1
|
Li S, Li F, Wang Y, Li W, Wu J, Hu X, Tang T, Liu X. Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: current strategies and future prospective. Drug Deliv 2024; 31:2298514. [PMID: 38147501 PMCID: PMC10763895 DOI: 10.1080/10717544.2023.2298514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Acute myocardial infarction, characterized by high morbidity and mortality, has now become a serious health hazard for human beings. Conventional surgical interventions to restore blood flow can rapidly relieve acute myocardial ischemia, but the ensuing myocardial ischemia-reperfusion injury (MI/RI) and subsequent heart failure have become medical challenges that researchers have been trying to overcome. The pathogenesis of MI/RI involves several mechanisms, including overproduction of reactive oxygen species, abnormal mitochondrial function, calcium overload, and other factors that induce cell death and inflammatory responses. These mechanisms have led to the exploration of antioxidant and inflammation-modulating therapies, as well as the development of myocardial protective factors and stem cell therapies. However, the short half-life, low bioavailability, and lack of targeting of these drugs that modulate these pathological mechanisms, combined with liver and spleen sequestration and continuous washout of blood flow from myocardial sites, severely compromise the expected efficacy of clinical drugs. To address these issues, employing conventional nanocarriers and integrating them with contemporary biomimetic nanocarriers, which rely on passive targeting and active targeting through precise modifications, can effectively prolong the duration of therapeutic agents within the body, enhance their bioavailability, and augment their retention at the injured myocardium. Consequently, these approaches significantly enhance therapeutic effectiveness while minimizing toxic side effects. This article reviews current drug delivery systems used for MI/RI, aiming to offer a fresh perspective on treating this disease.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
2
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
3
|
Zhao X, Wang Z, Wang L, Jiang T, Dong D, Sun M. The PINK1/Parkin signaling pathway-mediated mitophagy: a forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol Res 2024; 209:107466. [PMID: 39419133 DOI: 10.1016/j.phrs.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia causes extensive damage, further exacerbated by reperfusion, a phenomenon called myocardial ischemia/reperfusion injury (MIRI). Nowadays, the pathological mechanisms of MIRI have received extensive attention. Oxidative stress, multiple programmed cell deaths, inflammation and others are all essential pathological mechanisms contributing to MIRI. Mitochondria are the energy supply centers of cells. Numerous studies have found that abnormal mitochondrial function is an essential "culprit" of MIRI, and mitophagy mediated by the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1)/Parkin signaling pathway is an integral part of maintaining mitochondrial function. Therefore, exploring the association between the PINK1/Parkin signaling pathway-mediated mitophagy and MIRI is crucial. This review will mainly summarize the crucial role of the PINK1/Parkin signaling pathway-mediated mitophagy in MIR-induced several pathological mechanisms and various potential interventions that affect the PINK1/Parkin signaling pathway-mediated mitophagy, thus ameliorating MIRI.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| | - Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan 250200, China.
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China.
| | - Tao Jiang
- Rehabilitation Medicine Center, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| |
Collapse
|
4
|
Chen L, Lv Y, Wu H, Wang Y, Xu Z, Liu G, He Y, Li X, Liu J, Feng Y, Bai Y, Xie W, Zhou Q, Wu Q. Gastrodin exerts perioperative myocardial protection by improving mitophagy through the PINK1/Parkin pathway to reduce myocardial ischemia-reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155900. [PMID: 39094441 DOI: 10.1016/j.phymed.2024.155900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Although blood flow is restored after treatment of myocardial infarction (MI), myocardial ischemia and reperfusion (I/R) can cause cardiac injury, which is a leading cause of heart failure. Gastrodin (GAS) exerts protective effects against brain, heart, and kidney I/R. However, its pharmacological mechanism in myocardial I/R injury (MIRI) remains unclear. PURPOSE GAS regulates autophagy in various diseases, such as acute hepatitis, vascular dementia, and stroke. We hypothesized that GAS could repair mitochondrial damage and regulate autophagy to protect against MIRI. STUDY DESIGN Male C57BL/6 mice and H9C2 cells were subjected to I/R and hypoxia-reoxygenation (H/R) injury after GAS administration, respectively, to assess the impact of GAS on cardiomyocyte phenotypes, heart, and mitochondrial structure and function. The effect of GAS on cardiac function and mitochondrial structure in patients undergoing cardiac surgery has been observed in clinical practice. METHODS The effects of GAS on cardiac structure and function, mitochondrial structure, and expression of related molecules in an animal model of MIRI were evaluated using immunohistochemical staining, enzyme-linked immunosorbent assay (ELISA), transmission electron microscopy, western blotting, and gene sequencing. Its effects on the morphological, molecular, and functional phenotypes of cardiomyocytes undergoing H/R were observed using immunohistochemical staining, real-time quantitative PCR, and western blotting. RESULTS GAS significantly reduces myocardial infarct size and improves cardiac function in MIRI mice in animal models and increases cardiomyocyte viability and reduces cardiomyocyte damage in cellular models. In clinical practice, myocardial injury was alleviated with better cardiac function in patients undergoing cardiac surgery after the application of GAS; improvements in mitochondria and autophagy activation were also observed. GAS primarily exerts cardioprotective effects through activation of the PINK1/Parkin pathway, which promotes mitochondrial autophagy to clear damaged mitochondria. CONCLUSION GAS can promote mitophagy and preserve mitochondria through PINK1/Parkin, thus indicating its tremendous potential as an effective perioperative myocardial protective agent.
Collapse
Affiliation(s)
- Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China; Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, PR China
| | - Yong Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Huiliang Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Guoyang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Yuyao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Yiqi Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Yunxiao Bai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Quanjun Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China.
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China.
| |
Collapse
|
5
|
Feng J, Ji K, Pan Y, Huang P, He T, Xing Y. Resveratrol Ameliorates Retinal Ischemia-Reperfusion Injury by Modulating the NLRP3 Inflammasome and Keap1/Nrf2/HO-1 Signaling Pathway. Mol Neurobiol 2024; 61:8454-8466. [PMID: 38517616 DOI: 10.1007/s12035-024-04105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Glaucoma, as an ischemia-reperfusion (I/R) injury disease, leading irreversible blindness through the loss of retinal ganglion cells (RGCs), mediated by various pathways. Resveratrol (Res) is a polyphenolic compound that exerts protective effects against I/R injury in many tissues. This article aimed to expound the underlying mechanisms through which Res protects RGCs and reduces visual dysfunction in vivo. An experimental glaucoma model was created using 6-8-week wild-type male C57BL/6J mice. Res was injected intraperitoneally for 5 days. The mice were then grouped according to the number of days after surgery and whether Res treatment was administered. We applied the Brn3a-labeled immunofluorescence staining and flash electroretinography (ERG) to assess the survival of RGCs and visual function. The expression of components of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the interleukin-1-beta (IL-1β), and vital indicators of kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway at the protein and RNA levels were detected respectively. The survival of RGCs was reduced after surgery compared to controls, whereas Res application rescued RGCs and improved visual dysfunction. In conclusion, our results discovered that Res administration showed neuroprotective effects through inhibition of the NLRP3 inflammasome pathway and activation of Keap1/Nrf2/HO-1 pathway. Thus, we further elucidated the potential of Res in glaucoma therapy.
Collapse
Affiliation(s)
- Jiazhen Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Yiji Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Pingping Huang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
- Eye Institute of Wuhan University, Hubei, China.
| |
Collapse
|
6
|
Deng PX, Silva M, Yang N, Wang Q, Meng X, Ye KQ, Gao HC, Zheng WH. Artemisinin inhibits neuronal ferroptosis in Alzheimer's disease models by targeting KEAP1. Acta Pharmacol Sin 2024:10.1038/s41401-024-01378-6. [PMID: 39251858 DOI: 10.1038/s41401-024-01378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Ferroptosis, a form of cell death characterized by lipid peroxidation, is involved in neurodegenerative diseases such as Alzheimer´s disease (AD). Recent studies have shown that a first-line antimalarial drug artemisinin is effective to counteract AD pathology. In this study, we investigated the protective effect of artemisinin against neuronal ferroptosis and the underlying mechanisms. In hippocampal HT22 cells, pretreatment with artemisinin dose-dependently protected against Erastin-induced cell death with an EC50 value of 5.032 µM, comparable to the ferroptosis inhibitor ferrostatin-1 (EC50 = 4.39 µM). We demonstrated that artemisinin (10 μM) significantly increased the nuclear translocation of Nrf2 and upregulated SLC7A11 and GPX4 in HT22 cells. Knockdown of Nrf2, SLC7A11 or GPX4 prevented the protective action of artemisinin, indicating that its anti-ferroptosis effect is mediated by the Nrf2-SLC7A11-GPX4 pathway. Molecular docking and Co-Immunoprecipitation (Co-IP) analysis revealed that artemisinin competitively binds with KEAP1, promoting the dissociation of KEAP1-Nrf2 complex and inhibiting the ubiquitination of Nrf2. Intrahippocampal injection of imidazole-ketone-Erastin (IKE) induced ferroptosis in mice accompanied by cognitive deficits evidenced by lower preference for exploration of new objects and new object locations in the NOR and NOL tests. Artemisinin (5, 10 mg/kg, i.p.) dose-dependently inhibited IKE-induced ferroptosis in hippocampal CA1 region and ameliorated learning and memory impairments. Moreover, we demonstrated that artemisinin reversed Aβ1-42-induced ferroptosis, lipid peroxidation and glutathione depletion in HT22 cells, primary hippocampal neurons, and 3×Tg mice via the KEAP1-Nrf2 pathway. Our results demonstrate that artemisinin is a novel neuronal ferroptosis inhibitor that targets KEAP1 to activate the Nrf2-SLC7A11-GPX4 pathway.
