1
|
Liu X, Tian L, Deng Z, Guo Y, Zhang S. Zoledronic Acid Accelerates Bone Healing in Carpal Navicular Fracture via Silencing Long Non-coding RNA Growth Arrest Specificity 5 to Modulate MicroRNA-29a-3p Expression. Mol Biotechnol 2024; 66:3238-3251. [PMID: 37861953 DOI: 10.1007/s12033-023-00931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Carpal navicular fractures are the most common carpal fractures. This study intends to explore the specific mechanism of Zoledronic Acid (ZA) in carpal navicular fracture healing via long non-coding RNA (lncRNA) growth arrest specificity 5 (GAS5) to mediate microRNA (miR)-29a-3p. A fractured rat model was constructed. Two weeks later, a subcutaneous injection of systemic ZA was implemented, and an injection of plasmid vectors interfered with GAS5 or miR-29a-3p expression was performed on the fracture site. Osteocalcin (OCN) and bone morphogenetic protein-2 (BMP-2) were determined, as well as serum levels of alkaline phosphatase (ALP), osteopontin (OPN) and osteoprotegerin (OPG) and bone mineral density. MC3T3-E1 cells were transfected with plasmid vectors interfering with GAS5 or miR-29a-3p, and cell proliferation and apoptosis were analyzed. GAS5 and miR-29a-3p expression in fractured rats was tested, together with their binding relationship. ZA promoted OCN and BMP-2 expression, increased bone mineral density and serum levels of ALP, OPN and OPG in fractured rats. GAS5 was upregulated and miR-29a-3p was down-regulated in fractured rats. Downregulation of GAS5 or upregulation of miR-29a-3p further promoted bone healing in fractured rats. GAS5 targets miR-29a-3p, and down-regulation of miR-29a-3p can reverse the effect of down-regulation of GAS5 on bone healing in fractured rats. ZA promoted the proliferation of MC3T3-E1 cells and inhibited apoptosis by regulating the GAS5/miR-29a-3p axis. ZA regulates miR-29a-3p expression by down-regulating GAS5 to promote carpal navicular fracture healing, promote MC3T3-E1 cell proliferation, and inhibit cell apoptosis.
Collapse
Affiliation(s)
- Xing Liu
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China.
| | - LiJun Tian
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China
| | - ZhiGang Deng
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China
| | - YuSong Guo
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China
| | - SanBing Zhang
- Department of Hand/Foot and Ankle Surgery, The Third Hospital of ShiJiaZhuang, Shijiazhuang City, 050011, Hebei Province, China
| |
Collapse
|
2
|
Huo S, Tang X, Chen W, Gan D, Guo H, Yao Q, Liao R, Huang T, Wu J, Yang J, Xiao G, Han X. Epigenetic regulations of cellular senescence in osteoporosis. Ageing Res Rev 2024; 99:102235. [PMID: 38367814 DOI: 10.1016/j.arr.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis (OP) is a prevalent age-related disease that is characterized by a decrease in bone mineral density (BMD) and systemic bone microarchitectural disorders. With age, senescent cells accumulate and exhibit the senescence-associated secretory phenotype (SASP) in bone tissue, leading to the imbalance of bone homeostasis, osteopenia, changes in trabecular bone structure, and increased bone fragility. Cellular senescence in the bone microenvironment involves osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells (BMSCs), whose effects on bone homeostasis are regulated by epigenetics. Therefore, the epigenetic regulatory mechanisms of cellular senescence have received considerable attention as potential targets for preventing and treating osteoporosis. In this paper, we systematically review the mechanisms of aging-associated epigenetic regulation in osteoporosis, emphasizing the impact of epigenetics on cellular senescence, and summarize three current methods of targeting cellular senescence, which is helpful better to understand the pathogenic mechanisms of cellular senescence in osteoporosis and provides strategies for the development of epigenetic drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Xinzheng Tang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Donghao Gan
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Guo
- Liuzhou Traditional Chinese Medicine Hospital (Liuzhou Zhuang Medical Hospital), Liuzhou 545001, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongdong Liao
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tingting Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junxian Wu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China
| | - Junxing Yang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xia Han
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| |
Collapse
|
3
|
