1
|
Sun J, Huang J, Bao G, Zheng H, Wang C, Wei J, Fu Y, Qiu J, Liao Y, Cai J. MRI detection of the malignant transformation of stem cells through reporter gene expression driven by a tumor-specific promoter. Stem Cell Res Ther 2021; 12:284. [PMID: 33980305 PMCID: PMC8117323 DOI: 10.1186/s13287-021-02359-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
Background Existing evidence has shown that mesenchymal stem cells (MSCs) can undergo malignant transformation, which is a serious limitation of MSC-based therapies. Therefore, it is necessary to monitor malignant transformation of MSCs via a noninvasive imaging method. Although reporter gene-based magnetic resonance imaging (MRI) has been successfully applied to longitudinally monitor MSCs, this technique cannot distinguish the cells before and after malignant transformation. Herein, we investigated the feasibility of using a tumor-specific promoter to drive reporter gene expression for MRI detection of the malignant transformation of MSCs. Methods The reporter gene ferritin heavy chain (FTH1) was modified by adding a promoter from the tumor-specific gene progression elevated gene-3 (PEG3) and transduced into MSCs to obtain MSCs-PEG3-FTH1. Cells were induced to undergo malignant transformation via indirect coculture with C6 glioma cells, and these transformed cells were named MTMSCs-PEG3-FTH1. Western blot analysis of FTH1 expression, Prussian blue staining and transmission electron microscopy (TEM) to detect intracellular iron, and MRI to detect signal changes were performed before and after malignant transformation. Then, the cells before and after malignant transformation were inoculated subcutaneously into nude mice, and MRI was performed to observe the signal changes in the xenografts. Results After induction of malignant transformation, MTMSCs demonstrated tumor-like features in morphology, proliferation, migration, and invasion. FTH1 expression was significantly increased in MTMSCs-PEG3-FTH1 compared with MSCs-PEG3-FTH1. Prussian blue staining and TEM showed a large amount of iron particles in MTMSCs-PEG3-FTH1 but a minimal amount in MSCs-PEG3-FTH1. MRI demonstrated that the T2 value was significantly decreased in MTMSCs-PEG3-FTH1 compared with MSCs-PEG3-FTH1. In vivo, mass formation was observed in the MTMSCs-PEG3-FTH1 group but not the MSCs-PEG3-FTH1 group. T2-weighted MRI showed a significant signal decrease, which was correlated with iron accumulation in the tissue mass. Conclusions We developed a novel MRI model based on FTH1 reporter gene expression driven by the tumor-specific PEG3 promoter. This approach could be applied to sensitively detect the occurrence of MSC malignant transformation.
Collapse
Affiliation(s)
- Jun Sun
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China.,Department of Radiology, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jie Huang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Guangcheng Bao
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Helin Zheng
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Cui Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jie Wei
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Yuanqiao Fu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Jiawen Qiu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Yifan Liao
- Department of Nuclear Medicine, Xinqiao Hospital affiliated with Third Military Medical University, Chongqing, 400037, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China.
| |
Collapse
|
2
|
Mohseni M, Shojaei S, Mehravi B, Mohammadi E. Natural polymeric nanoparticles as a non-invasive probe for mesenchymal stem cell labelling. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:770-776. [PMID: 32297529 DOI: 10.1080/21691401.2020.1748641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-invasive tracking of stem cells after transplant is necessary for cell therapy and tissue engineering field. Herein, we introduce natural and biodegradable nanoparticle to develop a highly efficient nanoprobe with the ability to penetrate the stem cell for tracking. Based on the use of (Gd3+) to label stem cells for magnetic resonance imaging (MRI) we synthesized nanoparticle-containing Gd3+. Gd3+ could be used as t1-weighted MRI contrast agents. In this study, chitosan-alginate nanoparticles were synthesized as a clinical Dotarem® carrier for decreased t1-weighted. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR) were utilized for nanoprobe characterization and ICP analysis was performed for Gd3+ concentration measurement. The results illustrate that nanoprobes with spherical shape and with a size of 80 nm without any aggregation were obtained. Relaxivity results suggest that r1 in the phantom was 12.8 mM-1s-1 per Gd3+ ion, which is 3.5 times larger than that for Dotarem® (r1 ∼3.6 mM-1s-1 per Gd3+ ion) and this result for synthesized nanoprobe in stem cells 3.56 mM-1s-1 per Gd3+ ion with 2.16 times larger than that for Dotarem® was reported and also enhanced signal in in-vivo imaging was observed. Chitosan-alginate nanoparticles as a novel biocompatible probe for stem cell tracking can be utilized in tissue engineering approach.