Collapse
Affiliation(s)
- Peng-Xi Deng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Marta Silva
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
| | - Na Yang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Xin Meng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke-Qiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong-Chang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wen-Hua Zheng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China.
| |
Collapse
|
7
|
Tan Z, Li Y, Wu Y, Yang H, Zhang H, Liu Z, Cheng Y, Wu P. Chemical components with biological activities in the roots of Ilex pubescens. Fitoterapia 2024; 177:106076. [PMID: 38897247 DOI: 10.1016/j.fitote.2024.106076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Two new triterpenoids, ilexsaponin U (1) and ilexsaponin V (2), and three new phenylpropanoids, pubescenoside S (3), pubescenoside T (38), and pubescenoside U (39), along with thirty-four existing compounds were isolated from the roots of Ilex pubescens. The elucidation of their structures involved comprehensive spectroscopic techniques, including IR, UV, HR-ESI-MS, and NMR experiments. The anti-inflammatory effects of almost all the compounds were evaluated in LPS-induced RAW264.7 cells. Among these, compounds 1, 4, 8, 11, 12, 26, 27, 29 and 33 exhibited varying degrees of inhibition of inflammatory factors. Notably, compounds 1, 4 and 8 significantly inhibited the mRNA levels of iNOS, IL-6, IL-1β and TNFα, comparable to or exceeding the effect of the positive control (dexamethasone, DEX). We also evaluated the cardioprotective effects of these compounds in OGD/R-induced H9c2 cells. The results revealed that compounds 2, 3, 7, 8, 26, 35, 36 and 37 at 20 μM significantly increased cell viability by 24.9 ± 3.4%, 28.0 ± 0.3%, 37.6 ± 0.2%, 44.86 ± 0.5%, 9.47 ± 2.1%, 23.9 ± 0.4%, 39.5 ± 3.1% and 28.2 ± 0.1%, respectively. Some of them exhibited effects equal to or greater than that of the positive control (diazoxide, DZ) at 100 μM, showing a 21.9 ± 3.0% increase.
Collapse
Affiliation(s)
- Zihao Tan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongkang Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Yang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongli Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China..
| | - Peng Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China..
| |
Collapse
|
8
|
Kang Z, Wang P, Wang B, Yan Y, Zhao Z, Li C, Wen L, Wu M, Yan G, Wang X, Zhang G, Zeng Q. Echinatin suppresses cutaneous squamous cell carcinoma by targeting GSTM3-mediated ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155752. [PMID: 38833947 DOI: 10.1016/j.phymed.2024.155752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers for which effective drugs are urgently needed. Echinatin, a natural compound extracted from Glycyrrhiza plants, has shown promising antitumour effects. However, the efficacy and the direct target of echinatin in cSCC remain unclear. PURPOSE This study conducted a systematic investigation of the antitumour effects of echinatin on cSCC and the underlying mechanisms involved. STUDY DESIGN AND METHODS Three cSCC cell lines, a xenograft model, and a UV-induced cSCC mouse model were used to investigate the potential protective effects of echinatin. The interactions between echinatin and glutathione S-transferase mu3 (GSTM3) and between echinatin and peroxiredoxin-2 (PRDX2) were evaluated by a proteome microarray assay, pull-down LC‒MS/MS analysis, surface plasmon resonance, and molecular docking. The potential mechanisms of GSTM3-mediated echinatin activity were analysed by using western blotting, lentivirus infection and small interfering RNA (siRNA) transfection. RESULTS In this study, we found that echinatin inhibited the proliferation and migration of cSCC cells but had no cytotoxic effect on primary human keratinocytes. Furthermore, echinatin significantly inhibited tumour growth in vivo. Mechanistically, our data showed that echinatin could directly bind to GSTM3 and PRDX2. Notably, echinatin inhibited GSTM3 and PRDX2 levels by promoting their proteasomal degradation, which led to the disruption of ROS production. We then revealed that echinatin increased mitochondrial ROS production by inhibiting GSTM3. Moreover, echinatin triggered ferroptosis by inhibiting GSTM3-mediated ferroptosis negative regulation (FNR) proteins. In addition, echinatin regulated GSTM3-mediated ROS/MAPK signalling. CONCLUSION Echinatin has good antitumour effects both in vitro and in vivo. Moreover, our findings indicate that GSTM3 and PRDX2 could function as viable targets of echinatin in cSCC. Consequently, echinatin represents a novel treatment for cSCC through the targeting of GSTM3-mediated ferroptosis.
Collapse
Affiliation(s)
- Ziwei Kang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Bo Wang
- Avera Medical Group Dermatology, Aberdeen, SD 57401, USA
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zijun Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chunxiao Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Long Wen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mingshun Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Cheng PP, Wang XT, Liu Q, Hu YR, Dai ER, Zhang MH, Yang TS, Qu HY, Zhou H. Nrf2 mediated signaling axis in heart failure: Potential pharmacological receptor. Pharmacol Res 2024; 206:107268. [PMID: 38908614 DOI: 10.1016/j.phrs.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.
Collapse
Affiliation(s)
- Pei-Pei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Ting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Ran Hu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - En-Rui Dai
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming-Hao Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Shu Yang
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hui-Yan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Hou Y, Yan Z, Wan H, Yang J, Ding Z, He Y. A Combination of Astragaloside IV and Hydroxysafflor Yellow A Attenuates Cerebral Ischemia-Reperfusion Injury via NF-κB/NLRP3/Caspase-1/GSDMD Pathway. Brain Sci 2024; 14:781. [PMID: 39199474 PMCID: PMC11487458 DOI: 10.3390/brainsci14080781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (IRI), occurring after blood supply restoration, contributes significantly to stroke-related deaths. This study explored the combined impact and mechanisms of astragaloside IV (AS-IV), hydroxysafflor yellow A (HSYA), and their combination in mitigating IRI. Male Sprague-Dawley (SD) rats were randomized to the Sham, MCAO, MCAO+AS-IV, MCAO+HSYA, and MCAO+AS-IV+HSYA groups. Neurological deficits and cerebral infarction were examined after restoring the blood supply to the brain. Pathomorphological changes in the cerebral cortex were observed via HE staining. IL-1β and IL-18 were quantified using ELISA. The expression of NF-κB and GSDMD in the ischemic cerebrum was analyzed using immunohistochemistry. The expression levels of NLRP3, ASC, IL-1β, Caspase-1, and GSDMD in the ischemic cerebrum were evaluated using Western blot. The MCAO+AS-IV, MCAO+HSYA, and MCAO+AS-IV+HSYA groups exhibited notably better neurological function and cerebral infarction compared with the MCAO group. The combined treatment demonstrated superior brain tissue injury alleviation. Reductions in NF-κB, GSDMD positive cells, and NLRP3/ASC/IL-1β/Caspase-1/GSDMD protein expression in the ischemic brain were significantly more pronounced with the combined therapy, indicating a synergistic effect in countering cerebral IRI via the NF-κB/NLRP3/Caspase-1/GSDMD pathway inhibition of cell pyroptosis-induced injury.
