1
|
Gong Y, Guo K, Cai S, Ren K, Tian L, Wang Y, Mu M, Meng Q, Liu J, Sun X. Customized Sized Manganese Sulfide Nanospheres as Efficient T 1 MRI Contrast Agents for Enhanced Tumor Theranostics. Biomater Res 2024; 28:0116. [PMID: 39665080 PMCID: PMC11632153 DOI: 10.34133/bmr.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
The impact of nanoparticle size on the effectiveness of magnetic resonance imaging (MRI) using sulfurized manganese nanoparticles (MnS@PAA) stabilized with polyacrylic acid (PAA) as a binder was thoroughly investigated. MnS@PAA nanoparticles of varying sizes were synthesized by altering the ratio of ethylene glycol (EG) to diethylene glycol (DEG) during the synthesis process. These nanoparticles exhibited a uniform size distribution and demonstrated high T1 relaxation rates, along with a notable pH-responsive behavior. As the nanoparticle size increased, the T1 relaxation rate decreased, indicating that size plays a crucial role in their MRI performance. Additionally, research has revealed that the efficiency of tumor uptake by these nanoparticles is size dependent. Specifically, MnS@PAA nanoparticles with a core size of 100 nm (MS100) exhibited greater tumor accumulation and provided enhanced MRI contrast. Once within the acidic environment of a tumor, MS100 decomposes into Mn2+ and H2S. Mn2+ ions promote the generation of hydroxyl radicals, which leads to lipid peroxidation and induces ferroptosis. Concurrently, the release of H2S inhibits catalase activity, resulting in elevated levels of hydrogen peroxide (H2O2), achieving a synergistic effect between chemodynamic therapy (CDT) and gas therapy. This study explores the influence of nanoparticle size on its potential applications as an MRI contrast agent and as a therapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- Yufang Gong
- Department of Medical Oncology,
Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Kai Guo
- Department of Radiation Oncology & Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Siyu Cai
- Department of Radiation Oncology & Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ke Ren
- Department of Radiation Oncology & Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Liya Tian
- Department of Radiation Oncology & Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yingqi Wang
- Department of Radiation Oncology & Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Mengyao Mu
- Department of Radiation Oncology & Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Qingwei Meng
- Department of Medical Oncology,
Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Jie Liu
- Department of Radiation Oncology & Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xiao Sun
- Department of Radiation Oncology & Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
2
|
He JF, Yang WW, Quan WX, Yang YC, Zhang Z, Luo QY. Application of rare earth elements in dual-modality molecular probes. RSC Adv 2024; 14:38480-38490. [PMID: 39640527 PMCID: PMC11618533 DOI: 10.1039/d4ra04987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The unique 4f subshell electronic structure of rare earth elements endows them with exceptional properties in electrical, magnetic, and optical domains. These properties include prolonged fluorescence lifetimes, large Stokes shifts, distinctive spectral bands, and strong resistance to photobleaching, making them ideal for the synthesis of molecular probes. Each imaging technique possesses unique advantages and specific applicabilities but also inherent limitations due to its operational principles. Dual-modality molecular probes effectively address these limitations, particularly in applications involving high-resolution Magnetic Resonance Imaging (MRI) such as MRI/OI, MRI/PET, MRI/CT, and MRI/US. This review summarizes the applications, advantages, challenges, and current research status of rare earth elements in these four dual imaging modalities, providing a theoretical basis for the future development and application of rare earth elements in the field of dual-modality molecular probes.
Collapse
Affiliation(s)
- Jie-Fang He
- School of Life Sciences, Guizhou Normal University Guiyang 550025 China
| | - Wen-Wen Yang
- School of Life Sciences, Guizhou Normal University Guiyang 550025 China
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| | - Wen-Xuan Quan
- Provincial Key Laboratory of Mountainous Ecological Environment, Guizhou Normal University Guiyang 550025 China
| | - Yue-Chun Yang
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Zhengwei Zhang
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| | - Qing-Ying Luo
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| |
Collapse
|
3
|
Cuadrado CF, Lagos KJ, Stringasci MD, Bagnato VS, Romero MP. Clinical and pre-clinical advances in the PDT/PTT strategy for diagnosis and treatment of cancer. Photodiagnosis Photodyn Ther 2024; 50:104387. [PMID: 39490802 DOI: 10.1016/j.pdpdt.2024.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have demonstrated great potential to diagnose and combat localized cancers. As a matter of fact, these techniques are less invasive and have fewer side effects than traditional cancer treatments like surgery, chemotherapy or radiotherapy. This review summarizes the clinical progress in the theranostics (diagnosis and treatment) of various types of regional cancers using these two light stimuli techniques, PDT and PTT. Therefore, clinical advances in cancer diagnosis based on PDT are detailed, including fluorescence-guided PDT for intraoperative cancer detection, optical coherence tomography (OCT)-guided PDT for early cancer detection, and imaging by magnetic resonance imaging (MRI) or computed tomography (CT) assisted through PDT/PTT. Moreover, clinical studies of breast, prostate, skin, gynecologic, head, neck and other varieties of cancer have been addressed to compare the main conditions of these treatments. This work also discussed the principal advantages and drawbacks of PDT and PTT in tumor targeting and cancer therapy. Finally, the usage of nanoparticles as photosensitizers (PSs) and photothermal agents (PAs) have been analyzed. In this manner, the authors have compiled relevant updated studies so that researchers interested in these areas can access it speedily.
