1
|
Zeng F, Du M, Yang Y, Fang J, Wang Y, Goh M, Lin Y, Wang H, Yan F, Chen Z. Enhancing photothermal therapy of tumors with image-guided thermal control of gene-expressing bacteria. Theranostics 2024; 14:5945-5964. [PMID: 39346533 PMCID: PMC11426242 DOI: 10.7150/thno.98257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose: Bacteria-mediated tumor therapy has showed promising potential for cancer therapy. However, the efficacy of bacterial monotherapy treatment which can express and release therapeutic proteins in tumors has been found to be unsatisfactory. To date, synergistic therapy has emerged as a promising approach to achieve stronger therapeutic outcomes compared to bacterial monotherapy. It is a challenge to visualize these tumor-homing bacteria in vivo and guide them to express and release in situ therapeutic proteins. Procedure: We have developed a kind of engineered bacteria (named CGB@ICG) genetically incorporating acoustic reporter proteins and thermo-inducible ClyA expression gene circuit and chemically modified with indocyanine green on the bacterial surface. The presence of acoustic reporter proteins and indocyanine green facilitates the visualization of CGB@ICG via contrast-enhanced ultrasound imaging and optical imaging, making it possible to guide the sound wave or laser to irradiate precisely these bacteria for inducing the expression of ClyA protein via acoustic- or photothermal effects. The expression and secretion of ClyA protein in the tumor, combined with photothermal therapy, greatly enhanced the anti-tumor efficacy of the engineered bacteria and improved their biosafety. Results: We successfully performed multimodal imaging of CGB@ICG in vivo resulting in remoting control the expression of ClyA protein in tumor. In vivo experiments showed that bacteria-mediated therapy combined photothermal therapy exhibited a rapid decrease in tumor volume compared to other groups, while the tumor volume of the combination therapy group continued to decrease and even achieved complete healing. Thus, combination therapy not only reduced the rate of tumor growth but also prevented the proliferation of tumor cells for an extended period. Conclusion: Our study demonstrated that CGB@ICG serves as an efficacious imaging agent and delivery vector to combine engineered bacteria with photothermal therapy, holding great promise for tumor treatment.
Collapse
Affiliation(s)
- Fengyi Zeng
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, University of South China, 161 Shaoshan South Road, Changsha, Hunan Province (China)
- Institute of Medical Imaging, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, Hunan Province (China)
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, University of South China, 161 Shaoshan South Road, Changsha, Hunan Province (China)
- Institute of Medical Imaging, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, Hunan Province (China)
- Department of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha, Hunan Province (China)
| | - Yaozhang Yang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, University of South China, 161 Shaoshan South Road, Changsha, Hunan Province (China)
- Institute of Medical Imaging, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, Hunan Province (China)
| | - Jinghui Fang
- Department of Ultrasound Medicine, Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, Guangdong Province (China)
| | - Yuanyuan Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong Province (China)
| | - MeeiChyn Goh
- Institute of Medical Imaging, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, Hunan Province (China)
| | - Yan Lin
- Department of Ultrasound Medicine, Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, Guangdong Province (China)
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong Province (China)
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong Province (China)
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, University of South China, 161 Shaoshan South Road, Changsha, Hunan Province (China)
- Institute of Medical Imaging, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, Hunan Province (China)
- Department of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha, Hunan Province (China)
| |
Collapse
|
2
|
He X, Liang D, Zhou J, Li K, Xie B, Liang C, Liu C, Chen Z, Chen X, Long A, Zhuo S, Su X, Luo Y, Chen W, Zhao F, Jiang X. Nucleus-targeting DNase I self-assembly delivery system guided by pirarubicin for programmed multi-drugs release and combined anticancer therapy. Int J Biol Macromol 2024; 267:131514. [PMID: 38608986 DOI: 10.1016/j.ijbiomac.2024.131514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The cell nucleus serves as the pivotal command center of living cells, and delivering therapeutic agents directly into the nucleus can result in highly efficient anti-tumor eradication of cancer cells. However, nucleus-targeting drug delivery is very difficult due to the presence of numerous biological barriers. Here, three antitumor drugs (DNase I, ICG: indocyanine green, and THP: pirarubicin) were sequentially triggered protein self-assembly to produce a nucleus-targeting and programmed responsive multi-drugs delivery system (DIT). DIT consisted of uniform spherical particles with a size of 282 ± 7.7 nm. The acidic microenvironment of tumors and near-infrared light could successively trigger DIT for the programmed release of three drugs, enabling targeted delivery to the tumor. THP served as a nucleus-guiding molecule and a chemotherapy drug. Through THP-guided DIT, DNase I was successfully delivered to the nucleus of tumor cells and killed them by degrading their DNA. Tumor acidic microenvironment had the ability to induce DIT, leading to the aggregation of sufficient ICG in the tumor tissues. This provided an opportunity for the photothermal therapy of ICG. Hence, three drugs were cleverly combined using a simple method to achieve multi-drugs targeted delivery and highly effective combined anticancer therapy.