Collapse
Affiliation(s)
- Yongchun Hou
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| | - Zi Yan
- Department of Basic Medicine, Nanchang Medical College, Nanchang 360000, China
| | - Haitong Wan
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| | - Jiehong Yang
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| | - Zhishan Ding
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| | - Yu He
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| |
Collapse
|
11
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang YW, Chen ZL, Xu DQ, Tang YP. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155649. [PMID: 38653154 DOI: 10.1016/j.phymed.2024.155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Luan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| |
Collapse
|
12
|
Huang R, Xu R, Zhang R, Zuo W, Ji Z, Tao Z, Li Y, Ma G. Identification of potential crucial cuproptosis-related genes in myocardial ischemia-reperfusion injury through the bioinformatic analysis. Clinics (Sao Paulo) 2024; 79:100410. [PMID: 38901133 PMCID: PMC11237686 DOI: 10.1016/j.clinsp.2024.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cuproptosis is known to regulate diverse physiological functions in many diseases, but its role in regulating Myocardial Ischemia-Reperfusion Injury (MI/RI) remains unclear. METHODS For this purpose, the MI/RI microarray datasets GSE61592 were downloaded from the Gene Expression Omnibus (GEO) database, and the Differently Expressed Genes (DEGs) in MI/RI were identified using R software. Moreover, the MI/RI mice model was established to confirm further the diagnostic value of Pyruvate Dehydrogenase B (Pdhb), Dihydrolipoamide S-acetyltransferase (Dlat), and Pyruvate dehydrogenase E1 subunit alpha 1 (Pdhα1). RESULTS The analysis of microarray datasets GSE61592 revealed that 798 genes were upregulated and 768 were downregulated in the myocardial tissue of the ischemia-reperfusion injury mice. Furthermore, Dlat, Pdhb, Pdhα1, and cuproptosis-related genes belonged to the downregulated genes. The receiver operating characteristics curve analysis results indicated that the Dlat, Pdhb, and Pdhα1 levels were downregulated in MI/RI and were found to be potential biomarkers for MI/RI diagnosis and prognosis. Similarly, analysis of Dlat, Pdhb, and Pdhα1 levels in the MI/RI mice revealed Pdhb being the key diagnostic marker. CONCLUSIONS This study demonstrated the prognostic value of cuproptosis-related genes (Dlat, Pdhb, and Pdhα1), especially Pdhb, MI/RI, providing new insight into the MI/RI treatment.
Collapse
Affiliation(s)
- Rong Huang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| | - Rongfeng Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yongjun Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Deng W, Chen Y, Zhang J, Ling J, Xu Z, Zhu Z, Tang X, Liu X, Zhang D, Zhu H, Lang H, Zhang L, Hua F, Yu S, Qian K, Yu P. Mild therapeutic hypothermia upregulates the O-GlcNAcylation level of COX10 to alleviate mitochondrial damage induced by myocardial ischemia-reperfusion injury. J Transl Med 2024; 22:489. [PMID: 38778315 PMCID: PMC11112789 DOI: 10.1186/s12967-024-05264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) is an important method for perioperative prevention and treatment of myocardial ischemia-reperfusion injury (MIRI). Modifying mitochondrial proteins after protein translation to regulate mitochondrial function is one of the mechanisms for improving myocardial ischemia-reperfusion injury. This study investigated the relationship between shallow hypothermia treatment improving myocardial ischemia-reperfusion injury and the O-GlcNAcylation level of COX10. METHODS We used in vivo Langendorff model and in vitro hypoxia/reoxygenation (H/R) cell model to investigate the effects of MTH on myocardial ischemia-reperfusion injury. Histological changes, myocardial enzymes, oxidative stress, and mitochondrial structure/function were assessed. Mechanistic studies involved various molecular biology methods such as ELISA, immunoprecipitation (IP), WB, and immunofluorescence. RESULTS Our research results indicate that MTH upregulates the O-GlcNACylation level of COX10, improves mitochondrial function, and inhibits the expression of ROS to improve myocardial ischemia-reperfusion injury. In vivo, MTH effectively alleviates ischemia-reperfusion induced cardiac dysfunction, myocardial injury, mitochondrial damage, and redox imbalance. In vitro, the OGT inhibitor ALX inhibits the OGT mediated O-GlcNA acylation signaling pathway, downregulates the O-Glc acylation level of COX10, promotes ROS release, and counteracts the protective effect of MTH. On the contrary, the OGA inhibitor ThG showed opposite effects to ALX, further confirming that MTH activated the OGT mediated O-GlcNAcylation signaling pathway to exert cardioprotective effects. CONCLUSIONS In summary, MTH activates OGT mediated O-glycosylation modified COX10 to regulate mitochondrial function and improve myocardial ischemia-reperfusion injury, which provides important theoretical basis for the clinical application of MTH.
Collapse
Affiliation(s)
- Wei Deng
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Jitao Ling
- Department of Endocrinology an Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi province, 330006, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Yanjiang Road, Guangzhou, Guangdong Province, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hong Zhu
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi province, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi province, China
| | - Haili Lang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China.
| | - Kejian Qian
- Department of Intensive Care Unit, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi province, China.
| | - Peng Yu
- Department of Endocrinology an Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China.
| |
Collapse
|
14
|
Wei W, Xie P, Wang X. Interval training suppresses nod-like receptor protein 3 inflammasome activation to improve cardiac function in myocardial infarction rats by hindering the activation of the transforming growth factor-β1 pathway. J Cardiothorac Surg 2024; 19:283. [PMID: 38730417 PMCID: PMC11088074 DOI: 10.1186/s13019-024-02756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Myocardial infarction (MI) -induced cardiac dysfunction can be attenuated by aerobic exercises. This study explored the mechanism of interval training (IT) regulating cardiac function in MI rats, providing some theoretical basis for clarifying MI pathogenesis and new ideas for clinically treating MI. METHODS Rats were subjected to MI modeling, IT intervention, and treatments of the Transforming growth factor-β1 (TGF-β1) pathway or the nod-like receptor protein 3 (NLRP3) activators. Cardiac function and hemodynamic indicator alterations were observed. Myocardial pathological damage and fibrosis, reactive oxygen species (ROS) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, MDA content, inflammasome-associated protein levels, and inflammatory factor levels were assessed. The binding between TGF-β1 and receptor was detected. RESULTS MI rats exhibited decreased left ventricle ejection fraction (LVEF), left ventricle fractional shortening (LVFS), left ventricular systolic pressure (LVSP), positive and negative derivates max/min (dP/dt max/min) and increased left ventricular end-systolic pressure (LVEDP), a large number of scar areas in myocardium, disordered cell arrangement and extensive fibrotic lesions, increased TGF-β1 and receptor binding, elevated ROS level and MDA content and weakened SOD, CAT and GSH-Px activities, and up-regulated NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC) and cleaved-caspase-1 levels, while IT intervention caused ameliorated cardiac function. IT inactivated the TGF-β1 pathway to decrease oxidative stress in myocardial tissues of MI rats and inhibit NLRP3 inflammasome activation. Activating NLRP3 partially reversed IT-mediated improvement on cardiac function in MI rats. CONCLUSION IT diminished oxidative stress in myocardial tissues and suppressed NLRP3 inflammasome activation via inactivating the TGF-β1 pathway, thus improving the cardiac function of MI rats.
Collapse
Affiliation(s)
- Wei Wei
- Cardiovascular medicine, Zhangye Second People's Hospital, North Section of West 3rd Ring Road, Binhe New District, Ganzhou District, Zhangye, 734000, China
| | - Ping Xie
- Cardiovascular medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Xuemei Wang
- Cardiovascular medicine, Zhangye Second People's Hospital, North Section of West 3rd Ring Road, Binhe New District, Ganzhou District, Zhangye, 734000, China.
| |
Collapse
|
15
|
Zhong Y, Li XY, Liang TJ, Ding BZ, Ma KX, Ren WX, Liang WJ. Effects of NLRP3 Inflammasome Mediated Pyroptosis on Cardiovascular Diseases and Intervention Mechanism of Chinese Medicine. Chin J Integr Med 2024; 30:468-479. [PMID: 38329654 DOI: 10.1007/s11655-024-3655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/09/2024]
Abstract
Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathway is an important mechanism underlying myocardial pyroptosis and plays an important role in inflammatory damage to myocardial tissue in patients with cardiovascular diseases (CVDs), such as diabetic cardiomyopathy, ischemia/reperfusion injury, myocardial infarction, heart failure and hypertension. Noncoding RNAs (ncRNAs) are important regulatory factors. Many Chinese medicine (CM) compounds, including their effective components, can regulate pyroptosis and exert myocardium-protecting effects. The mechanisms underlying this protection include inhibition of inflammasome protein expression, Toll-like receptor 4-NF-κB signal pathway activation, oxidative stress, endoplasmic reticulum stress (ERS), and mixed lineage kinase 3 expression and the regulation of silent information regulator 1. The NLRP3 protein is an important regulatory target for CVD prevention and treatment with CM. Exploring the effects of the interventions mediated by CM and the related mechanisms provides new ideas and perspectives for CVD prevention and treatment.