Collapse
Affiliation(s)
| | - Karina J Lagos
- New Materials Laboratory, Department of Materials, National Polytechnic School, Quito, Ecuador
| | | | | | - María Paulina Romero
- New Materials Laboratory, Department of Materials, National Polytechnic School, Quito, Ecuador.
| |
Collapse
|
4
|
Currie G. Molecular theranostics: principles, challenges and controversies. J Med Radiat Sci 2024. [PMID: 39485717 DOI: 10.1002/jmrs.836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Theranostics is a new term for long-established principles in nuclear medicine. The generalisability of the term means there is a very broad use of the term across the medical literature, not all of which is consistent with the intent in nuclear medicine. The term molecular theranostics better reflects the philosophy and application in nuclear medicine. Even with a clearer definition, there are a number of challenges or controversies whose debate provides a richer understanding of the principles and applications of molecular theranostics. Radioiodine imaging and therapy of hyperthyroidism and thyroid cancer provide the historical context for theranostics. The prototype molecular theranostic is the 68Ga/177Lu DOTATATE pair that targets somatostatin receptor subtype 2 in neuroendocrine tumors. The potential value of precision medicine of radiation dosimetry in molecular theranostics needs a balanced discussion with limitations of reactive dosimetry and the opportunities for predictive or pre-treatment dosimetry. Despite challenges and limitations, molecular theranostics is a powerful tool in the precision medicine landscape. Molecular theranostics is a vehicle for improved outcomes in cancer patients with a future-facing portfolio of opportunities.
Collapse
Affiliation(s)
- Geoffrey Currie
- Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
5
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406439. [PMID: 39444066 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
- Intervention Department, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dan Yao
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Mengsi Cai
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Lexiang Zhang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoying Huang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
6
|
Cheng Q, Chang Y, Zhang D, Zhao X, Xiao Z, Chen T, Shi C, Luo L. Biomineralization Synthesis of HoMn Nanoparticles for Ultrahigh-Field-Tailored and T1-T2 Dual-Mode MRI-Guided Cancer Theranostics. ACS NANO 2024; 18:27853-27868. [PMID: 39370780 DOI: 10.1021/acsnano.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ultrahigh field magnetic resonance imaging (UHF-MRI) (≥7 T) can dramatically boost image resolution and signal-to-noise ratio, which have distinct advantages in multifunctional imaging. However, their research and application are currently limited by the absence of high-field contrast agents (CAs) and the low sensitivity and accuracy of T1/T2 single-modality CAs. Therefore, the development of T1-T2 dual-mode CAs that respond to UHF-MRI and nanoformulations with therapeutic sensitization can bring ideas for the integrated application of precise and synchronous tumor theranostics. Herein, we present a biomimetic mineralization strategy for synthesizing holmium/manganese oxide-bovine serum albumin-photosensitizer chlorin e6 nanohybrids. The hybrid nanoparticles exhibited better tumor accumulation, a suitable time imaging window, and excellent pH-response T1-T2 dual-mode UHF-MRI performance. The antitumor effect comes from the amelioration of the hypoxic tumor microenvironment to promote the synergistic effect of photodynamic therapy and radiotherapy, along with negligible acute toxicity. Undoubtedly, this work not only provides a different perspective for developing multifunctional nanotherapeutics but also promotes the potential clinical exploitation and translation of UHF CAs.
Collapse
Affiliation(s)
- Qingqing Cheng
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
| | - Yanzhou Chang
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
| | - Dong Zhang
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
- The Shunde Affiliated Hospital, Jinan University, Foshan 528300, China
| | - Xiangsheng Zhao
- Department of Radiology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen 529099, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
| | - Tianfeng Chen
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
- Guangdong No. 2 Provincial People's Hospital, Jinan University, Guangzhou 510310, China
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510630, China
- Guangdong No. 2 Provincial People's Hospital, Jinan University, Guangzhou 510310, China
| |
Collapse
|
7
|
Wang X, Chen J, Li Z, Li Y, Zhang Y, Gong Q, Luo K. A branched polymer-based agent for efficient and precise targeting of fibrosis diseases by magnetic resonance imaging. J Control Release 2024; 373:905-916. [PMID: 39089506 DOI: 10.1016/j.jconrel.2024.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Herein, we synthesized and characterized gadolinium-based hyperbranched polymers, POADGd and PODGd, through RAFT polymerization as magnetic resonance imaging (MRI) contrast agents for detecting fibrosis. POADGd and PODGd contain biocompatible short-chain OEGMA to prolong blood circulation, and they can be decomposed in response to ROS after MRI examination to prevent potential accumulation. The relaxivities of POADGd and PODGd are 9.81 mM-1 s-1 and 9.58 mM-1 s-1 respectively, which are significantly higher than that of DTPA-Gd, a clinically used agent (3.74 mM-1 s-1). In comparison with PODGd, POADGd can specifically target allysine in fibrosis tissues through its oxyamine groups. Therefore, it displays a sharp spatial resolution and a high signal-to-noise ratio in the liver and lung fibrosis tissue at a field strength of 3.0 T or 7.0 T, and the morphology of these fibrosis tissues is accurately delineated. Our MRI diagnosis results based on POADGd are highly aligned with those from pathological examinations, while MRI diagnosis could avoid invasive biopsy. In addition, POADGd shows excellent biosafety and low toxicity. Therefore, POADGd could be applied to non-invasively and accurately diagnose liver and lung fibrosis diseases.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Radiology, Chongqing General Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Jie Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
8
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
9
|
Hájek M, Flögel U, S Tavares AA, Nichelli L, Kennerley A, Kahn T, Futterer JJ, Firsiori A, Grüll H, Saha N, Couñago F, Aydogan DB, Caligiuri ME, Faber C, Bell LC, Figueiredo P, Vilanova JC, Santini F, Mekle R, Waiczies S. MR beyond diagnostics at the ESMRMB annual meeting: MR theranostics and intervention. MAGMA (NEW YORK, N.Y.) 2024; 37:323-328. [PMID: 38865057 PMCID: PMC11316697 DOI: 10.1007/s10334-024-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Milan Hájek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adriana A S Tavares
- Centre for Cardiovascular Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Lucia Nichelli
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France
- Department of Neuroradiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Aneurin Kennerley
- Department of Sports and Exercise Science, Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Biology, University of York, York, UK
| | - Thomas Kahn
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Jurgen J Futterer
- Minimally Invasive Image-Guided Intervention Center (MAGIC), Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Aikaterini Firsiori
- Unit of Diagnostic and Interventional Neuroradiology, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Nandita Saha
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010, Madrid, Spain
| | - Dogu Baran Aydogan
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Università Degli Studi "Magna Graecia", Catanzaro, Italy
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Münster, Germany
| | - Laura C Bell
- Early Clinical Development, Genentech Inc., South San Francisco, USA
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, ISR-Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging (IDI) Girona, University of Girona, 17004, Girona, Spain
| | - Francesco Santini
- Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ralf Mekle
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the MDC, Berlin, Germany.