Collapse
Affiliation(s)
- Mojdeh Mohseni
- Faculty of advanced technologies in Medicine, Department of Medical nanotechnology, Iran University of Medical Sciences, Tehran, Iran.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Shojaei
- Faculty of advanced technologies in Medicine, Department of Medical nanotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Mehravi
- Faculty of advanced technologies in Medicine, Department of Medical nanotechnology, Iran University of Medical Sciences, Tehran, Iran.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Mohammadi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
In Vivo MRI Tracking of Mesenchymal Stromal Cells Labeled with Ultrasmall Paramagnetic Iron Oxide Particles after Intramyocardial Transplantation in Patients with Chronic Ischemic Heart Disease. Stem Cells Int 2019; 2019:2754927. [PMID: 31814830 PMCID: PMC6877937 DOI: 10.1155/2019/2754927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 09/28/2019] [Indexed: 01/17/2023] Open
Abstract
Background While regenerative stem cell therapy for ischemic heart disease has moved into phase 3 studies, little is still known about retention and migration of cell posttransplantation. In human studies, the ability to track transplanted cells has been limited to labeling with radioisotopes and tracking using nuclear imaging. This method is limited by low resolution and short half-lives of available radioisotopes. Longitudinal tracking using magnetic resonance imaging (MRI) of myocardial injected cells labeled with iron oxide nanoparticles has shown promising results in numerous preclinical studies but has yet to be evaluated in human studies. We aimed to evaluate MRI tracking of mesenchymal stromal cells (MSCs) labeled with ultrasmall paramagnetic iron oxide (USPIO) nanoparticles after intramyocardial transplantation in patients with ischemic heart disease (IHD). Methods Five no-option patients with chronic symptomatic IHD underwent NOGA-guided intramyocardial transplantation of USPIO-labeled MSCs. Serial MRI scans were performed to track labeled cells both visually and using semiautomated T2∗ relaxation time analysis. For safety, we followed symptoms, quality of life, and myocardial function for 6 months. Results USPIO-labeled MSCs were tracked for up to 14 days after transplantation at injection sites both visually and using semiautomated regional T2∗ relaxation time analysis. Labeling of MSCs did not impair long-term safety of treatment. Conclusion This was a first-in-man clinical experience aimed at evaluating the utility of MRI tracking of USPIO-labeled bone marrow-derived autologous MSCs after intramyocardial injection in patients with chronic IHD. The treatment was safe, and cells were detectable at injection sites up to 14 days after transplantation. Further studies are needed to clarify if MSCs migrate out of the injection area into other areas of the myocardium or if injected cells are washed out into the peripheral circulation. The trial is registered with ClinicalTrials.gov NCT03651791.
Collapse
|
4
|
He X, Cai J, Li H, Liu B, Qin Y, Zhong Y, Wang L, Liao Y. In Vivo magnetic resonance imaging of xenografted tumors using FTH1 reporter gene expression controlled by a tet-on switch. Oncotarget 2018; 7:78591-78604. [PMID: 27732930 PMCID: PMC5346662 DOI: 10.18632/oncotarget.12519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022] Open
Abstract
As a promising magnetic resonance imaging (MRI) reporter, ferritin has been used to track cells in vivo; however, its continuous overexpression can be cytotoxic, which restricts its application. In this study, we aimed to develop a switch to turn this genetic reporter “on” or “off” while monitoring cell grafts via MRI. To accomplish this, we genetically modified the ferritin heavy chain (FTH1) with a Tet-On switch and assessed the expression of FTH1 in transduced neuroblastoma cells (SK-N-SH) in vitro and in xenografted tumors in vivo. We found that FTH1 expression induced by doxycycline (Dox) in SK-N-SH-FTH1 cells depended on treatment dose and duration. We successfully detected T2-weighted MRI contrast in cell grafts after switching “on” the reporter gene using Dox, and this contrast disappeared when we switched it “off”. The genetic reporter FTH1 can thus be switched “on” or “off” throughout longitudinal monitoring of cell grafts, limiting expression to when MRI contrast is needed. The controllable imaging system we have developed minimizes risks from constitutive reporter gene overexpression and facilitates tumor cell monitoring in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaoya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Hao Li
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Bo Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yi Zhong
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Longlun Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yifan Liao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| |
Collapse
|
5
|
Li X, Hacker M. Molecular imaging in stem cell-based therapies of cardiac diseases. Adv Drug Deliv Rev 2017; 120:71-88. [PMID: 28734900 DOI: 10.1016/j.addr.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 12/26/2022]
Abstract
In the past 15years, despite that regenerative medicine has shown great potential for cardiovascular diseases, the outcome and safety of stem cell transplantation has shown controversial results in the published literature. Medical imaging might be useful for monitoring and quantifying transplanted cells within the heart and to serially characterize the effects of stem cell therapy of the myocardium. From the multiple available noninvasive imaging techniques, magnetic resonance imaging and nuclear imaging by positron (PET) or single photon emission computer tomography (SPECT) are the most used clinical approaches to follow the fate of transplanted stem cells in vivo. In this article, we provide a review on the role of different noninvasive imaging modalities and discuss their advantages and disadvantages. We focus on the different in-vivo labeling and reporter gene imaging strategies for stem cell tracking as well as the concept and reliability to use imaging parameters as noninvasive surrogate endpoints for the evaluation of the post-therapeutic outcome.