Collapse
Affiliation(s)
- Yi Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Liver and Kidney Diseases, Institute of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050200, China
- Department of Cardiovascular Internal Medicine, the Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, 332000, China
| | - Xin-Yue Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tian-Jun Liang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bao-Zhu Ding
- Rural Physician College, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ke-Xin Ma
- Medical Department, the First Hospital of Hebei Medical University, Shijiazhuang, 050030, China
| | - Wen-Xuan Ren
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wen-Jie Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Liver and Kidney Diseases, Institute of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
16
|
Sun X, Guo C, Huang C, Lv N, Chen H, Huang H, Zhao Y, Sun S, Zhao D, Tian J, Chen X, Zhang Y. GSTP alleviates acute lung injury by S-glutathionylation of KEAP1 and subsequent activation of NRF2 pathway. Redox Biol 2024; 71:103116. [PMID: 38479222 PMCID: PMC10945259 DOI: 10.1016/j.redox.2024.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of acute lung injury (ALI). As a typical post-translational modification triggered by oxidative stress, protein S-glutathionylation (PSSG) is regulated by redox signaling pathways and plays diverse roles in oxidative stress conditions. In this study, we found that GSTP downregulation exacerbated LPS-induced injury in human lung epithelial cells and in mice ALI models, confirming the protective effect of GSTP against ALI both in vitro and in vivo. Additionally, a positive correlation was observed between total PSSG level and GSTP expression level in cells and mice lung tissues. Further results demonstrated that GSTP inhibited KEAP1-NRF2 interaction by promoting PSSG process of KEAP1. By the integration of protein mass spectrometry, molecular docking, and site-mutation validation assays, we identified C434 in KEAP1 as the key PSSG site catalyzed by GSTP, which promoted the dissociation of KEAP1-NRF2 complex and activated the subsequent anti-oxidant genes. In vivo experiments with AAV-GSTP mice confirmed that GSTP inhibited LPS-induced lung inflammation by promoting PSSG of KEAP1 and activating the NRF2 downstream antioxidant pathways. Collectively, this study revealed the novel regulatory mechanism of GSTP in the anti-inflammatory function of lungs by modulating PSSG of KEAP1 and the subsequent KEAP1/NRF2 pathway. Targeting at manipulation of GSTP level or activity might be a promising therapeutic strategy for oxidative stress-induced ALI progression.
Collapse
Affiliation(s)
- Xiaolin Sun
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Huili Chen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, 32827, United States
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yulin Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Di Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
17
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
18
|
Zhang L, Zhao S, Wang Y. Diannexin alleviates myocardial ischemia-reperfusion injury by orchestrating cardiomyocyte oxidative damage, macrophage polarization and fibrotic process by TLR4-NF-kB-mediated inactivation of NLRP3 inflammasome. Int Immunopharmacol 2024; 130:111668. [PMID: 38417368 DOI: 10.1016/j.intimp.2024.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a pathogenic mechanism of myocardial infarction and heart failure, constituting a major health concern globally. Diannexin is a homodimer of recombinant human annexin V and elicits important roles in several I/R injuries. Nevertheless, its function in MI/R remains elusive. Here, Diannexin alleviated simulated I/R (SI/R)-induced cardiomyocyte death and oxidative injury by increasing cell viability and inhibiting cell apoptosis, ROS, lactate dehydrogenase, malondialdehyde production and anti-oxidative SOD activity. Diannexin inhibited SI/R-induced expression of fibrotic protein collagen I and collagen III. Furthermore, Diannexin suppressed LPS-induced macrophage polarization towards pro-inflammatory M1-like phenotype and enhanced IL-4-evoked anti-inflammatory M2 polarization. Concomitantly, Diannexin inhibited SI/R exposure-induced macrophage polarization to M1 subtypes. Importantly, conditioned medium (CM) from SI/R-stimulated macrophages evoked cardiomyocyte apoptosis, which was reversed when cells were co-cultured with CM from Diannexin-treated macrophages under SI/R conditions. Mechanically, the activation of TLR4/NF-κB/NLRP3 inflammasome signaling in SI/R-treated cells was mitigated by Diannexin. Reactivating this pathway antagonized the protective effects of Diannexin on SI/R-induced cardiomyocyte oxidative injury, fibrotic protein expression and macrophage polarization and M1 macrophage-induced apoptosis of cardiomyocytes. In vivo, Diannexin alleviated abnormal cardiac structure, dysfunction and collagen position in MI/R mice. Additionally, Diannexin reduced M1-polarized and elevated M2-polarized macrophages in heart tissues at five days post-MI/R. The activation of TLR4/NF-κB/NLRP3 inflammasome pathway in MI/R mice was attenuated after Diannexin administration. Together, Diannexin may alleviate the development of MI/R injury by directly regulating cardiomyocyte oxidative injury, fibrotic potential and indirectly affecting macrophage polarization-mediated cardiomyocyte apoptosis, indicating a promising therapeutic strategy for MI/R.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Songlin Zhao
- Department of Clinical Laboratory Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yaqi Wang
- Department of Clinical Laboratory Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
19
|
Zhang S, Pan P, Xie H, Wei C, Wang Q, Yang B, Sun Y, Li Y, Luo Y, Song Y, Jiang Q, Huang Y. Resveratrol improves meat quality traits by activating the lncRNAs-KEAP1-NRF2 axis in pigs. Meat Sci 2024; 209:109411. [PMID: 38061306 DOI: 10.1016/j.meatsci.2023.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
This research aims at uncovering the effects and investigating the molecular mechanisms of dietary resveratrol (RES) supplementation on antioxidant capacity and meat quality of pigs. In this study, 20 μM RES could activate the KEAP1-NRF2 antioxidant defense pathway in response to oxidative stress in porcine skeletal muscle satellite cells was firstly found. Then, twenty-four healthy crossbred castrated boars were allocated to 4 treatments that were fed with a basal diet (control) and a basal diet supplemented with 200 mg, 400 mg or 600 mg RES per Kilogram (kg) of feed for 41 days, respectively. 400 and 600 mg/kg RES-supplemented diet can effectively improve the meat quality traits and activities of antioxidizing enzymes via the KEAP1-NRF2 signaling pathway of pigs. The molecular dynamic simulation further revealed that RES could directly binding to KEAP1 to reduce the tightness of KEAP1-NRF2 protein-protein interaction. More importantly, dietary supplementation of RES also improves antioxidant capacity through a series of KEAP1-NRF2 pathway-related lncRNAs were found by RNA sequencing (RNA-seq). Altogether, this study demonstrated that RES improves meat quality traits by effectively increasing antioxidant levels via the lncRNA-KEAP1-NRF2 axis in vivo and/or in vitro. These results provide new insights into the molecular mechanisms by which RES, as a nutritional agent, regulates antioxidant capacity and improves meat quality in pigs.
Collapse
Affiliation(s)
- Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Peng Pan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Hongyue Xie
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Chongwan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qian Wang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Bao Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanjie Sun
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yin Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yunyan Luo
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ying Song
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China.
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
20
|
Linghu KG, Zhang T, Zhang GT, Lv P, Zhang WJ, Zhao GD, Xiong SH, Ma QS, Zhao MM, Chen M, Hu YJ, Zhang CS, Yu H. Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy. J Pharm Anal 2024; 14:401-415. [PMID: 38618249 PMCID: PMC11010449 DOI: 10.1016/j.jpha.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 04/16/2024] Open
Abstract
Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.