| |
Collapse
|
10
|
Kaur J, Sridharr M. Key Insights on the Classification and Theranostic Applications of Magnetic Resonance Imaging Contrast Agents. ChemMedChem 2024; 19:e202300521. [PMID: 38246874 DOI: 10.1002/cmdc.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive molecular imaging tool being extensively employed in clinical and biomedical research for the detection of a broad spectrum of diseases. This technique offers remarkable spatial resolution, good tissue penetration and a high soft tissue contrast. Contrast agents (CAs) have been regularly used in MRI tests to enhance the resolution of MR images and to visualize the diseased sites in the body. In the past years, considerable efforts have been devoted towards developing new theranostic MRI agents that can be tailored to integrate the targeting and therapeutic functions in a single agent. In this review, we have underlined the role of the MRI CAs in the developing field of 'theranostics' and their recent applications in the combined imaging and therapy of different types of tumors. In addition, this review also outlines the different categories of MRI CAs and their comprehensive classification based on different criteria such as chemical composition, relaxation mechanism and biodistribution with clinically relevant examples.
Collapse
Affiliation(s)
- Jasleen Kaur
- Amity Institute of Virology and Immunology, Amity University, Sector-125, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Manasvini Sridharr
- LMU Biocenter, Martinsreid, Ludwig-Maximilians-Universität München, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, München, Germany
| |
Collapse
|
11
|
Wang Z, Chen X, Qiu X, Chen Y, Wang T, Lv L, Guo X, Yang F, Tang M, Gu W, Luo Y. High-Fidelity Sensitive Tracing Circulating Tumor Cell Telomerase Activity. Anal Chem 2024; 96:5527-5536. [PMID: 38483815 DOI: 10.1021/acs.analchem.3c05749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Dynamic tracing of intracellular telomerase activity plays a crucial role in cancer cell recognition and correspondingly in earlier cancer diagnosis and personalized precision therapy. However, due to the complexity of the required reaction system and insufficient loading of reaction components into cells, achieving a high-fidelity determination of telomerase activity is still a challenge. Herein, an Aptamer-Liposome mediated Telomerase activated poly-Molecular beacon Arborescent Nanoassembly(ALTMAN) approach was described for direct high-fidelity visualization of telomerase activity. Briefly, intracellular telomerase activates molecular beacons, causing their hairpin structures to unfold and produce fluorescent signals. Furthermore, multiple molecular beacons can self-assemble, forming arborescent nanostructures and leading to exponential amplification of fluorescent signals. Integrating the enzyme-free isothermal signal amplification successfully increased the sensitivity and reduced interference by leveraging the skillful design of the molecular beacon and the extension of the telomerase-activated TTAGGG repeat sequence. The proposed approach enabled ultrasensitive visualization of activated telomerase exclusively with a prominent detection limit of 2 cells·μL-1 and realized real-time imaging of telomerase activity in living cancer cells including blood samples from breast cancer patients and urine samples from bladder cancer patients. This approach opens an avenue for establishing a telomerase activity determination and in situ monitoring technique that can facilitate both telomerase fundamental biological studies and cancer diagnostics.
Collapse
Affiliation(s)
- Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Xiaohui Chen
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing 400044, P.R. China
| | - Xiaopei Qiu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Yi Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Linxi Lv
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Xinlin Guo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Fei Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Miao Tang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
12
|
Yen TYC, Abbasi AZ, He C, Lip HY, Park E, Amini MA, Adissu HA, Foltz W, Rauth AM, Henderson J, Wu XY. Biocompatible and bioactivable terpolymer-lipid-MnO 2 Nanoparticle-based MRI contrast agent for improving tumor detection and delineation. Mater Today Bio 2024; 25:100954. [PMID: 38304342 PMCID: PMC10832465 DOI: 10.1016/j.mtbio.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/22/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
Early and precise detection of solid tumor cancers is critical for improving therapeutic outcomes. In this regard, magnetic resonance imaging (MRI) has become a useful tool for tumor diagnosis and image-guided therapy. However, its effectiveness is limited by the shortcomings of clinically available gadolinium-based contrast agents (GBCAs), i.e. poor tumor penetration and retention, and safety concerns. Thus, we have developed a novel nanoparticulate contrast agent using a biocompatible terpolymer and lipids to encapsulate manganese dioxide nanoparticles (TPL-MDNP). The TPL-MDNP accumulated in tumor tissue and produced paramagnetic Mn2+ ions, enhancing T1-weight MRI contrast via the reaction with H2O2 rich in the acidic tumor microenvironment. Compared to the clinically used GBCA, Gadovist®1.0, TPL-MDNP generated stronger T1-weighted MR signals by over 2.0-fold at 30 % less of the recommended clinical dose with well-defined tumor delineation in preclinical orthotopic tumor models of brain, breast, prostate, and pancreas. Importantly, the MRI signals were retained for 60 min by TPL-MDNP, much longer than Gadovist®1.0. Biocompatibility of TPL-MDNP was evaluated and found to be safe up to 4-fold of the dose used for MRI. A robust large-scale manufacturing process was developed with batch-to-batch consistency. A lyophilization formulation was designed to maintain the nanostructure and storage stability of the new contrast agent.