Wang H, Li T, Jiang Y, Chen S, Wu Z, Zeng X, Yang K, Duan P, Zou S. Long non-coding RNA LncTUG1 regulates favourable compression force-induced cementocytes mineralization via PU.1/TLR4/SphK1 signalling. Cell Prolif 2024; 57:e13604. [PMID: 38318762 PMCID: PMC11150144 DOI: 10.1111/cpr.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Orthodontic tooth movement (OTM) is a highly coordinated biomechanical response to orthodontic forces with active remodelling of alveolar bone but minor root resorption. Such antiresorptive properties of root relate to cementocyte mineralization, the mechanisms of which remain largely unknown. This study used the microarray analysis to explore long non-coding ribonucleic acids involved in stress-induced cementocyte mineralization. Gain- and loss-of-function experiments, including Alkaline phosphatase (ALP) activity and Alizarin Red S staining, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence analyses of mineralization-associated factors, were conducted to verify long non-coding ribonucleic acids taurine-upregulated gene 1 (LncTUG1) regulation in stress-induced cementocyte mineralization, via targeting the Toll-like receptor 4 (TLR4)/SphK1 axis. The luciferase reporter assays, chromatin immunoprecipitation assays, RNA pull-down, RNA immunoprecipitation, and co-localization assays were performed to elucidate the interactions between LncTUG1, PU.1, and TLR4. Our findings indicated that LncTUG1 overexpression attenuated stress-induced cementocyte mineralization, while blocking the TLR4/SphK1 axis reversed the inhibitory effect of LncTUG1 on stress-induced cementocyte mineralization. The in vivo findings also confirmed the involvement of TLR4/SphK1 signalling in cementocyte mineralization during OTM. Mechanistically, LncTUG1 bound with PU.1 subsequently enhanced TLR4 promotor activity and thus transcriptionally elevated the expression of TLR4. In conclusion, our data revealed a critical role of LncTUG1 in regulating stress-induced cementocyte mineralization via PU.1/TLR4/SphK1 signalling, which might provide further insights for developing novel therapeutic strategies that could protect roots from resorption during OTM.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Tiancheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Orthodontics, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
| | - Xinyi Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Kuan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
4
|
Zhong Y, Zhou X, Pan Z, Zhang J, Pan J. Role of epigenetic regulatory mechanisms in age-related bone homeostasis imbalance. FASEB J 2024; 38:e23642. [PMID: 38690719 DOI: 10.1096/fj.202302665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.
Collapse
Affiliation(s)
- Yunyu Zhong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zijian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiankang Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Xu Y, Mao S, Fan H, Wan J, Wang L, Zhang M, Zhu S, Yuan J, Lu Y, Wang Z, Yu B, Jiang Z, Huang Y. LINC MIR503HG Controls SC-β Cell Differentiation and Insulin Production by Targeting CDH1 and HES1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305631. [PMID: 38243869 PMCID: PMC10987150 DOI: 10.1002/advs.202305631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Stem cell-derived pancreatic progenitors (SC-PPs), as an unlimited source of SC-derived β (SC-β) cells, offers a robust tool for diabetes treatment in stem cell-based transplantation, disease modeling, and drug screening. Whereas, PDX1+/NKX6.1+ PPs enhances the subsequent endocrine lineage specification and gives rise to glucose-responsive SC-β cells in vivo and in vitro. To identify the regulators that promote induction efficiency and cellular function maturation, single-cell RNA-sequencing is performed to decipher the transcriptional landscape during PPs differentiation. The comprehensive evaluation of functionality demonstrated that manipulating LINC MIR503HG using CRISPR in PP cell fate decision can improve insulin synthesis and secretion in mature SC-β cells, without effects on liver lineage specification. Importantly, transplantation of MIR503HG-/- SC-β cells in recipients significantly restored blood glucose homeostasis, accompanied by serum C-peptide release and an increase in body weight. Mechanistically, by releasing CtBP1 occupying the CDH1 and HES1 promoters, the decrease in MIR503HG expression levels provided an excellent extracellular niche and appropriate Notch signaling activation for PPs following differentiation. Furthermore, this exhibited higher crucial transcription factors and mature epithelial markers in CDH1High expressed clusters. Altogether, these findings highlighted MIR503HG as an essential and exclusive PP cell fate specification regulator with promising therapeutic potential for patients with diabetes.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Haowen Fan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Department of Graduate SchoolDalian Medical UniversityDalianLiaoning116000China