Collapse
Affiliation(s)
- Ke-Gang Linghu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Tian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Guang-Tao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Peng Lv
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen-Jun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Guan-Ding Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Shi-Hang Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Qiu-Shuo Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ming-Ming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Chang-Sheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
21
|
Li YG, Li JH, Wang HQ, Liao J, Du XY. Cinnamaldehyde protects cardiomyocytes from oxygen-glucose deprivation/reoxygenation-induced lipid peroxidation and DNA damage via activating the Nrf2 pathway. Chem Biol Drug Des 2024; 103:e14489. [PMID: 38404216 DOI: 10.1111/cbdd.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Rapid restoration of perfusion in ischemic myocardium is the most direct and effective treatment for coronary heart disease but may cause myocardial ischemia/reperfusion injury (MIRI). Cinnamaldehyde (CA, C9H8O), a key component in the well-known Chinese medicine cinnamomum cassia, has cardioprotective effects against MIRI. This study aimed to observe the therapeutic effect of CA on MIRI and to elucidate its potential mechanism. H9C2 rat cardiomyocytes were pretreated with CA solution at 0, 10, and 100 μM, respectively and subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Then the cell viability, the NF-κB and caspase3 gene levels, the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, superoxide dismutase (SOD) level, reactive oxygen species (ROS) generation, 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) were detected. The severity of DNA damage was assessed by tail moment (TM) values using alkaline comet assay. Besides, the DNA damage-related proteins and the key proteins of the Nrf2 pathway were detected by western blot. CA treatment increased the cell viability, GHS/GSSG ratio, SOD level, PARP1, Nrf2, PPAR-γ, and HO-1 protein levels of H9C2 cardiomyocytes, while reducing NF-κB, caspase3, ROS level, 4-HNE and MDA content, γ-H2AX protein level, and TM values. Inhibition of the Nrf2 pathway reversed the effect of CA on cell viability and apoptosis of OGD/R induced H9C2 cardiomyocytes. Besides, 100 μM CA was more effective than 10 μM CA. In the OGD/R-induced H9C2 cardiomyocyte model, CA can protect cardiomyocytes from MIRI by attenuating lipid peroxidation and repairing DNA damage. The mechanism may be related to the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Yan-Guang Li
- Department of Cardiology, Central Hospital of Jiaozuo Coal Industry (Group) Co., LTD, Jiaozuo, Henan, China
| | - Jiang-Hong Li
- Department of Cardiology, Central Hospital of Jiaozuo Coal Industry (Group) Co., LTD, Jiaozuo, Henan, China
| | - Hai-Qin Wang
- Department of Cardiology, Central Hospital of Jiaozuo Coal Industry (Group) Co., LTD, Jiaozuo, Henan, China
| | | | - Xiao-Ya Du
- Department of Cardiology, Central Hospital of Jiaozuo Coal Industry (Group) Co., LTD, Jiaozuo, Henan, China
| |
Collapse
|
22
|
Tang S, Geng Y, Wang Y, Lin Q, Yu Y, Li H. The roles of ubiquitination and deubiquitination of NLRP3 inflammasome in inflammation-related diseases: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:708-721. [PMID: 38193803 PMCID: PMC11293225 DOI: 10.17305/bb.2023.9997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The inflammatory response is a natural immune response that prevents microbial invasion and repairs damaged tissues. However, excessive inflammatory responses can lead to various inflammation-related diseases, posing a significant threat to human health. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a vital mediator in the activation of the inflammatory cascade. Targeting the hyperactivation of the NLRP3 inflammasome may offer potential strategies for the prevention or treatment of inflammation-related diseases. It has been established that the ubiquitination and deubiquitination modifications of the NLRP3 inflammasome can provide protective effects in inflammation-related diseases. These modifications modulate several pathological processes, including excessive inflammatory responses, pyroptosis, abnormal autophagy, proliferation disorders, and oxidative stress damage. Therefore, this review discusses the regulation of NLRP3 inflammasome activation by ubiquitination and deubiquitination modifications, explores the role of these modifications in inflammation-related diseases, and examines the potential underlying mechanisms.
Collapse
Affiliation(s)
- Shaokai Tang
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Yuanwen Geng
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Yawei Wang
- School of Public Administration, Yanshan University, Qinhuangdao, China
| | - Qinqin Lin
- School of Physical Education, Yanshan University, Qinhuangdao, China
- School of Public Administration, Yanshan University, Qinhuangdao, China
| | - Yirong Yu
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Hao Li
- School of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
23
|
Han X, Wang H, Du F, Zeng X, Guo C. Nrf2 for a key member of redox regulation: A novel insight against myocardial ischemia and reperfusion injuries. Biomed Pharmacother 2023; 168:115855. [PMID: 37939614 DOI: 10.1016/j.biopha.2023.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2), a nuclear transcription factor, modulates genes responsible for antioxidant responses against toxic and oxidative stress to maintain redox homeostasis and participates in varieties of cellular processes such as metabolism and inflammation during myocardial ischemia and reperfusion injuries (MIRI). The accumulation of reactive oxygen species (ROS) from damaged mitochondria, xanthine oxidase, NADPH oxidases, and inflammation contributes to depraved myocardial ischemia and reperfusion injuries. Considering that Nrf2 played crucial roles in antagonizing oxidative stress, it is reasonable to delve into the up or down-regulated molecular mechanisms of Nrf2 in the progression of MIRI to provide the possibility of new therapeutic medicine targeting Nrf2 in cardiovascular diseases. This review systematically describes the generation of ROS, the regulatory metabolisms of Nrf2 as well as several natural or synthetic compounds activating Nrf2 during MIRI, which might provide novel insights for the anti-oxidative stress and original ideas targeting Nrf2 for the prevention and treatment in cardiovascular diseases.
Collapse
Affiliation(s)
- Xuejie Han
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, PR China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing 100069, PR China
| | - Fenghe Du
- Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, PR China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing 100069, PR China.
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, PR China.
| |
Collapse
|
24
|
Luo W, Bian X, Liu X, Zhang W, Xie Q, Feng L. A new method for the treatment of myocardial ischemia-reperfusion injury based on γδT cell-mediated immune response. Front Cardiovasc Med 2023; 10:1219316. [PMID: 37600023 PMCID: PMC10435296 DOI: 10.3389/fcvm.2023.1219316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Acute myocardial ischemia is a disease with high morbidity and mortality, and re-perfusion is currently the best intervention. However, re-perfusion may lead to further myocardial injury and increase the area of myocardial infarction. The mechanism of myocardial ischemia-re-perfusion injury is complex, but with more in-depth study, it has been proved that the immune system plays an important role in the process of MIRI. Among them, the γδT cell population has received increasing attention as the main early source of IL-17A in many immune response models. Because γδT cells have the characteristics of linking innate immunity and adaptive immunity,they can rapidly produce IL-17A and produce subsequent immune killing of cardiomyocytes. It can be seen that γδT cells play an important role in MIRI. Therefore, here we review the research progress of immune response in myocardial ischemia-re-perfusion injury, the key characteristics of γδT cells and the role of rapidly produced IL-17 in myocardial ischemia-re-perfusion injury, and propose relevant treatment strategies and prospects for myocardial repair, in order to provide new ideas and methods for clinical treatment of myocardial ischemia-re-perfusion injury.
Collapse
Affiliation(s)
- Wei Luo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohong Bian
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaona Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenchao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Xie
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Xu T, Yang Y, Chen Z, Wang J, Wang X, Zheng Y, Wang C, Wang Y, Zhu Z, Ding X, Zhou J, Li G, Zhang H, Zhang W, Wu Y, Song X. TNFAIP2 confers cisplatin resistance in head and neck squamous cell carcinoma via KEAP1/NRF2 signaling. J Exp Clin Cancer Res 2023; 42:190. [PMID: 37525222 PMCID: PMC10391982 DOI: 10.1186/s13046-023-02775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Drug resistance limits the treatment effect of cisplatin-based chemotherapy in head and neck squamous cell carcinoma (HNSCC), and the underlying mechanism is not fully understood. The aim of this study was to explore the cause of cisplatin resistance in HNSCC. METHODS We performed survival and gene set variation analyses based on HNSCC cohorts and identified the critical role of tumor necrosis factor alpha-induced protein 2 (TNFAIP2) in cisplatin-based chemotherapy resistance. Half-maximal inhibitory concentration (IC50) examination, colony formation assays and flow cytometry assays were conducted to examine the role of TNFAIP2 in vitro, while xenograft models in nude mice and 4-nitroquinoline N-oxide (4NQO)-induced HNSCC models in C57BL/6 mice were adopted to verify the effect of TNFAIP2 in vivo. Gene set enrichment analysis (GSEA) and coimmunoprecipitation coupled with mass spectrometry (Co-IP/MS) were performed to determine the mechanism by which TNFAIP2 promotes cisplatin resistance. RESULTS High expression of TNFAIP2 is associated with a poor prognosis, cisplatin resistance, and low reactive oxygen species (ROS) levels in HNSCC. Specifically, it protects cancer cells from cisplatin-induced apoptosis by inhibiting ROS-mediated c-JUN N-terminal kinase (JNK) phosphorylation. Mechanistically, the DLG motif contained in TNFAIP2 competes with nuclear factor-erythroid 2-related factor 2 (NRF2) by directly binding to the Kelch domain of Kelch-like ECH-associated protein 1 (KEAP1), which prevents NRF2 from undergoing ubiquitin proteasome-mediated degradation. This results in the accumulation of NRF2 and confers cisplatin resistance. Positive correlations between TNFAIP2 protein levels and NRF2 as well as its downstream target genes were validated in HNSCC specimens. Moreover, the small interfering RNA (siRNA) targeting TNFAIP2 significantly enhanced the cisplatin treatment effect in a 4NQO-induced HNSCC mouse model. CONCLUSIONS Our results reveal the antioxidant and cisplatin resistance-regulating roles of the TNFAIP2/KEAP1/NRF2/JNK axis in HNSCC, suggesting that TNFAIP2 might be a potential target in improving the cisplatin treatment effect, particularly for patients with cisplatin resistance.
