzadeh S, Moghimi N, Khalafi F, Shafiee S, Mehrabi M, Ilkhani S, Tosan F, Nakhaei P, Alizadeh A, Varma RS, Taheri M. Metallic Nanoparticles for the Modulation of Tumor Microenvironment; A New Horizon. Front Bioeng Biotechnol 2022; 10:847433. [PMID: 35252155 PMCID: PMC8888840 DOI: 10.3389/fbioe.2022.847433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/01/2022] [Indexed: 01/15/2023] Open
Abstract
Cancer is one of the most critical human challenges which endangers many people’s lives every year with enormous direct and indirect costs worldwide. Unfortunately, despite many advanced treatments used in cancer clinics today, the treatments are deficiently encumbered with many side effects often encountered by clinicians while deploying general methods such as chemotherapy, radiotherapy, surgery, or a combination thereof. Due to their low clinical efficacy, numerous side effects, higher economic costs, and relatively poor acceptance by patients, researchers are striving to find better alternatives for treating this life-threatening complication. As a result, Metal nanoparticles (Metal NPs) have been developed for nearly 2 decades due to their important therapeutic properties. Nanoparticles are quite close in size to biological molecules and can easily penetrate into the cell, so one of the goals of nanotechnology is to mount molecules and drugs on nanoparticles and transfer them to the cell. These NPs are effective as multifunctional nanoplatforms for cancer treatment. They have an advantage over routine drugs in delivering anticancer drugs to a specific location. However, targeting cancer sites while performing anti-cancer treatment can be effective in improving the disease and reducing its complications. Among these, the usage of these nanoparticles (NPs) in photodynamic therapy and sonodynamic therapy are notable. Herein, this review is aimed at investigating the effect and appliances of Metal NPs in the modulation tumor microenvironment which bodes well for the utilization of vast and emerging nanomaterial resources.
Collapse
Affiliation(s)
- Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Moghimi
- Department of Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Foad Tosan
- Semnan University of Medical Sciences Dental Student Research Committee, Semnan, Iran
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Alizadeh
- Deputy of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Mohammad Taheri
- Skull Base Research Center, Loghmna Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri,
| |
Collapse
|
46
|
Srinivasa C, Kumar SRS, Pradeep S, Prasad SK, Veerapur R, Ansari MA, Alomary MN, Alghamdi S, Almehmadi M, GC K, Daphedar AB, Kakkalameli SB, Shivamallu C, Kollur SP. Eco-Friendly Synthesis of MnO2 Nanorods Using Gmelina arborea Fruit Extract and Its Anticancer Potency Against MCF-7 Breast Cancer Cell Line. Int J Nanomedicine 2022; 17:901-907. [PMID: 35250266 PMCID: PMC8888196 DOI: 10.2147/ijn.s335848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Cancer disease is known due to its unregulated proliferation of cells that have evolved from the body’s regular cells. The disease develops as a result of epigenetic and genetic modifications, tumor suppressor gene inactivation, and oncogene activation. The present work describes an environmentally benign approach for the synthesis of manganese oxide nanoparticles (MnO2 NPs) using Gmelina arborea fruit extract (GAE) in an aqueous medium. Methods The study evaluated the formation of MnO2 NPs and their anticancer efficacy against MCF-7 breast cancer cell line. Results The formation of MnO2 NPs was confirmed through powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The crystalline nature of as-prepared MnO2 NPs was evident from XRD pattern. The morphology of the material was studied using SEM analysis, which suggested a rod-like nature with an average diameter of 50 nm. Further, the TEM and HR-TEM images confirmed the rod shape of the as-prepared MnO2 NPs with an interplanar distance of 0.271 nm. In addition, the concentric rings from selected area electron diffraction (SAED) analysis show the crystalline nature of the as-prepared material, which further supports the obtained XRD pattern. The anticancer efficacy of MnO2 NPs was evaluated against MCF-7 breast cancer cell line, which showed up to 96% inhibition of the cells at 400 µg/mL concentration. Conclusion Bio-conjugation of MnO2 NPs can provide enough scope for the therapeutic use of Gmelina arborea, assuming appropriate mechanistic evaluations are conducted.