Collapse
Affiliation(s)
- Tin-Yo C. Yen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Azhar Z. Abbasi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Chungsheng He
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Ho-Yin Lip
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Elliya Park
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Mohammad A. Amini
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | - Warren Foltz
- STTARR Innovation Centre, Department of Radiation Oncology, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9, Canada
| | - Andrew M. Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey Henderson
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Xiao Yu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Nanda SS, Yi DK. Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application. Int J Mol Sci 2024; 25:3266. [PMID: 38542240 PMCID: PMC10969916 DOI: 10.3390/ijms25063266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy.
Collapse
Affiliation(s)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
14
|
Li H, Liang B, Gao X, Peng Y, Liu Q, Qiu L, Lin J. Cathepsin B-Activated PET Tracer for In Vivo Tumor Imaging. Mol Pharm 2024; 21:1382-1389. [PMID: 38372213 DOI: 10.1021/acs.molpharmaceut.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cathepsin B, a lysosomal protease, is considered as a crucial biomarker for tumor diagnosis and treatment as it is overexpressed in numerous cancers. A stimulus-responsive SF scaffold has been reported to detect the activity of a variety of tumor-associated enzymes. In this work, a small-molecule PET tracer ([68Ga]NOTA-SF-CV) was developed by combining an SF scaffold with a cathepsin B-specific recognition substrate Cit-Val. Upon activation by cathepsin B, [68Ga]NOTA-SF-CV could form the cyclization product in a reduction environment, resulting in reduced hydrophilicity. This unique property could effectively prevent exocytosis of the tracer in cathepsin B-overexpressing tumor cells, leading to prolonged retention and amplified PET imaging signal. Moreover, [68Ga]NOTA-SF-CV had great targeting specificity to cathepsin B. In vivo microPET imaging results showed that [68Ga]NOTA-SF-CV was able to effectively visualize the expression level of cathepsin B in various tumors. Hence, [68Ga]NOTA-SF-CV may be served as a potential tracer for diagnosing cathepsin B-related diseases.
Collapse
Affiliation(s)
- Huirong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Beibei Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiaoqing Gao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
15
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Li Z, Huan W, Wang Y, Yang YW. Multimodal Therapeutic Platforms Based on Self-Assembled Metallacycles/Metallacages for Cancer Radiochemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306245. [PMID: 37658495 DOI: 10.1002/smll.202306245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Discrete organometallic complexes with defined structures are proceeding rapidly in combating malignant tumors due to their multipronged treatment modalities. Many innovative superiorities, such as high antitumor activity, extremely low systemic toxicity, active targeting ability, and enhanced cellular uptake, make them more competent for clinical applications than individual precursors. In particular, coordination-induced regulation of luminescence and photophysical properties of organic light-emitting ligands has demonstrated significant potential in the timely evaluation of therapeutic efficacy by bioimaging and enabled synergistic photodynamic therapy (PDT) or photothermal therapy (PTT). This review highlights instructive examples of multimodal radiochemotherapy platforms for cancer ablation based on self-assembled metallacycles/metallacages, which would be classified by functions in a progressive manner. Finally, the essential demands and some plausible prospects in this field for cancer therapy are also presented.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
18
|
Bandyopadhyay A, Das T, Nandy S, Sahib S, Preetam S, Gopalakrishnan AV, Dey A. Ligand-based active targeting strategies for cancer theranostics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3417-3441. [PMID: 37466702 DOI: 10.1007/s00210-023-02612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
In the past decades, for the intermediate or advanced cancerous stages, preclinical and clinical applications of nanomedicines in cancer theranostics have been extensively studied. Nevertheless, decreased specificity and poor targeting efficiency with low target concentration of theranostic are the major drawbacks of nanomedicine in employing clinical substitution over conventional systemic therapy. Consequently, ligand decorated nanocarrier-mediated targeted drug delivery system can transcend the obstructions through their enhanced retention activity and increased permeability with effective targeting. The highly efficient and specific nanocarrier-mediated ligand-based active therapy is one of the novel and promising approaches for delivery of the therapeutics for different cancers in recent years to restrict various cancer growth in vivo without harming healthy cells. The article encapsulates the features of nanocarrier-mediated ligands in augmentation of active targeting approaches of various cancers and summarizes ligand-based targeted delivery systems in treatment of cancer as plausible theranostics.
Collapse
Affiliation(s)
- Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Synudeen Sahib
- S.S. Cottage, Njarackal,, P.O.: Perinad, Kollam, 691601, Kerala, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053, Ulrika, Sweden
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
19
|
Xie M, Gao R, Li K, Kuang S, Wang X, Wen X, Lin X, Wan Y, Han C. O 2-Generating Fluorescent Carbon Dot-Decorated MnO 2 Nanosheets for "Off/On" MR/Fluorescence Imaging and Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38037417 DOI: 10.1021/acsami.3c12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Imaging-guided photodynamic therapy (PDT) has emerged as a promising protocol for cancer theragnostic. However, facile preparation of such a theranostic system for simultaneously achieving tumor location, real-time monitoring, and high-performance reactive oxygen species generation is highly desirable but remains challenging. Herein, we developed a reasonable tumor-targeting strategy based on carbon dots (CDs)-decorated MnO2 nanosheets (HA-MnO2-CDs) with an active magnetic resonance (MR)/fluorescence imaging and enhanced PDT effect. Under light irradiation, the addition of HA-MnO2-CDs increased the production of 1O2 by 2.5 times compared with CDs, providing favorable conditions for the PDT treatment effect on breast cancer. Moreover, HA-MnO2-CDs exhibited excellent performance in producing O2 in the presence of endogenous H2O2, which alleviated hypoxia in tumors and improved the therapeutic effect of PDT. In the presence of glutathione (GSH), the degraded MnO2 nanosheets released CDs and Mn2+ from HA-MnO2-CDs, restoring their fluorescence imaging function and increasing T1 relaxivity (r1) by 23 times. In vivo fluorescence and MR imaging suggested the excellent tumor-targeting property of HA-MnO2-CDs. By combining the complementary properties of nanoprobes and tumor microenvironments, the in vivo PDT therapeutic effect was significantly improved under the action of HA-MnO2-CDs. Overall, our reasonably designed HA-MnO2-CDs may inspire the future development of the next generation of high-performance tumor-responsive diagnostic and therapeutic agents to further enhance the targeted therapy effect of tumors.