Collapse
Affiliation(s)
- Teng Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yuemei Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhihong Chen
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jinsong Wang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaolei Wang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Chao Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yachen Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zaiou Zhu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No. 1 Peoples Hospital, Xuzhou, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Yunong Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Cheng X, Wang K, Zhao Y, Wang K. Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov 2023; 9:275. [PMID: 37507372 PMCID: PMC10382489 DOI: 10.1038/s41420-023-01560-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) such as atherosclerosis, myocardial remodeling, myocardial ischemia-reperfusion (I/R) injury, heart failure, and oxidative stress are among the greatest threats to human health worldwide. Cardiovascular pathogenesis has been studied for decades, and the influence of epigenetic changes on CVDs has been extensively studied. Post-translational modifications (PTMs), including phosphorylation, glycosylation, methylation, acetylation, ubiquitination, ubiquitin-like and nitrification, play important roles in the normal functioning of the cardiovascular system. Over the past decade, with the application of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an increasing number novel acylation modifications have been discovered, including propionylation, crotonylation, butyrylation, succinylation, lactylation, and isonicotinylation. Each change in protein conformation has the potential to alter protein function and lead to CVDs, and this process is usually reversible. This article summarizes the mechanisms underlying several common PTMs involved in the occurrence and development of CVDs.
Collapse
Affiliation(s)
- XueLi Cheng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kun Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China.
| |
Collapse
|
27
|
Ghica A, Drumea V, Moroșan A, Mihaiescu DE, Costea L, Luță EA, Mihai DP, Balaci DT, Fița AC, Olaru OT, Boscencu R, Gîrd CE. Phytochemical Screening and Antioxidant Potential of Selected Extracts from Betula alba var. pendula Roth., Glycyrrhiza glabra L., and Avena sativa L. PLANTS (BASEL, SWITZERLAND) 2023; 12:2510. [PMID: 37447070 DOI: 10.3390/plants12132510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The aim of the present study was to obtain, characterize, and evaluate the antioxidant potential of some extracts obtained from the bark of Betula alba var. pendula Roth., the root of Glycyrrhiza glabra L., and the green herb of the Avena sativa. The results revealed that the lowest IC50 value, determined by all three methods, was obtained for Betulae extractum (BE) (73.6 µg/mL-DPPH method, 11.2 µg/mL-ABTS method, and 58.7 µg/mL-FRAP method), followed by Liquiritiae extractum (LE) (805.6 µg/mL, 92.1 µg/mL, and 722 µg/mL) and Avenae extractum (1.13 mg/mL-DPPH method, 99.7 µg/mL-ABTS method, and 135.1 µg/mL-FRAP method). These results correlate with total polyphenols content (expressed in g tannic acid/100 g dry extract), with BE having more polyphenols than LE and AE (47.96 ± 9.7083 for BE, compared with 9.31 ± 0.9913 for LE and 40.55 ± 6.3715 for AE). The total flavonoid content (expressed as g rutoside/100 g dry extract) is similar for BE and LE (3.75 ± 0.3140 and 3.44 ± 0.3037) and smaller for AE (1.95 ± 0.0526). Therefore, Betulae extractum has the strongest antioxidant action, with an IC50 value very close to the standard used as a reference (ascorbic acid-16.5 μg/mL solution). The FT-ICR-MS analysis confirmed the presence of the major compounds in all three extracts. The antioxidant properties of the studied extracts were further supported by molecular docking experiments that revealed the potential of the analyzed phytochemicals to act as both noncovalent and covalent activators of the Nrf2 signaling pathway, with promising benefits in treating various skin disorders.
Collapse
Affiliation(s)
- Adelina Ghica
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
- Biotehnos SA, Gorunului Street No. 3-5, 075100 Otopeni, Romania
| | - Veronica Drumea
- Biotehnos SA, Gorunului Street No. 3-5, 075100 Otopeni, Romania
| | - Alina Moroșan
- Department of Organic Chemistry "Costin Nenițescu", Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry "Costin Nenițescu", Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | - Liliana Costea
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Emanuela Alice Luță
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dragos Paul Mihai
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dalila Teodora Balaci
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Ancuța Cătălina Fița
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Rica Boscencu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
28
|
Zhao L, Ling L, Lu J, Jiang F, Sun J, Zhang Z, Huang Y, Liu X, Zhu Y, Fu X, Peng S, Yuan W, Zhao R, Zhang Z. Reactive oxygen species-responsive mitochondria-targeted liposomal quercetin attenuates retinal ischemia-reperfusion injury via regulating SIRT1/FOXO3A and p38 MAPK signaling pathways. Bioeng Transl Med 2023; 8:e10460. [PMID: 37206232 PMCID: PMC10189480 DOI: 10.1002/btm2.10460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Retinal ischemia-reperfusion (RIR) injury is involved in the pathogenesis of various vision-threatening diseases. The overproduction of reactive oxygen species (ROS) is thought to be the main cause of RIR injury. A variety of natural products, including quercetin (Que), exhibit potent antioxidant activity. However, the lack of an efficient delivery system for hydrophobic Que and the presence of various intraocular barriers limit the effective retinal delivery of Que in clinical settings. In this study, we encapsulated Que into ROS-responsive mitochondria-targeted liposomes (abbreviated to Que@TPP-ROS-Lips) to achieve the sustained delivery of Que to the retina. The intracellular uptake, lysosome escape ability, and mitochondria targeting ability of Que@TPP-ROS-Lips were evaluated in R28 retinal cells. Treating R28 cells with Que@TPP-ROS-Lips significantly ameliorated the decrease in ATP content, ROS generation, and increase in the release of lactate dehydrogenase in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia. In a rat model, the intravitreal injection of Que@TPP-ROS-Lips 24 h after inducing retinal ischemia significantly enhanced retinal electrophysiological recovery and reduced neuroinflammation, oxidative stress, and apoptosis. Que@TPP-ROS-Lips were taken up by retina for at least 14 days after intravitreal administration. Molecular docking and functional biological experiments revealed that Que targets FOXO3A to inhibit oxidative stress and inflammation. Que@TPP-ROS-Lips also partially inhibited the p38 MAPK signaling pathway, which contributes to oxidative stress and inflammation. In conclusion, our new platform for ROS-responsive and mitochondria-targeted drug release shows promise for the treatment of RIR injury and promotes the clinical application of hydrophobic natural products.