| | - Mingyu Zhang
- Department of Nuclear MedicineBeijing Friendship HospitalAffiliated to Capital Medical UniversityBeijing100050China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jin Yuan
- Department of Endocrinology and MetabolismAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Zhaoyan Jiang
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| |
Collapse
|
6
|
Huai Y, Wang X, Mao W, Wang X, Zhao Y, Chu X, Huang Q, Ru K, Zhang L, Li Y, Chen Z, Qian A. HuR-positive stress granules: Potential targets for age-related osteoporosis. Aging Cell 2024; 23:e14053. [PMID: 38375951 PMCID: PMC10928564 DOI: 10.1111/acel.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
Aging impairs osteoblast function and bone turnover, resulting in age-related bone degeneration. Stress granules (SGs) are membrane-less organelles that assemble in response to stress via the recruitment of RNA-binding proteins (RBPs), and have emerged as a novel mechanism in age-related diseases. Here, we identified HuR as a bone-related RBP that aggregated into SGs and facilitated osteogenesis during aging. HuR-positive SG formation increased during osteoblast differentiation, and HuR overexpression mitigated the reduction in SG formation observed in senescent osteoblasts. Moreover, HuR positively regulated the mRNA stability and expression of its target β-catenin by binding and recruiting β-catenin into SGs. As a potential therapeutic target, HuR activator apigenin (API) enhanced its expression and thus aided osteoblasts differentiation. API treatment increased HuR nuclear export, enhanced the recruitment of β-catenin into HuR-positive SGs, facilitated β-catenin nuclear translocation, and contributed osteogenesis. Our findings highlight the roles of HuR and its SGs in promoting osteogenesis during skeletal aging and lay the groundwork for novel therapeutic strategies against age-related skeletal disorders.
Collapse
Affiliation(s)
- Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Department of OrthopedicsTangdu Hospital, Air Force Military Medical UniversityXi'anChina
| | - Xue Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Wenjing Mao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Xuehao Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yipu Zhao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Xiaohua Chu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Qian Huang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Kang Ru
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Ling Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yu Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
7
|
Tavares e Silva J, Pessoa J, Nóbrega-Pereira S, Bernardes de Jesus B. The Impact of Long Noncoding RNAs in Tissue Regeneration and Senescence. Cells 2024; 13:119. [PMID: 38247811 PMCID: PMC10814083 DOI: 10.3390/cells13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Overcoming senescence with tissue engineering has a promising impact on multiple diseases. Here, we provide an overview of recent studies in which cellular senescence was inhibited through the up/downregulation of specific lncRNAs. This approach prevented senescence in the bones, joints, nervous system, heart, and blood vessels, with a potential impact on regeneration and the prevention of osteoarthritis and osteoporosis, as well as neurodegenerative and cardiovascular diseases. Senescence of the skin and liver could also be prevented through the regulation of cellular levels of specific lncRNAs, resulting in the rejuvenation of cells from these organs and their potential protection from disease. From these exciting achievements, which support tissue regeneration and are not restricted to stem cells, we propose lncRNA regulation through RNA or gene therapies as a prospective preventive and therapeutic approach against aging and multiple aging-related diseases.
Collapse
Affiliation(s)
| | | | | | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (J.T.e.S.); (J.P.); (S.N.-P.)
| |
Collapse
|
8
|
Gordon JAR, Tye CE, Banerjee B, Ghule PN, van Wijnen AJ, Kabala FS, Page NA, Falcone MM, Stein JL, Stein GS, Lian JB. LINC01638 sustains human mesenchymal stem cell self-renewal and competency for osteogenic cell fate. Sci Rep 2023; 13:20314. [PMID: 37985890 PMCID: PMC10662126 DOI: 10.1038/s41598-023-46202-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.