Collapse
Affiliation(s)
- Xuan He
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dan Liang
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Zhou
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kangjing Li
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Beibei Xie
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunyun Liang
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Cong Liu
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiyong Chen
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinxin Chen
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ao Long
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Clinical Laboratory Medicine Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shufang Zhuo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Clinical Laboratory Medicine Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ying Luo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenxia Chen
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Fengfeng Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| | - Xinglu Jiang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Clinical Laboratory Medicine Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, Liang H, Ding F, Hong S, Steinmetz NF, Cai H. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS NANO 2023; 17:8004-8025. [PMID: 37079378 DOI: 10.1021/acsnano.3c01452] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly has emerged as an extensively used method for constructing biomaterials with sizes ranging from nanometers to micrometers. Peptides have been extensively investigated for self-assembly. They are widely applied owing to their desirable biocompatibility, biodegradability, and tunable architecture. The development of peptide-based nanoparticles often requires complex synthetic processes involving chemical modification and supramolecular self-assembly. Stimuli-responsive peptide nanoparticles, also termed "smart" nanoparticles, capable of conformational and chemical changes in response to stimuli, have emerged as a class of promising materials. These smart nanoparticles find a diverse range of biomedical applications, including drug delivery, diagnostics, and biosensors. Stimuli-responsive systems include external stimuli (such as light, temperature, ultrasound, and magnetic fields) and internal stimuli (such as pH, redox environment, salt concentration, and biomarkers), facilitating the generation of a library of self-assembled biomaterials for biomedical imaging and therapy. Thus, in this review, we mainly focus on peptide-based nanoparticles built by self-assembly strategy and systematically discuss their mechanisms in response to various stimuli. Furthermore, we summarize the diverse range of biomedical applications of peptide-based nanomaterials, including diagnosis and therapy, to demonstrate their potential for medical translation.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Zhu Wang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Hui Liang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Nicole F Steinmetz
- Department of NanoEngineering, Department of Biongineering, Department of Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Center for Engineering in Cancer, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| |
Collapse
|
5
|
Huo Y, Hu J, Yin Y, Liu P, Cai K, Ji W. Self-Assembling Peptide-Based Functional Biomaterials. Chembiochem 2023; 24:e202200582. [PMID: 36346708 DOI: 10.1002/cbic.202200582] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Peptides can self-assemble into various hierarchical nanostructures through noncovalent interactions and form functional materials exhibiting excellent chemical and physical properties, which have broad applications in bio-/nanotechnology. The self-assembly mechanism, self-assembly morphology of peptide supramolecular architecture and their various applications, have been widely explored which have the merit of biocompatibility, easy preparation, and controllable functionality. Herein, we introduce the latest research progress of self-assembling peptide-based nanomaterials and review their applications in biomedicine and optoelectronics, including tissue engineering, anticancer therapy, biomimetic catalysis, energy harvesting. We believe that this review will inspire the rational design and development of novel peptide-based functional bio-inspired materials in the future.