Collapse
Affiliation(s)
- Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Longbing Ling
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Feng Jiang
- Department of OphthalmologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Jianchao Sun
- School of Environment and Material EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoqian Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Yanjuan Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Wenze Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| |
Collapse
|
29
|
Shilovsky GA, Dibrova DV. Regulation of Cell Proliferation and Nrf2-Mediated Antioxidant Defense: Conservation of Keap1 Cysteines and Nrf2 Binding Site in the Context of the Evolution of KLHL Family. Life (Basel) 2023; 13:life13041045. [PMID: 37109574 PMCID: PMC10146909 DOI: 10.3390/life13041045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Keap1 (Kelch-like ECH-associated protein 1) is one of the major negative regulators of the transcription factor Nrf2 (nuclear factor erythroid-2-related factor 2), which induces the expression of numerous proteins defending the cell against different stress conditions. Keap1 is generally negatively regulated by post-translational modification (mostly via its cysteine residues) and interaction with other proteins that compete with Nrf2 for binding. Cysteine residues in Keap1 have different effects on protein regulation, as basic residues (Lys, Arg, and His) in close proximity to them increase cysteine modification potential. In this paper, we present an evolutionary analysis of residues involved in both mechanisms of Keap1 regulation in the broader context of the KLHL protein family in vertebrates. We identified the typical domain structure of the KLHL protein family in several proteins outside of this family (namely in KBTBD proteins 2, 3, 4, 6, 7, 8, 12 and 14). We found several cysteines that are flanked by basic residues (namely, C14, C38, C151, C226, C241, C273, C288, C297, C319, and C613) and, therefore, may be considered more susceptible to regulatory modification. The Nrf2 binding site is completely conserved in Keap1 in vertebrates but is absent or located in nonaligned DA and BC loops of the Kelch domain within the KLHL family. The development of specific substrate binding regions could be an evolutionary factor of diversification in the KLHL protein family.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Russian Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 127051 Moscow, Russia
| | - Daria V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
30
|
Huang D, Shen Z, Zhao S, Pei C, Jia N, Wang Y, Wu Y, Wang X, Shi S, He Y, Wang Z, Wang F. Sipeimine attenuates PM2.5-induced lung toxicity via suppression of NLRP3 inflammasome-mediated pyroptosis through activation of the PI3K/AKT pathway. Chem Biol Interact 2023; 376:110448. [PMID: 36898572 DOI: 10.1016/j.cbi.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Exposure to fine particulate matter (PM2.5), an environmental pollutant, significantly contributes to the incidence of and risk of mortality associated with respiratory diseases. Sipeimine (Sip) is a steroidal alkaloid in fritillaries that exerts antioxidative and anti-inflammatory effects. However, protective effect of Sip for lung toxicity and its mechanism to date remains poorly understood. In the present study, we investigated the lung-protective effect of Sip via establishing the lung toxicity model of rats with orotracheal instillation of PM2.5 (7.5 mg/kg) suspension. Sprague-Dawley rats were intraperitoneally administered with Sip (15 mg/kg or 30 mg/kg) or vehicle daily for 3 days before instillation of PM2.5 suspension to establish the model of lung toxicity. The results found that Sip significantly improved pathological damage of lung tissue, mitigated inflammatory response, and inhibited lung tissue pyroptosis. We also found that PM2.5 activated the NLRP3 inflammasome as evidenced by the upregulation levels of NLRP3, cleaved-caspase-1, and ASC proteins. Importantly, PM2.5 could trigger pyroptosis by increased levels of pyroptosis-related proteins, including IL-1β, cleaved IL-1β, and GSDMD-N, membrane pore formation, and mitochondrial swelling. As expected, all these deleterious alterations were reversed by Sip pretreatment. These effects of Sip were blocked by the NLRP3 activator nigericin. Moreover, network pharmacology analysis showed that Sip may function via the PI3K/AKT signaling pathway and animal experiment validate the results, which revealed that Sip inhibited NLRP3 inflammasome-mediated pyroptosis by suppressing the phosphorylation of PI3K and AKT. Our findings demonstrated that Sip inhibited NLRP3-mediated cell pyroptosis through activation of the PI3K/AKT pathway in PM2.5-induced lung toxicity, which has a promising application value and development prospect against lung injury in the future.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
31
|
Wu X, Wei J, Yi Y, Gong Q, Gao J. Activation of Nrf2 signaling: A key molecular mechanism of protection against cardiovascular diseases by natural products. Front Pharmacol 2022; 13:1057918. [PMID: 36569290 PMCID: PMC9772885 DOI: 10.3389/fphar.2022.1057918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are a group of cardiac and vascular disorders including myocardial ischemia, congenital heart disease, heart failure, hypertension, atherosclerosis, peripheral artery disease, rheumatic heart disease, and cardiomyopathies. Despite considerable progress in prophylaxis and treatment options, CVDs remain a leading cause of morbidity and mortality and impose an extremely high socioeconomic burden. Oxidative stress (OS) caused by disequilibrium in the generation of reactive oxygen species plays a crucial role in the pathophysiology of CVDs. Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor of endogenous antioxidant defense systems against OS, is considered an ideal therapeutic target for management of CVDs. Increasingly, natural products have emerged as a potential source of Nrf2 activators with cardioprotective properties and may therefore provide a novel therapeutic tool for CVD. Here, we present an updated comprehensive summary of naturally occurring products with cardioprotective properties that exert their effects by suppression of OS through activation of Nrf2 signaling, with the aim of providing useful insights for the development of therapeutic strategies exploiting natural products.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
32
|
Luan F, Lei Z, Peng X, Chen L, Peng L, Liu Y, Rao Z, Yang R, Zeng N. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/ reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis. Chem Biol Interact 2022; 368:110245. [DOI: 10.1016/j.cbi.2022.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
|
33
|
Fan ZX, Yang CJ, Li YH, Yang J, Huang CX. Ginsenoside Rh2 attenuates myocardial ischaemia‑reperfusion injury by regulating the Nrf2/HO‑1/NLRP3 signalling pathway. Exp Ther Med 2022; 25:35. [PMID: 36569435 PMCID: PMC9764046 DOI: 10.3892/etm.2022.11734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 12/03/2022] Open
Abstract
Ginsenoside Rh2 (GRh2) is a monomer isolated from red ginseng that has extensive pharmacological effects. However, whether GRh2 has a protective effect on ischaemia/reperfusion (I/R) in the myocardium has yet to be elucidated. The present study aimed to identify the anti-inflammatory and antioxidant effects of GRh2 on I/R in the myocardium and its underlying mechanism. A rat model of myocardial I/R injury was constructed by ligating the left anterior descending coronary artery, which was subsequently treated with GRh2. A total of 40 male Sprague-Dawley rats were divided into the following four groups: The sham group, the I/R group, the I/R+GRh2 (10 mg/kg) group and the I/R+GRh2 (20 mg/kg) group. Neonatal rat cardiomyocytes were also used to evaluate the protective effect of GRh2 on hypoxia/reoxygenation (H/R)-induced myocardial injury in vitro. The GRh2 pre-treatment reduced the I/R- or H/R-induced release of myocardial enzymes and the production of IL-1β, IL-18 and TNF-α. GRh2 reduced the area of myocardial infarction and the histological changes in the myocardium and improved cardiac functions. In addition, GRh2 reduced the expression levels of NOD-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein, caspase-1, malondialdehyde and reactive oxygen species and increased the expression levels of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), glutathione peroxidase and superoxide dismutase. In conclusion, the present study confirmed that GRh2 could reduce oxidative stress and inflammation in cardiomyocytes after reperfusion, and its mechanism of action may be related to its regulation of the Nrf2/HO-1/NLRP3 signalling pathway.
Collapse
Affiliation(s)
- Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China,Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Chao-Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Ya-Hui Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China,Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China,Correspondence to: Dr Cong-Xin Huang, Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China,Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China,Correspondence to: Dr Cong-Xin Huang, Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
34
|
Qiu M, Chen J, Li X, Zhuang J. Intersection of the Ubiquitin–Proteasome System with Oxidative Stress in Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms232012197. [PMID: 36293053 PMCID: PMC9603077 DOI: 10.3390/ijms232012197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular diseases (CVDs) present a major social problem worldwide due to their high incidence and mortality rate. Many pathophysiological mechanisms are involved in CVDs, and oxidative stress plays a vital mediating role in most of these mechanisms. The ubiquitin–proteasome system (UPS) is the main machinery responsible for degrading cytosolic proteins in the repair system, which interacts with the mechanisms regulating endoplasmic reticulum homeostasis. Recent evidence also points to the role of UPS dysfunction in the development of CVDs. The UPS has been associated with oxidative stress and regulates reduction–oxidation homeostasis. However, the mechanisms underlying UPS-mediated oxidative stress’s contribution to CVDs are unclear, especially the role of these interactions at different disease stages. This review highlights the recent research progress on the roles of the UPS and oxidative stress, individually and in combination, in CVDs, focusing on the pathophysiology of key CVDs, including atherosclerosis, ischemia–reperfusion injury, cardiomyopathy, and heart failure. This synthesis provides new insight for continued research on the UPS–oxidative stress interaction, in turn suggesting novel targets for the treatment and prevention of CVDs.
Collapse
Affiliation(s)
- Min Qiu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jimei Chen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaohong Li
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jian Zhuang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Correspondence: ; Tel.: +86-020-83827812 (ext. 51050)
| |
Collapse
|
35
|
Wu J, Chen S, Wu P, Wang Y, Qi X, Zhang R, Liu Z, Wang D, Cheng Y. Cathepsin B/HSP70 complex induced by Ilexsaponin I suppresses NLRP3 inflammasome activation in myocardial ischemia/reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154358. [PMID: 35952578 DOI: 10.1016/j.phymed.2022.154358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/17/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Myocardial ischemia/reperfusion injury (MI/RI) is a clinical issue in MI therapy that requires effective intervention. Cathepsin B (CTSB) plays an essential role in regulating cell death, inflammatory response and angiogenesis. Ilexsaponin I (ISI), a triterpenoid saponin obtained from Ilex pubescens Hook. et Arn, has anti-inflammatory and cardioprotective effects. However, the effect of ISI on MI/RI is unclear. PURPOSE The study aims to disclose the mechanism of ISI as a potent therapeutic agent for MI/RI. METHODS Left anterior descending (LAD) coronary artery ligation and oxygen-glucose deprivation and reperfusion (OGD/R) were used to establish MI/RI model in vivo and in vitro. ELISA, western blot and immunofluorescence were carried out to detect CTSB activity and NLRP3 inflammasome activation. Coimmunoprecipitation (Co-IP), molecular docking and surface plasmon resonance (SPR) analysis were used to detect the interaction of CTSB/HSP70 complex. Infarct area determination, echocardiography and hematoxylin and eosin (HE) staining were performed to assess the cardioprotection of ISI in vivo. RESULTS Plasma CTSB was elevated in patients after percutaneous coronary intervention (PCI), and was positively correlated with the level of cTnI in plasma, which was also found in MI/RI rat model. ISI significantly suppressed the overexpression and activity of CTSB after MI/RI or OGD/R. ISI remarkably suppressed CTSB triggered-NLRP3 inflammasome activation and reduced the maturation of IL-1β and IL-18. Importantly, we firstly found that ISI promoted CTSB/HSP70 complex formation to disrupt CTSB/NLRP3 complex, leading to NLRP3 inflammasome inactivation. ISI could also limit infarct size, improve cardiac function and reduce inflammatory infiltrates in vivo and protected H9c2 cells against OGD/R insult in vitro. Interrupting the HSP70 and CTSB interaction with HSP70 siRNA blocked the effect of ISI on CTSB, NLRP3 inflammasome activation and the cardioprotective effect. CONCLUSION ISI probably exerts cardioprotective effect against MI/RI by modulating HSP70 competitively bind to CTSB to suppress the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Junxuan Wu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Sixuan Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Peng Wu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Rong Zhang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Zhongqiu Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China.