Collapse
Affiliation(s)
- Jonathan A R Gordon
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Coralee E Tye
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | | | - Prachi N Ghule
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Fleur S Kabala
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Natalie A Page
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Michelle M Falcone
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA.
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.
| |
Collapse
|
9
|
Gordon J, Tye CE, Banerjee B, Ghule PN, Wijnen AJ, Kabala FS, Page NA, Falcone MM, Stein JL, Stein GS, Lian JB. LINC01638 Sustains Human Mesenchymal Stem Cell Self-Renewal and Competency for Osteogenic Cell Fate. RESEARCH SQUARE 2023:rs.3.rs-3210911. [PMID: 37693373 PMCID: PMC10491330 DOI: 10.21203/rs.3.rs-3210911/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC cell growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2,000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gary S Stein
- University of Vermont, Larner College of Medicine
| | - Jane B Lian
- University of Vermont, Larner College of Medicine
| |
Collapse
|
10
|
Meng F, Yu Y, Tian Y, Deng M, Zheng K, Guo X, Zeng B, Li J, Qian A, Yin C. A potential therapeutic drug for osteoporosis: prospect for osteogenic LncRNAs. Front Endocrinol (Lausanne) 2023; 14:1219433. [PMID: 37600711 PMCID: PMC10435887 DOI: 10.3389/fendo.2023.1219433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) play essential roles in multiple physiological processes including bone formation. Investigators have revealed that LncRNAs regulated bone formation through various signaling pathways and micro RNAs (miRNAs). However, several problems exist in current research studies on osteogenic LncRNAs, including sophisticated techniques, high cost for in vivo experiment, as well as low homology of LncRNAs between animal model and human, which hindered translational medicine research. Moreover, compared with gene editing, LncRNAs would only lead to inhibition of target genes rather than completely knocking them out. As the studies on osteogenic LncRNA gradually proceed, some of these problems have turned osteogenic LncRNA research studies into slump. This review described some new techniques and innovative ideas to address these problems. Although investigations on osteogenic LncRNAs still have obtacles to overcome, LncRNA will work as a promising therapeutic drug for osteoporosis in the near future.
Collapse
Affiliation(s)
- Fanjin Meng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Yang Yu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Meng Deng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Kaiyuan Zheng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Beilei Zeng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingjia Li
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chong Yin
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
12
|
Wang Z, Shu W, Zhao R, Liu Y, Wang H. Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis. Apoptosis 2023:10.1007/s10495-023-01850-4. [PMID: 37170022 DOI: 10.1007/s10495-023-01850-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Ferroptosis is a form of programmed cell death with important biological functions in the progression of various diseases, and targeting ferroptosis is a new tumor treatment strategy. Studies have shown that sodium butyrate plays a tumor-suppressing role in the progression of various tumors, however, the mechanism of NaBu in endometrial cancer is unclear. Cell viability, clone formation, proliferation, migration, invasion abilities and cell cycle distribution were assessed by CCK8 assay, Clone formation ability assay, EdU incorporation, Transwell chambers and flow cytometry. The level of ferroptosis was assayed by the levels of ROS and lipid peroxidation, the ratio of GSH/GSSG and the morphology of mitochondria. Molecular mechanisms were explored by metabolome, transcriptome, RNA-pulldown and mass spectrometry. The in-vivo mechanism was validated using subcutaneous xenograft model. In this study, NaBu was identified to inhibit the progression of endometrial cancer in vitro and in vivo. Mechanistically, RBM3 has a binding relationship with SLC7A11 mRNA. NaBu indirectly downregulates the expression of SLC7A11 by promoting the expression of RBM3, thereby promoting ferroptosis in endometrial cancer cells. In conclusion, Sodium butyrate can promote the expression of RBM3 and indirectly downregulate the expression of SLC7A11 to stimulate ferroptosis, which may be a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China.
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China.