Collapse
Affiliation(s)
- Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
6
|
In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. Biomaterials 2017; 139:12-29. [DOI: 10.1016/j.biomaterials.2017.05.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023]
|
7
|
MacAskill MG, Tavares AS, Wu J, Lucatelli C, Mountford JC, Baker AH, Newby DE, Hadoke PWF. PET Cell Tracking Using 18F-FLT is Not Limited by Local Reuptake of Free Radiotracer. Sci Rep 2017; 7:44233. [PMID: 28287126 PMCID: PMC5347009 DOI: 10.1038/srep44233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
Assessing the retention of cell therapies following implantation is vital and often achieved by labelling cells with 2'-[18F]-fluoro-2'-deoxy-D-glucose (18F-FDG). However, this approach is limited by local retention of cell-effluxed radiotracer. Here, in a preclinical model of critical limb ischemia, we assessed a novel method of cell tracking using 3'-deoxy-3'-L-[18F]-fluorothymidine (18F-FLT); a clinically available radiotracer which we hypothesise will result in minimal local radiotracer reuptake and allow a more accurate estimation of cell retention. Human endothelial cells (HUVECs) were incubated with 18F-FDG or 18F-FLT and cell characteristics were evaluated. Dynamic positron emission tomography (PET) images were acquired post-injection of free 18F-FDG/18F-FLT or 18F-FDG/18F-FLT-labelled HUVECs, following the surgical induction of mouse hind-limb ischemia. In vitro, radiotracer incorporation and efflux was similar with no effect on cell viability, function or proliferation under optimised conditions (5 MBq/mL, 60 min). Injection of free radiotracer demonstrated a faster clearance of 18F-FLT from the injection site vs. 18F-FDG (p ≤ 0.001), indicating local cellular uptake. Using 18F-FLT-labelling, estimation of HUVEC retention within the engraftment site 4 hr post-administration was 24.5 ± 3.2%. PET cell tracking using 18F-FLT labelling is an improved approach vs. 18F-FDG as it is not susceptible to local host cell reuptake, resulting in a more accurate estimation of cell retention.
Collapse
Affiliation(s)
- Mark G MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Adriana S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Junxi Wu
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Joanne C Mountford
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Andrew H Baker
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Patrick W F Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Collantes M, Pelacho B, García-Velloso MJ, Gavira JJ, Abizanda G, Palacios I, Rodriguez-Borlado L, Álvarez V, Prieto E, Ecay M, Larequi E, Peñuelas I, Prósper F. Non-invasive in vivo imaging of cardiac stem/progenitor cell biodistribution and retention after intracoronary and intramyocardial delivery in a swine model of chronic ischemia reperfusion injury. J Transl Med 2017; 15:56. [PMID: 28288654 PMCID: PMC5347835 DOI: 10.1186/s12967-017-1157-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/04/2017] [Indexed: 01/18/2023] Open
Abstract
Background The safety and efficacy of cardiac stem/progenitor cells (CSC) have been demonstrated in previous preclinical and clinical assays for heart failure. However, their optimal delivery route to the ischemic heart has not yet been assessed. This study was designed to determine by a non-invasive imaging technique (PET/CT) the biodistribution and acute retention of allogeneic pig CSC implanted by two different delivery routes, intracoronary (IC) and intramyocardial (IM), in a swine preclinical model of chronic ischemia–reperfusion. Methods Ischemia–reperfusion was induced in six Goettingen hybrid minipigs by 90 min coronary artery occlusion followed by reperfusion. Thirty days later, animals were allocated to receive IC (n = 3) or NOGA®-guided IM injection (n = 3) of 50 million of 18F-FDG/GFP-labeled allogeneic pig CSC. Acute retention was quantified by PET/CT 4 h after injection and cell engraftment assessed by immunohistochemical quantification of GFP+ cells three days post-injection. Results Biodistribution of 18F-FDG-labeled CSC was clearly visualized by PET/CT imaging and quantified. No statistical differences in acute cell retention (percentage of injected dose, %ID) were found in the heart when cells were administered by NOGA®-guided IM (13.4 ± 3.4%ID) or IC injections (17.4 ± 4.1%ID). Interestingly, engrafted CSC were histologically detected only after IM injection. Conclusion PET/CT imaging of 18F-FDG-labeled CSC allows quantifying biodistribution and acute retention of implanted cells in a clinically relevant pig model of chronic myocardial infarction. Similar levels of acute retention are achieved when cells are IM or IC administered. However, acute cell retention does not correlate with cell engraftment, which is improved by IM injection. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1157-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Collantes