Collapse
Affiliation(s)
- Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Davangere, 577 007, Karnataka, India
| | - S R Santosh Kumar
- Department of Studies in Food Technology, Davangere University, Davangere, 577 007, Karnataka, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570 015, India
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570 015, India
| | - Ravindra Veerapur
- Department of Metallurgy and Materials Engineering, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 24231, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Kavitha GC
- Department of Studies in Biotechnology, Davangere University, Davangere, 577 007, Karnataka, India
| | - Azharuddin B Daphedar
- Department of Studies in Botany, Anjuman Arts, Science and Commerce College, Vijayapura, Karnataka, 586 101, India
| | - Siddappa B Kakkalameli
- Department of Studies in Botany, Davangere University, Davangere, 577 007, Karnataka, India
- Correspondence: Shiva Prasad Kollur; Siddappa B Kakkalameli, Email ;
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570 015, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, 570 026, India
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji
- Correspondence: Shiva Prasad Kollur; Siddappa B Kakkalameli, Email ;
| |
Collapse
|
47
|
Liu L, Kshirsagar PG, Gautam SK, Gulati M, Wafa EI, Christiansen JC, White BM, Mallapragada SK, Wannemuehler MJ, Kumar S, Solheim JC, Batra SK, Salem AK, Narasimhan B, Jain M. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics 2022; 12:1030-1060. [PMID: 35154473 PMCID: PMC8771545 DOI: 10.7150/thno.64805] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/03/2021] [Indexed: 01/28/2023] Open
Abstract
Pancreatic tumors are highly desmoplastic and immunosuppressive. Delivery and distribution of drugs within pancreatic tumors are compromised due to intrinsic physical and biochemical stresses that lead to increased interstitial fluid pressure, vascular compression, and hypoxia. Immunotherapy-based approaches, including therapeutic vaccines, immune checkpoint inhibition, CAR-T cell therapy, and adoptive T cell therapies, are challenged by an immunosuppressive tumor microenvironment. Together, extensive fibrosis and immunosuppression present major challenges to developing treatments for pancreatic cancer. In this context, nanoparticles have been extensively studied as delivery platforms and adjuvants for cancer and other disease therapies. Recent advances in nanotechnology have led to the development of multiple nanocarrier-based formulations that not only improve drug delivery but also enhance immunotherapy-based approaches for pancreatic cancer. This review discusses and critically analyzes the novel nanoscale strategies that have been used for drug delivery and immunomodulation to improve treatment efficacy, including newly emerging immunotherapy-based approaches. This review also presents important perspectives on future research directions that will guide the rational design of novel and robust nanoscale platforms to treat pancreatic tumors, particularly with respect to targeted therapies and immunotherapies. These insights will inform the next generation of clinical treatments to help patients manage this debilitating disease and enhance survival rates.
Collapse
Affiliation(s)
- Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Prakash G. Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Emad I. Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - John C. Christiansen
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
| | - Brianna M. White
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Joyce C. Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| |
Collapse
|
48
|
Sun D, Zou Y, Song L, Han S, Yang H, Chu D, Dai Y, Ma J, O'Driscoll CM, Yu Z, Guo J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B 2022; 12:378-393. [PMID: 35127393 PMCID: PMC8799998 DOI: 10.1016/j.apsb.2021.06.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.
Collapse
Key Words
- ATF6, activating transcription factor 6
- ATP, adenosine triphosphate
- CI, combination index
- CRC, colorectal cancer
- CRT, calreticulin
- CTLA-4, cytotoxic T lymphocyte antigen 4
- CXCL10, C-X-C motif chemokine 10
- CXCL9, C-X-C motif chemokine 9
- Chemotherapy
- Colorectal cancer
- Combination therapy
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ECL, enhanced chemiluminescence
- EE, encapsulation efficiency
- ER, endoplasmic reticulum
- FA, folate
- HMGB1, high-mobility group box 1
- ICD, immunogenic cell death
- IFN-γ, interferon-gamma
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-4, interleukin-4
- IL-6, interleukin-6
- IRE1, inositol-requiring enzyme 1
- Immunogenic cell death
- Immunotherapy
- LC, loading capacity
- MDSCs, myeloid derived suppressor cells
- MMR, mismatch repair
- MR, molar ratio
- NAC, N-acetyl-l-cysteine
- NP, nanoparticle
- Nano drug delivery system
- PD-L1, programmed death-ligand 1
- PEG, polyethylene glycol
- PERK, PKR-like ER kinase
- PFA, paraformaldehyde
- PVDF, polyvinylidene fluoride
- QTN, quercetin
- ROS, reactive oxygen species
- Reactive oxygen species
- TAAs, tumor-associated antigens
- TME, tumor microenvironment
- Tumor microenvironment
- UPR, unfolded protein response
- p-IRE1, phosphorylation of IRE1
- p-PERK, phosphorylation of PERK
Collapse
Affiliation(s)
- Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | | | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
49
|
Pan H, Zheng M, Ma A, Liu L, Cai L. Cell/Bacteria-Based Bioactive Materials for Cancer Immune Modulation and Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100241. [PMID: 34121236 DOI: 10.1002/adma.202100241] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Numerous clinical trials for cancer precision medicine research are limited due to the drug resistance, side effects, and low efficacy. Unsatisfactory outcomes are often caused by complex physiologic barriers and abnormal immune events in tumors, such as tumor target alterations and immunosuppression. Cell/bacteria-derived materials with unique bioactive properties have emerged as attractive tools for personalized therapy in cancer. Naturally derived bioactive materials, such as cell and bacterial therapeutic agents with native tropism or good biocompatibility, can precisely target tumors and effectively modulate immune microenvironments to inhibit tumors. Here, the recent advances in the development of cell/bacteria-based bioactive materials for immune modulation and precision therapy in cancer are summarized. Cell/bacterial constituents, including cell membranes, bacterial vesicles, and other active substances have inherited their unique targeting properties and antitumor capabilities. Strategies for engineering living cell/bacteria to overcome complex biological barriers and immunosuppression to promote antitumor efficacy are also summarized. Moreover, past and ongoing trials involving personalized bioactive materials and promising agents such as cell/bacteria-based micro/nano-biorobotics are further discussed, which may become another powerful tool for treatment in the near future.
Collapse
Affiliation(s)
- Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518112, P. R. China
| | - Aiqing Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
50
|
Drozdov AS, Nikitin PI, Rozenberg JM. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int J Mol Sci 2021; 22:13011. [PMID: 34884816 PMCID: PMC8657629 DOI: 10.3390/ijms222313011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines.
Collapse
Affiliation(s)
- Andrey S. Drozdov
- Laboratory of Nanobiotechnology, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Julian M. Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| |
Collapse
|