Collapse
Affiliation(s)
- Manman Xie
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Ruochen Gao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Ke Li
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Siying Kuang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiuzhi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xin Wen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaowen Lin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuxin Wan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
20
|
Dinakaran D, Wilson BC. The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy. Front Bioeng Biotechnol 2023; 11:1250804. [PMID: 37849983 PMCID: PMC10577272 DOI: 10.3389/fbioe.2023.1250804] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Photodynamic therapy (PDT) has been under development for at least 40 years. Multiple studies have demonstrated significant anti-tumor efficacy with limited toxicity concerns. PDT was expected to become a major new therapeutic option in treating localized cancer. However, despite a shifting focus in oncology to aggressive local therapies, PDT has not to date gained widespread acceptance as a standard-of-care option. A major factor is the technical challenge of treating deep-seated and large tumors, due to the limited penetration and variability of the activating light in tissue. Poor tumor selectivity of PDT sensitizers has been problematic for many applications. Attempts to mitigate these limitations with the use of multiple interstitial fiberoptic catheters to deliver the light, new generations of photosensitizer with longer-wavelength activation, oxygen independence and better tumor specificity, as well as improved dosimetry and treatment planning are starting to show encouraging results. Nanomaterials used either as photosensitizers per se or to improve delivery of molecular photosensitizers is an emerging area of research. PDT can also benefit radiotherapy patients due to its complementary and potentially synergistic mechanisms-of-action, ability to treat radioresistant tumors and upregulation of anti-tumoral immune effects. Furthermore, recent advances may allow ionizing radiation energy, including high-energy X-rays, to replace external light sources, opening a novel therapeutic strategy (radioPDT), which is facilitated by novel nanomaterials. This may provide the best of both worlds by combining the precise targeting and treatment depth/volume capabilities of radiation therapy with the high therapeutic index and biological advantages of PDT, without increasing toxicities. Achieving this, however, will require novel agents, primarily developed with nanomaterials. This is under active investigation by many research groups using different approaches.
Collapse
Affiliation(s)
- Deepak Dinakaran
- National Cancer Institute, National Institute of Health, Bethesda, MD, United States
- Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Łopuszyńska N, Węglarz WP. Contrasting Properties of Polymeric Nanocarriers for MRI-Guided Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2163. [PMID: 37570481 PMCID: PMC10420849 DOI: 10.3390/nano13152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Poor pharmacokinetics and low aqueous solubility combined with rapid clearance from the circulation of drugs result in their limited effectiveness and generally high therapeutic doses. The use of nanocarriers for drug delivery can prevent the rapid degradation of the drug, leading to its increased half-life. It can also improve the solubility and stability of drugs, advance their distribution and targeting, ensure a sustained release, and reduce drug resistance by delivering multiple therapeutic agents simultaneously. Furthermore, nanotechnology enables the combination of therapeutics with biomedical imaging agents and other treatment modalities to overcome the challenges of disease diagnosis and therapy. Such an approach is referred to as "theranostics" and aims to offer a more patient-specific approach through the observation of the distribution of contrast agents that are linked to therapeutics. The purpose of this paper is to present the recent scientific reports on polymeric nanocarriers for MRI-guided drug delivery. Polymeric nanocarriers are a very broad and versatile group of materials for drug delivery, providing high loading capacities, improved pharmacokinetics, and biocompatibility. The main focus was on the contrasting properties of proposed polymeric nanocarriers, which can be categorized into three main groups: polymeric nanocarriers (1) with relaxation-type contrast agents, (2) with chemical exchange saturation transfer (CEST) properties, and (3) with direct detection contrast agents based on fluorinated compounds. The importance of this aspect tends to be downplayed, despite its being essential for the successful design of applicable theranostic nanocarriers for image-guided drug delivery. If available, cytotoxicity and therapeutic effects were also summarized.