- Clinical Research Center of Cancer Immunotherapy, Hubei, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Zhao Y, Chen H, Ran K, Zhang Y, Pan H, Shangguan J, Tong M, Yang J, Yao Q, Xu H. Porous hydroxyapatite scaffold orchestrated with bioactive coatings for rapid bone repair. BIOMATERIALS ADVANCES 2022; 144:213202. [PMID: 36434928 DOI: 10.1016/j.bioadv.2022.213202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Current bioceramic scaffolds for critical-size bone defects are still facing various challenges such as the poor capability of self-resorption, vascularization and osteogenesis. Herein, a composite scaffold (HOD) is fabricated by integrating bioactive coatings of konjac glucomannan (KGM) and deferoxamine (DFO) into porous hydroxyapatite scaffold (HA), where KGM coating induces the self-resorption of HOD after implanting and DFO promoted the vascularization at the defected bone. Porous HA scaffolds with 200-400 μm of pore sizes were prepared and these bioactive coatings were successfully deposited on the scaffold, which was confirmed by SEM. MC3T3-E1 cells could be tightly attached to the pore wall of HOD and the obvious osteogenic differentiation was clearly displayed after 14 days of co-culture. Besides, HOD displayed the potential of promoting the vascularization of HUVECs. Importantly, the accelerated degradation of HOD was observed in a macrophage-associated acidic medium, which led to the self-resorption of HOD in vivo. Micro-CT images showed that HOD was gradually replaced by newly formed bone, achieving a balance between the new bone formation and the scaffold degradation. The rapid bone repairing of the femoral defects in rats was displayed for HOD in comparison to the HA scaffold. Moreover, the therapeutic mechanism of HOD was highly associated with promoted osteogenesis and vascularization. Collectively, the porous ceramic scaffold orchestrated with bioactive coatings may be a promising strategy for repairing of the large bone defect.
Collapse
Affiliation(s)
- Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Hangbo Chen
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Kunjie Ran
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Yingying Zhang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Hanxiao Pan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jianxun Shangguan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengqi Tong
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jiaojiao Yang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Qing Yao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Helin Xu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
14
|
Zhang C, Wu S, Chen E, Yu L, Wang J, Wu M. ALX1-transcribed LncRNA AC132217.4 promotes osteogenesis and bone healing via IGF-AKT signaling in mesenchymal stem cells. Cell Mol Life Sci 2022; 79:328. [PMID: 35639207 PMCID: PMC11073114 DOI: 10.1007/s00018-022-04338-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022]
Abstract
The osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) is critical for bone formation and regeneration. A high non-/delayed-union rate of fracture healing still occurs in specific populations, implying an urgent need to discover novel targets for promoting osteogenesis and bone regeneration. Long non-coding (lnc)RNAs are emerging regulators of multiple physiological processes, including osteogenesis. Based on differential expression analysis of RNA sequencing data, we found that lncRNA AC132217.4, a 3'UTR-overlapping lncRNA of insulin growth factor 2 (IGF2), was highly induced during osteogenic differentiation of BMSCs. Afterward, both gain-of-function and loss-of-function experiments proved that AC132217.4 promotes osteoblast development from BMSCs. As for its molecular mechanism, we found that AC132217.4 binds with IGF2 mRNA to regulate its expression and downstream AKT activation to control osteoblast maturation and function. Furthermore, we identified two splicing factors, splicing component 35 KDa (SC35) and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), which regulate the biogenesis of AC132217.4 at the post-transcriptional level. We also identified a transcription factor, ALX1, which regulates AC132217.7 expression at the transcriptional level to promote osteogenesis. Importantly, in-vivo over-expression of AC132217.4 essentially promotes the bone healing process in a murine tibial drill-hole model. Our study demonstrates that lncRNA AC132217.4 is a novel anabolic regulator of BMSC osteogenesis and could be a plausible therapeutic target for improving bone regeneration.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyang Yu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jinfu Wang