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China.
| | - Yuanyuan Cheng
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
36
|
Zhang W, Zhou C, Li P, Liu J, Wang X, Zhang W, Wang H, Tang B. Quantitative Fluorescence Imaging of the Intracellular Redox State by Real-Time Spatial and Temporal Simultaneous Analysis of O 2•- Levels and Keap1 Translocation. Anal Chem 2022; 94:12352-12359. [PMID: 36048427 DOI: 10.1021/acs.analchem.2c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysregulated redox homeostasis under pathological conditions can eventually culminate in oxidative stress and associated disease damage. Spatial and temporal regulation of intracellular redox states involves two crucial parameters for elucidating oxidative stress-related molecular mechanisms. However, the lack of methods for real-time analysis of redox states is a considerable hurdle for the in-depth interpretation of pathogenic mechanisms. Herein, given the over-produced reactive oxygen species (ROS) and the translocation of redox-sensitive proteins as the potential biomarkers of oxidative stress, we developed a novel ROS-macromolecular protein synergistic imaging strategy that relied on a small-molecule fluorescent CPR-SK probe. The CPR-SK specifically activated the caffeic acid moieties or targeting peptides (EWWW) toward the biomarkers, including superoxide (O2•-) fluctuations and Keap1 translocation, achieving simultaneous real-time imaging of dual molecular events during oxidative stress. Importantly, in situ, CPR-SK exhibited both gentle elevation of O2•- and subsequent migration of Keap1 from the cytoplasm to the nucleus, which were key indicators for determining slight injuries induced by hepatic ischemia-reperfusion. The results clearly demonstrated that this spatiotemporal imaging method was a reliable tool for analyzing dynamic intracellular changes of the redox state and elucidating the molecular mechanisms of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunmiao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
37
|
Li Y, Wang Z. Interleukin 32 participates in cardiomyocyte‑induced oxidative stress, inflammation and apoptosis during hypoxia/reoxygenation via the NOD2/NOX2/MAPK signaling pathway. Exp Ther Med 2022; 24:567. [PMID: 35978933 PMCID: PMC9366315 DOI: 10.3892/etm.2022.11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuanyuan Li
- Department of Cardiovascular Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhongyan Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
38
|
Han D, Wang F, Wang B, Qiao Z, Cui X, Zhang Y, Jiang Q, Liu M, Shangguan J, Zheng X, Bai Y, Du C, Shen D. A Novel Compound, Tanshinol Borneol Ester, Ameliorates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Oxidative Stress via the mTOR/β-TrCP/NRF2 Pathway. Front Pharmacol 2022; 13:830763. [PMID: 35185583 PMCID: PMC8850779 DOI: 10.3389/fphar.2022.830763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 01/14/2023] Open
Abstract
Tanshinol borneol ester (DBZ) exerts anti-atherosclerotic and anti-inflammatory effects. However, its effects on cardiac hypertrophy are not well understood. In this work, we investigated the treatment effects and potential mechanisms of DBZ on the hypertrophic heart under oxidative stress and endoplasmic reticulum (ER) stress. A hypertrophic model was established in rats using transverse-aortic constriction (TAC) surgery and in neonatal rat cardiomyocytes (NRCMs) using angiotensin II (Ang II). Our results revealed that DBZ remarkably inhibited oxidative stress and ER stress, blocked autophagy flow, and decreased apoptosis in vivo and in vitro through nuclear NRF2 accumulation, and enhanced NRF2 stability via regulating the mTOR/β-TrcP/NRF2 signal pathway. Thus, DBZ may serve as a promising therapeutic for stress-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Dongjian Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuhang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhentao Qiao
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Cui
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingjiao Jiang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miaomiao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahong Shangguan
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an, China
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Yajun Bai, ; Chunyan Du, ; Deliang Shen,
| | - Chunyan Du
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yajun Bai, ; Chunyan Du, ; Deliang Shen,
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yajun Bai, ; Chunyan Du, ; Deliang Shen,
| |
Collapse
|
39
|
Peng L, Lei Z, Rao Z, Yang R, Zheng L, Fan Y, Luan F, Zeng N. Cardioprotective activity of ethyl acetate extract of Cinnamomi Ramulus against myocardial ischemia/reperfusion injury in rats via inhibiting NLRP3 inflammasome activation and pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153798. [PMID: 34673348 DOI: 10.1016/j.phymed.2021.153798] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND NLRP3 inflammasome activation and pyroptosis play an important role in myocardial ischemia/reperfusion injury (MI/RI). Cinnamomi ramulus (CR), is an important folk medicinal plant in China, which derived from the dried twig of Cinnamomum cassia (L.) Presl, has function of "warming and tonifying heart yang", and traditionally utilized to treat the cold, blood-cold amenorrhea, phlegm, edema, arthralgia, and palpitations as well as improve blood circulation. The aqueous extract of C. ramulus was reported to show significant therapeutic potential for treating MI/RI. Whereas, there are no previous investigations in China or abroad has reported the cardioprotective effects and underlying mechanism of the ethyl acetate extract of C. ramulus (CREAE) and its bioactive substance cinnamic acid (CA) in triggering NLRP3 inflammasome activation and subsequent pyroptosis. PURPOSE The present study aimed to assess the cardioprotective function of CREAE and CA against the MI/RI in rats and involved the underlying mechanisms. METHODS The MI/RI model was established in male SD rats by occlusion of the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min, respectively. The rats were intragastrically administered with CREAE (74 and 37 mg/kg) and CA (45 mg/kg) for 7 successive days before vascular ligation. The cardioprotective effects of CREAE and CA against myocardial injury of rats were detected by HE staining, TTC staining, echocardiograms, and myocardial enzymes detections. Serum levels of inflammatory factors, such as IL-6, IL-1β, and TNF-α, were analyzed by ELISA kits to evaluate the effects of CREAE and CA. The protein and gene expression levels of NLRP3 and the pyroptosis-related factors in heart tissue were conducted by western blot and RT-qPCR. RESULTS Our results showed that CREAE and CA decrease myocardial infarct size and improve cardiac function, mitigate myocardial damage, and repress inflammatory response in rats after I/R. Mechanistically, our results revealed that CREAE and CA can dramatically suppress the activation of NLRP3 inflammasome and subsequent cardiomyocyte pyroptosis in myocardial tissues that as evidenced by downregulating the protein and gene expressions of NLRP3, ASC, IL-1β, caspase-1, gasdermin D, and N-terminal GSDMD. CONCLUSIONS Our data indicated that CREAE and CA may attenuate MI/RI through suppression of NLRP3 inflammasome and subsequent pyroptosis-related signaling pathways.
Collapse
Affiliation(s)
- Lixia Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ziqin Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Zhili Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Lang Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yuxin Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
40
|
Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Am J Cancer Res 2021; 11:4436-4451. [PMID: 33754070 PMCID: PMC7977448 DOI: 10.7150/thno.54004] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasome is a complex of multiple proteins found in cytoplasm of the cells activated by infectious and/or non-infectious stimuli. This complex involves caspase-1 activation, leading to unconventional secretion of interleukin-1β (IL-1β) and IL-18 and inflammatory cascade. Exosome is the nanoscale membrane-bound extracellular vesicle that plays significant roles in intercellular communications by carrying bioactive molecules, e.g., proteins, RNAs, microRNAs (miRNAs), DNAs, from one cell to the others. In this review, we provide the update information on the crosstalk between exosome and inflammasome and their roles in inflammatory responses. The effects of inflammasome activation on exosomal secretion are summarized. On the other hand, the (dual) effects of exosomes on inhibiting and promoting inflammasome activation are discussed. Finally, perspectives on therapeutic roles of exosomes in human diseases and future direction of the research on exosome-inflammasome crosstalk are provided.
Collapse
|