Collapse
Affiliation(s)
- Natalia Łopuszyńska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| |
Collapse
|
22
|
Li X, Yue R, Guan G, Zhang C, Zhou Y, Song G. Recent development of pH-responsive theranostic nanoplatforms for magnetic resonance imaging-guided cancer therapy. EXPLORATION (BEIJING, CHINA) 2023; 3:20220002. [PMID: 37933379 PMCID: PMC10624388 DOI: 10.1002/exp.20220002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2023]
Abstract
The acidic characteristic of the tumor site is one of the most well-known features and provides a series of opportunities for cancer-specific theranostic strategies. In this regard, pH-responsive theranostic nanoplatforms that integrate diagnostic and therapeutic capabilities are highly developed. The fluidity of the tumor microenvironment (TME), with its temporal and spatial heterogeneities, makes noninvasive molecular magnetic resonance imaging (MRI) technology very desirable for imaging TME constituents and developing MRI-guided theranostic nanoplatforms for tumor-specific treatments. Therefore, various MRI-based theranostic strategies which employ assorted therapeutic modes have been drawn up for more efficient cancer therapy through the raised local concentration of therapeutic agents in pathological tissues. In this review, we summarize the pH-responsive mechanisms of organic components (including polymers, biological molecules, and organosilicas) as well as inorganic components (including metal coordination compounds, metal oxides, and metal salts) of theranostic nanoplatforms. Furthermore, we review the designs and applications of pH-responsive theranostic nanoplatforms for the diagnosis and treatment of cancer. In addition, the challenges and prospects in developing theranostic nanoplatforms with pH-responsiveness for cancer diagnosis and therapy are discussed.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Ying Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| |
Collapse
|
23
|
Saha N, Kuehne A, Millward JM, Eigentler TW, Starke L, Waiczies S, Niendorf T. Advanced Radio Frequency Applicators for Thermal Magnetic Resonance Theranostics of Brain Tumors. Cancers (Basel) 2023; 15:cancers15082303. [PMID: 37190232 DOI: 10.3390/cancers15082303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) is a theranostic concept that combines diagnostic magnetic resonance imaging (MRI) with targeted thermal therapy in the hyperthermia (HT) range using a radiofrequency (RF) applicator in an integrated system. ThermalMR adds a therapeutic dimension to a diagnostic MRI device. Focused, targeted RF heating of deep-seated brain tumors, accurate non-invasive temperature monitoring and high-resolution MRI are specific requirements of ThermalMR that can be addressed with novel concepts in RF applicator design. This work examines hybrid RF applicator arrays combining loop and self-grounded bow-tie (SGBT) dipole antennas for ThermalMR of brain tumors, at magnetic field strengths of 7.0 T, 9.4 T and 10.5 T. These high-density RF arrays improve the feasible transmission channel count, and provide additional degrees of freedom for RF shimming not afforded by using dipole antennas only, for superior thermal therapy and MRI diagnostics. These improvements are especially relevant for ThermalMR theranostics of deep-seated brain tumors because of the small surface area of the head. ThermalMR RF applicators with the hybrid loop+SGBT dipole design outperformed applicators using dipole-only and loop-only designs, with superior MRI performance and targeted RF heating. Array variants with a horse-shoe configuration covering an arc (270°) around the head avoiding the eyes performed better than designs with 360° coverage, with a 1.3 °C higher temperature rise inside the tumor while sparing healthy tissue. Our EMF and temperature simulations performed on a virtual patient with a clinically realistic intracranial tumor provide a technical foundation for implementation of advanced RF applicators tailored for ThermalMR theranostics of brain tumors.
Collapse
Affiliation(s)
- Nandita Saha
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Andre Kuehne
- MRI.TOOLS GmbH, 13125 Berlin, Germany
- Brightmind.AI GmbH, 1010 Vienna, Austria
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
| | - Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- MRI.TOOLS GmbH, 13125 Berlin, Germany
| |
Collapse
|
24
|
Recent applications of phase-change materials in tumor therapy and theranostics. BIOMATERIALS ADVANCES 2023; 147:213309. [PMID: 36739784 DOI: 10.1016/j.bioadv.2023.213309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Phase-change materials (PCMs) are a type of special material which can store and release a large amount of thermal energy without any significant temperature change. They are emerging in recent years as a promising functional material in tumor therapy and theranostics due to their accurate responses to the temperature variations, biocompatibility and low toxicity. In this review, we will introduce the main types of PCMs and their desirable physiochemical properties for biomedical applications, and highlight the recent progress of PCM's applications in the modulated release of antitumor drugs, with special attentions paid to various ways to initiate temperature-dependent phase change, the concomitant thermal therapy and its combination with or activation of other therapies, particularly unconventional therapies. We will also summarize PCM's recent applications in tumor theranostics, where both drugs and imaging probes are delivered by PCMs for controlled drug release and imaging-guided therapy. Finally, the future perspectives and potential limitations of harnessing PCMs in tumor therapy will be discussed.
Collapse
|
25
|
Sharma AK. Current Trends in Nanotheranostics: A Concise Review on Bioimaging and Smart Wearable Technology. Nanotheranostics 2023; 7:258-269. [PMID: 37064611 PMCID: PMC10093415 DOI: 10.7150/ntno.82886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The area of interventional nanotheranostics combines the use of interventional procedures with nanotechnology for the detection and treatment of physiological disorders. Using catheters or endoscopes, for example, interventional techniques make use of minimally invasive approaches to diagnose and treat medical disorders. It is feasible to increase the precision of these approaches and potency by integrating nanotechnology. To visualize and target various parts of the body, such as tumors or obstructed blood veins, one can utilize nanoscale probes or therapeutic delivery systems. Interventional nanotheranostics offers targeted, minimally invasive therapies that can reduce side effects and enhance patient outcomes, and it has the potential to alter the way that many medical illnesses are handled. Clinical enrollment and implementation of such laboratory scale theranostics approach in medical practice is promising for the patients where the user can benefit by tracking its physiological state. This review aims to introduce the most recent advancements in the field of clinical imaging and diagnostic techniques as well as newly developed on-body wearable devices to deliver therapeutics and monitor its due alleviation in the biological milieu.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
26
|
Wang L, Wang K, Wang X, Niu R, Chen X, Zhu Y, Sun Z, Yang J, Liu G, Luo Y. Intelligent Dual-Lock Deoxyribonucleic Acid Automatons Boosting Precise Tumor Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3826-3838. [PMID: 36625537 DOI: 10.1021/acsami.2c20024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An early and accurate cancer diagnosis holds the potential to improve treatment and prognosis. Nevertheless, the complexity of the biological system limits the selectivity of existing approaches and makes tumor imaging in vivo particularly challenging. In this study, tumor-specific fluorescence imaging was achieved by building intelligent dual-lock deoxyribonucleic acid automatons (IDEAs) that employed a DNA walking system standing on ZrMOF@MnO2 multifunctional nanocomposites for controllable molecular recognition. The IDEAs exhibited significantly enhanced fluorescence signals only in the coexistence of both miRNA and GSH of tumor cells, enabling accurate distinguishing of tumor cells from healthy ones. Furthermore, the feasibility and specificity of IDEAs were also validated in vivo with tumor bearing mice successfully. This work highlights the potential of the proposed IDEA strategy for tumor-specific imaging, paving the way for successful precision diagnosis and treatment.