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Su P, Tian Y, Yin C, Wang X, Li D, Yang C, Pei J, Deng X, King S, Li Y, Qian A. MACF1 promotes osteoblastic cell migration by regulating MAP1B through the GSK3beta/TCF7 pathway. Bone 2022; 154:116238. [PMID: 34700040 DOI: 10.1016/j.bone.2021.116238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE The migration of osteoblastic cells to bone formation surface is an essential step for bone development and growth. However, whether the migration capacity of osteoblastic cells is compromised during osteoporosis occurrence and how it contributes to bone formation reduction remain unexplored so far. In this work, we found, as a positive regulator of cell migration, microtubule actin crosslinking factor 1 (MACF1) enhanced osteoblastic cells migration. We also examined whether MACF1 could facilitate osteoblastic cells' migration to bone formation surface to promote bone formation through another cytoskeleton protein, microtubule associated protein 1 (MAP1B). METHODS Preosteoblast cell line MC3T3-E1 with different MACF1 level was used for in vitro and in vivo cell migration assay; Primary cortical bone derived mesenchymal stem cells (C-MSCs) from bone tissue of MACF1 conditional knock out (cKO) mice was used for in vitro cell migration assay. Cell migration ability in vitro was evaluated by wound healing assay and transwell assay and in vivo by bone marrow cavity injection. Small interfering RNA (siRNA) was used for knocking down Map1b in MC3T3-E1 cell. Lithium chloride (LiCl) and Wortmannin (Wort) were used for inhibiting/activating GSK3β pathway activity. Luciferase report assay was performed for detection of transcriptional activity of TCF7 for Map1b; Chromatin immunoprecipitation (ChIP) was engaged for the binding of TCF7 to Map1b promoter region. RESULTS We found MACF1 enhanced MC3T3-E1 cell and C-MSCs migration in vitro through promoting microtubule (MT) stability and dynamics, and increased the injected MC3T3-E1 cell number on bone formation surface, which indicated a promoted bone formation. We further authenticated that MAP1B had a similar function to MACF1 and was regulated by MACF1 in osteogenic cell, and silencing map1b repressed MC3T3-E1 cell migration in vitro. Mechanistically, by adopting MC3T3-E1 cell with different MACF1 level or treated with LiCl/Wort, we discovered that MACF1 decreased the levels of 1265 threonine phosphorylated MAP1B (p[T1265] MAP1B) through inhibiting GSK3β activity. Additionally, total MAP1B mRNA expression level was upregulated by MACF1 through strengthening the binding of TCF7 to the map1b promoter sequence. CONCLUSION Our study uncovered a novel role of MACF1 in bone formation and MAP1B regulation, which suggested that MACF1 could be a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Peihong Su
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Ye Tian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chong Yin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Department of Clinical Laboratory, Academician (expert) Workstation, Lab of Epigenetics and RNA Therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xue Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dijie Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jiawei Pei
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiaoni Deng
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Sarah King
- The University of Chicago, Ben May Department for Cancer Research, Chicago, IL 60637, USA
| | - Yu Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Huang H, Xing D, Zhang Q, Li H, Lin J, He Z, Lin J. LncRNAs as a new regulator of chronic musculoskeletal disorder. Cell Prolif 2021; 54:e13113. [PMID: 34498342 PMCID: PMC8488571 DOI: 10.1111/cpr.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
Objectives In recent years, long non‐coding RNAs (lncRNAs) have been found to play a role in the occurrence, progression and prognosis of chronic musculoskeletal disorders. Design and methods Literature exploring on PubMed was conducted using the combination of keywords 'LncRNA' and each of the following: 'osteoarthritis', 'rheumatoid arthritis', 'osteoporosis', 'osteogenesis', 'osteoclastogenesis', 'gout arthritis', 'Kashin‐Beck disease', 'ankylosing spondylitis', 'cervical spondylotic myelopathy', 'intervertebral disc degeneration', 'human muscle disease' and 'muscle hypertrophy and atrophy'. For each disorder, we focused on the publications in the last five years (5/1/2016‐2021/5/1, except for Kashin‐Beck disease). Finally, we excluded publications that had been reported in reviews of various musculoskeletal disorders during the last three years. Here, we summarized the progress of research on the role of lncRNA in multiple pathological processes during musculoskeletal disorders. Results LncRNAs play a crucial role in regulating downstream gene expression and maintaining function and homeostasis of cells, especially in chondrocytes, synovial cells, osteoblasts, osteoclasts and skeletal muscle cells. Conclusions Understanding the mechanisms of lncRNAs in musculoskeletal disorders may provide promising strategies for clinical practice.
Collapse
Affiliation(s)
- Hesuyuan Huang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Qingxi Zhang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Jianjing Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Zihao He
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|