Collapse
Affiliation(s)
- Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jian Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
6
|
Li X, Ji Q, Yan C, Zhu Z, Yan Z, Chen P, Wang Y, Song L. H 2O 2/pH Dual-Responsive Biomimetic Nanoenzyme Drugs Delivery System for Enhanced Tumor Photodynamic Therapy. NANOSCALE RESEARCH LETTERS 2022; 17:103. [PMID: 36308645 PMCID: PMC9618007 DOI: 10.1186/s11671-022-03738-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Phototherapy has been recognized as a photochemical process to treat tumor via induce cancer cells necrosis and death, with minimal invasiveness, higher selectivity, and few side effects. However, the therapy effects of phototherapy are often compromised by the hypoxia, high levels of hydrogen peroxide, and glutathione of tumor microenvironment (TME). Therefore, we constructed a catalase-like activity bionic metal-organic framework drugs delivery system (FA-EM@MnO2/ZIF-8/ICG) with tumor microenvironment controllable releasing. In this system, photosensitizer indocyanine green (ICG) was introduced into zeolite imidazole salt skeleton 8 (ZIF-8) by one-step methods, forming ZIF-8/ICG nano-platform, which can effectively avoid ICG-induced phototoxicity and aggregation-induced quenching during transport. MnO2 with catalase-like activity was coated on the surface of ZIF-8/ICG nano-platform, which made it have the ability of self-supplying O2 under the condition of H2O2 in TME. Exposure under near-infrared light can alleviate the anoxic TME, thus improving the phototherapy efficiency. In addition, folate-functionalized erythrocyte membrane is coated on the surface of MnO2/ZIF-8/ICG, which can endow FA-EM@MnO2/ZIF-8/ICG with the ability of targeted drug administration and immune elimination avoidance. Therefore, FA-EM@MnO2/ZIF-8/ICG nano-platform has the catalase-like activity, which can alleviate the oxidative stress state of TME and provide a beneficial environment for photodynamic therapy of tumor.
Collapse
Affiliation(s)
- Xinyuan Li
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road (S.), Huai'an, 223002, China
| | - Qing Ji
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Chao Yan
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road (S.), Huai'an, 223002, China
| | - Ziyu Zhu
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road (S.), Huai'an, 223002, China
| | - Zhihui Yan
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road (S.), Huai'an, 223002, China
| | - Ping Chen
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road (S.), Huai'an, 223002, China
| | - Yisen Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.
| | - Li Song
- YanCheng NO.1 People's Hospital, Yancheng, 224001, China.
| |
Collapse
|
7
|
Luo F, Zhou J, Li K, Jiang X. An acid-base responsive AuI integrated contrast agent for Optical/CT double-modal imaging to detect pH change of digestive tract. Anal Chim Acta 2022; 1221:340119. [DOI: 10.1016/j.aca.2022.340119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
|
8
|
Hyaluronic acid functionalized ZnO nanoparticles co-deliver AS and GOD for synergistic cancer starvation and oxidative damage. Sci Rep 2022; 12:4574. [PMID: 35301389 PMCID: PMC8931118 DOI: 10.1038/s41598-022-08627-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Artesunate was reported to have inhibition effect on tumors via amplified oxidative stress while the lack of intratumoral ferrous ions supply greatly hinders its efficacy. Herein, the AS/GOD@HAZnO NPs we proposed could be efficiently taken in by the affinity between hyaluronic acid and the CD44 receptors. DLS and TEM results manifested the nano-size (~ 160 nm) and circular shape of AS/GOD@HAZnO NPs. Due to the acid-responsive degradation, AS/GOD@HAZnO NPs realized responsive release (up to 80%) in acid environment while only 20% was released in neutral medium. The cellular and in vivo experiment showed that co-delivery of AS and GOD via HAZnO NPs could effectively induce the overproduction of ROS and cut the glucose supply of tumor cells, and thus result in efficient cell apoptosis and tumor inhibition.