Collapse
Affiliation(s)
- Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Kang Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
- College of Bioengineering, Chongqing University, Chongqing400044, P. R. China
| | - Xiaohui Wang
- Department of Oncology, Jiangjin Hospital, Chongqing University, Chongqing402260, P. R. China
| | - Ruyan Niu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
- College of Bioengineering, Chongqing University, Chongqing400044, P. R. China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
- College of Bioengineering, Chongqing University, Chongqing400044, P. R. China
| | - Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Guoxiang Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| |
Collapse
|
27
|
Li J, Zhu L, Kwok HF. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment. Drug Resist Updat 2023; 66:100904. [PMID: 36462375 DOI: 10.1016/j.drup.2022.100904] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lung cancer continues to be a malignant tumor with high mortality. Two obstacles interfere with curative therapy of lung cancer: (i) poor diagnosis at the early stages, as symptoms are not specific or asymptomatic; and (ii) invariably emerging drug resistance after treatment. Some factors contributing to drug resistance include preexisting genetic/genomic drug-resistant alteration(s); activation of adaptive drug resistance pathways; remodeling of the tumor microenvironment; and pharmacological mechanisms or activation of drug efflux pumps. Despite the mechanisms explored to better understand drug resistance, a gap remains between molecular understanding and clinical application. Therefore, facilitating the translation of basic science into the clinical setting is a great challenge. Nanomedicine has emerged as a promising tool for cancer treatment. Because of their excellent physicochemical properties and enhanced permeability and retention effects, nanoparticles have great potential to revolutionize conventional lung cancer diagnosis and combat drug resistance. Nanoplatforms can be designed as carriers to improve treatment efficacy and deliver multiple drugs in one system, facilitating combination treatment to overcome drug resistance. In this review, we describe the difficulties in lung cancer treatment and review recent research progress on nanoplatforms aimed at early diagnosis and lung cancer treatment. Finally, future perspectives and challenges of nanomedicine are also discussed.
Collapse
Affiliation(s)
- Junnan Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Lipeng Zhu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
28
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
29
|
Shi Z, Liu J, Tian L, Li J, Gao Y, Xing Y, Yan W, Hua C, Xie X, Liu C, Liang C. Insights into stimuli-responsive diselenide bonds utilized in drug delivery systems for cancer therapy. Biomed Pharmacother 2022; 155:113707. [PMID: 36122520 DOI: 10.1016/j.biopha.2022.113707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the complexity and particularity of cancer cell microenvironments, redox responsive drug delivery systems (DDSs) for cancer therapy have been extensively explored. Compared with widely reported cancer treatment systems based on disulfide bonds, diselenide bonds have better redox properties and greater anticancer efficiency. In this review, the significance and application of diselenide bonds in DDSs are summarized, and the stimulation sensitivity of diselenide bonds is comprehensively reported. The potential and prospects for the application of diselenide bonds in next-generation anticancer drug treatment systems are extensively discussed.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, PR China.
| | - Jifang Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Life Science, Northwest University, Xi'an 710069, PR China.
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Yue Gao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Wenjing Yan
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Chenyu Hua
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd. Xi'an 710025, PR China.
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, PR China.
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
30
|
Veres T, Voniatis C, Molnár K, Nesztor D, Fehér D, Ferencz A, Gresits I, Thuróczy G, Márkus BG, Simon F, Nemes NM, García-Hernández M, Reiniger L, Horváth I, Máthé D, Szigeti K, Tombácz E, Jedlovszky-Hajdu A. An Implantable Magneto-Responsive Poly(aspartamide) Based Electrospun Scaffold for Hyperthermia Treatment. NANOMATERIALS 2022; 12:nano12091476. [PMID: 35564185 PMCID: PMC9101327 DOI: 10.3390/nano12091476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
When exposed to an alternating magnetic field, superparamagnetic nanoparticles can elicit the required hyperthermic effect while also being excellent magnetic resonance imaging (MRI) contrast agents. Their main drawback is that they diffuse out of the area of interest in one or two days, thus preventing a continuous application during the typical several-cycle multi-week treatment. To solve this issue, our aim was to synthesise an implantable, biodegradable membrane infused with magnetite that enabled long-term treatment while having adequate MRI contrast and hyperthermic capabilities. To immobilise the nanoparticles inside the scaffold, they were synthesised inside hydrogel fibres. First, polysuccinimide (PSI) fibres were produced by electrospinning and crosslinked, and then, magnetitc iron oxide nanoparticles (MIONs) were synthesised inside and in-between the fibres of the hydrogel membranes with the well-known co-precipitation method. The attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) investigation proved the success of the chemical synthesis and the presence of iron oxide, and the superconducting quantum interference device (SQUID) study revealed their superparamagnetic property. The magnetic hyperthermia efficiency of the samples was significant. The given alternating current (AC) magnetic field could induce a temperature rise of 5 °C (from 37 °C to 42 °C) in less than 2 min even for five quick heat-cool cycles or for five consecutive days without considerable heat generation loss in the samples. Short-term (1 day and 7 day) biocompatibility, biodegradability and MRI contrast capability were investigated in vivo on Wistar rats. The results showed excellent MRI contrast and minimal acute inflammation.
Collapse
Affiliation(s)
- Tamás Veres
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
| | - Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary
| | - Kristóf Molnár
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
| | - Dániel Nesztor
- Department of Food Engineering, University of Szeged, 6725 Szeged, Hungary; (D.N.); (E.T.)
| | - Daniella Fehér
- Heart and Vascular Centre, Department of Surgical Research and Techniques, Semmelweis University, 1122 Budapest, Hungary; (D.F.); (A.F.)
| | - Andrea Ferencz
- Heart and Vascular Centre, Department of Surgical Research and Techniques, Semmelweis University, 1122 Budapest, Hungary; (D.F.); (A.F.)
| | - Iván Gresits
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - György Thuróczy
- NRIRR “Frédéric Joliot-Curie” National Research Institute for Radiobiology and Radiohygiene, 1221 Budapest, Hungary;
| | - Bence Gábor Márkus
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA;
- Institute of Physics, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
- Wigner Research Centre for Physics Economics, 1121 Budapest, Hungary
| | - Ferenc Simon
- Institute of Physics, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
- Wigner Research Centre for Physics Economics, 1121 Budapest, Hungary
| | - Norbert Marcell Nemes
- Grupo de Física de Materiales Complejos (GFMC), Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.M.N.); (M.G.-H.)
| | - Mar García-Hernández
- Grupo de Física de Materiales Complejos (GFMC), Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.M.N.); (M.G.-H.)
| | - Lilla Reiniger
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
- Hungarian Center of Excellence for Molecular Medicine (HCEMM), In Vivo Imaging Advanced Core Facility, Semmelweis University Site, 1094 Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - Etelka Tombácz
- Department of Food Engineering, University of Szeged, 6725 Szeged, Hungary; (D.N.); (E.T.)
- Soós Ernő Water Technology Research and Development Center, University of Pannonia, 8800 Nagykanizsa, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
- Correspondence:
| |
Collapse
|
31
|
Zhou Y, Liu R, Shevtsov M, Gao H. When imaging meets size-transformable nanosystems. Adv Drug Deliv Rev 2022; 183:114176. [PMID: 35227872 DOI: 10.1016/j.addr.2022.114176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Imaging techniques, including magnetic, optical, acoustic and nuclear imaging, are gaining popularity as a research tool and clinical diagnostics. The advent of imaging agents-incorporated nanosystems (NSs), with sufficient contrast and high resolution, facilitates better monitoring of disease progression, targeted delivery and therapeutic process. Of note, the size of NSs remarkably affects imaging performance, while both large and small NSs enjoy respective features and superiority for imaging aspect, including penetration depth, signal-to-background ratio and spatiotemporal resolution. In this review, after a systematic summary of the basic knowledge of imaging techniques and its relation with size-tunable strategies, we further provide insights into the opportunities and challenges facing size-transformable NSs of the future for bio-imaging application and clinical translation.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
32
|
Synthesis and Characterization of Magnetic Composite Theragnostics by Nano Spray Drying. MATERIALS 2022; 15:ma15051755. [PMID: 35268986 PMCID: PMC8911310 DOI: 10.3390/ma15051755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
Composites of magnetite nanoparticles encapsulated with polymers attract interest for many applications, especially as theragnostic agents for magnetic hyperthermia, drug delivery, and magnetic resonance imaging. In this work, magnetite nanoparticles were synthesized by coprecipitation and encapsulated with different polymers (Eudragit S100, Pluronic F68, Maltodextrin, and surfactants) by nano spray drying technique, which can produce powders of nanoparticles from solutions or suspensions. Transmission and scanning electron microscopy images showed that the bare magnetite nanoparticles have 10.5 nm, and after encapsulation, the particles have approximately 1 μm, with size and shape depending on the material’s composition. The values of magnetic saturation by SQUID magnetometry and mass residues by thermogravimetric analysis were used to characterize the magnetic content in the materials, related to their magnetite/polymer ratios. Zero-field-cooling and field-cooling (ZFC/FC) measurements showed how blocking temperatures of the powders of the composites are lower than that of bare magnetite, possibly due to lower magnetic coupling, being an interesting system to study magnetic interactions of nanoparticles. Furthermore, studies of cytotoxic effect, hydrodynamic size, and heating capacity for hyperthermia (according to the application of an alternate magnetic field) show that these composites could be applied as a theragnostic material for a non-invasive administration such as nasal.
Collapse
|
33
|
Jiao W, Zhang T, Peng M, Yi J, He Y, Fan H. Design of Magnetic Nanoplatforms for Cancer Theranostics. BIOSENSORS 2022; 12:38. [PMID: 35049666 PMCID: PMC8774163 DOI: 10.3390/bios12010038] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Cancer is the top cause of death globally. Developing smart nanomedicines that are capable of diagnosis and therapy (theranostics) in one-nanoparticle systems are highly desirable for improving cancer treatment outcomes. The magnetic nanoplatforms are the ideal system for cancer theranostics, because of their diverse physiochemical properties and biological effects. In particular, a biocompatible iron oxide nanoparticle based magnetic nanoplatform can exhibit multiple magnetic-responsive behaviors under an external magnetic field and realize the integration of diagnosis (magnetic resonance imaging, ultrasonic imaging, photoacoustic imaging, etc.) and therapy (magnetic hyperthermia, photothermal therapy, controlled drug delivery and release, etc.) in vivo. Furthermore, due to considerable variation among tumors and individual patients, it is a requirement to design iron oxide nanoplatforms by the coordination of diverse functionalities for efficient and individualized theranostics. In this article, we will present an up-to-date overview on iron oxide nanoplatforms, including both iron oxide nanomaterials and those that can respond to an externally applied magnetic field, with an emphasis on their applications in cancer theranostics.
Collapse
Affiliation(s)
- Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Tingbin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| |
Collapse
|