Collapse
|
9
|
Luo X, Xie J, Zhou Z, Ma S, Wang L, Li M, Liu J, Wang P, Li Y, Luo F, Yan J. Virus-Inspired Gold Nanorod-Mesoporous Silica Core-Shell Nanoparticles Integrated with tTF-EG3287 for Synergetic Tumor Photothermal Therapy and Selective Therapy for Vascular Thrombosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44013-44027. [PMID: 34494427 DOI: 10.1021/acsami.1c11947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synergetic therapy includes the combination of two or more conventional therapeutic approaches and can be used for tumor treatment by combining the advantages and avoiding the drawbacks of each type of treatment. In the present study, truncated tissue factor (tTF)-EG3287 fusion protein-encapsulated gold nanorod (GNR)-virus-inspired mesoporous silica core-shell nanoparticles (vinyl hybrid silica nanoparticles; VSNP) (GNR@VSNP-tTF-EG3287) were synthesized to achieve synergetic therapy by utilizing selective vascular thrombosis therapy (SVTT) and photothermal therapy (PTT). By integrating the targeted coagulation activity of tTF-EG3287 and the high tumor ablation effect of GNR@VSNP, local hyperthermia could induce a high percentage of apoptosis of vascular endothelial cells by using near-infrared light. This provided additional phospholipid sites for tTF-EG3287 and enhanced its procoagulant activity in vitro. In addition, the nanoparticles, which had unique topological viral structures, exhibited superior cellular uptake properties leading to significant antitumor efficacy. The in vivo antitumor results further demonstrated an interaction between SVTT and PTT, whereas the synergetic therapy (SVTT and PTT) achieved an enhanced effect, which was superior to the respective treatment efficacy of each modality or the additive effect of their individual efficacies. In summary, the synthesized GNR@VSNP-tTF-EG3287 exerted synergetic effects and enhanced the antitumor efficiency by avoiding multiple injections and suboptimal administration. These effects simultaneously affected both tumor blood supply and cancer cell proliferation. The data suggested that the integration of SVTT induced by tTF-EG3287 and PTT could provide potential strategies for synergetic tumor therapy.
Collapse
Affiliation(s)
- Xian Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Jun Xie
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Zonglang Zhou
- The 174th Clinic College of People's Liberation Army, Anhui Medical University, Hefei 230031, Republic of China
| | - Sihan Ma
- School of Energy, Xiamen University, Xiamen 361005, Republic of China
- Fujian Research Center for Nuclear, Xiamen 361002, Republic of China
| | - Li Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Mengqi Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Jiajing Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, Republic of China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, Republic of China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| |
Collapse
|
10
|
Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics 2021; 11:6477-6490. [PMID: 33995669 PMCID: PMC8120229 DOI: 10.7150/thno.55708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Rationale: Integration of several monotherapies into a single nanosystem can produce remarkable synergistic antitumor effects compared with separate delivery of combination therapies. We developed near-infrared (NIR) light-triggered nanoparticles that induce a domino effect for multimodal tumor therapy. Methods: The designed intelligent phototriggered nanoparticles (IPNs) were composed of a copper sulfide-loaded upconversion nanoparticle core, a thermosensitive and photosensitive enaminitrile molecule (EM) organogel shell loaded with anticancer drugs, and a cancer cell membrane coating. Irradiation with an NIR laser activated a domino effect beginning with photothermal generation by copper sulfide for photothermal therapy that also resulted in phase transformation of the EM gel to release the anticancer drug. Meanwhile, the NIR light energy was converted to ultraviolet light by the upconversion core to excite the EM, which generated reactive oxygen species for photodynamic therapy. Results: IPNs achieved excellent antitumor effects in vitro and in vivo with little systemic toxicity, indicating that IPNs could serve as a safe and high-performance instrument for synergetic antitumor therapy. Conclusion: This intelligent drug delivery system induced a chain reaction generating multiple antitumor therapies after a single stimulus.
Collapse
Affiliation(s)
- Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dan Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chunling Ren
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| |
Collapse
|