- Department of Nuclear Medicine, IdisNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Beatriz Pelacho
- Center for Applied Medical Research (CIMA) Cell Therapy Area, IdiSNA, Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - María José García-Velloso
- Department of Nuclear Medicine, IdisNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Juán José Gavira
- Department of Cardiology and Cardiovascular Surgery, IdiSNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Gloria Abizanda
- Center for Applied Medical Research (CIMA) Cell Therapy Area, IdiSNA, Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Itziar Palacios
- Coretherapix, Santiago Grisolía, n° 2 Parque Científico de Madrid, Tres Cantos, 28760, Madrid, Spain
| | - Luis Rodriguez-Borlado
- Coretherapix, Santiago Grisolía, n° 2 Parque Científico de Madrid, Tres Cantos, 28760, Madrid, Spain
| | - Virginia Álvarez
- Coretherapix, Santiago Grisolía, n° 2 Parque Científico de Madrid, Tres Cantos, 28760, Madrid, Spain
| | - Elena Prieto
- Department of Nuclear Medicine, IdisNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Margarita Ecay
- Small Animal Imaging Research Unit, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Eduardo Larequi
- Center for Applied Medical Research (CIMA) Cell Therapy Area, IdiSNA, Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Iván Peñuelas
- Department of Nuclear Medicine, IdisNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain.
| | - Felipe Prósper
- Hematology and Cell Therapy, IdiSNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain.
| |
Collapse
|
9
|
Cen P, Chen J, Hu C, Fan L, Wang J, Li L. Noninvasive in-vivo tracing and imaging of transplanted stem cells for liver regeneration. Stem Cell Res Ther 2016; 7:143. [PMID: 27664081 PMCID: PMC5035504 DOI: 10.1186/s13287-016-0396-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Terminal liver disease is a major cause of death globally. The only ultimate therapeutic approach is orthotopic liver transplant. Because of the innate defects of organ transplantation, stem cell-based therapy has emerged as an effective alternative, based on the capacity of stem cells for multilineage differentiation and their homing to injured sites. However, the disease etiology, cell type, timing of cellular graft, therapeutic dose, delivery route, and choice of endpoints have varied between studies, leading to different, even divergent, results. In-vivo cell imaging could therefore help us better understand the fate and behaviors of stem cells to optimize cell-based therapy for liver regeneration. The primary imaging techniques in preclinical or clinical studies have consisted of optical imaging, magnetic resonance imaging, radionuclide imaging, reporter gene imaging, and Y chromosome-based fluorescence in-situ hybridization imaging. More attention has been focused on developing new or modified imaging methods for longitudinal and high-efficiency tracing. Herein, we provide a descriptive overview of imaging modalities and discuss recent advances in the field of molecular imaging of intrahepatic stem cell grafts.
Collapse
Affiliation(s)
- Panpan Cen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Jiajia Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Linxiao Fan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Jie Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
10
|
He X, Cai J, Liu B, Zhong Y, Qin Y. Cellular magnetic resonance imaging contrast generated by the ferritin heavy chain genetic reporter under the control of a Tet-On switch. Stem Cell Res Ther 2015; 6:207. [PMID: 26517988 PMCID: PMC4628232 DOI: 10.1186/s13287-015-0205-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/30/2015] [Accepted: 10/16/2015] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Despite the strong appeal of ferritin as a magnetic resonance imaging (MRI) reporter for stem cell research, no attempts have been made to apply this genetic imaging reporter in stem cells in an inducible manner, which is important for minimizing the potential risk related to the constitutive expression of an imaging reporter. The aim of the present study was to develop an inducible genetic MRI reporter system that enables the production of intracellular MRI contrast as needed. METHODS Ferritin heavy chain (FTH1) was genetically modified by adding a Tet-On switch. A C3H10T1/2 cell line carrying Tet-FTH1 (C3H10T1/2-FTH1) was established via lentiviral transduction. The dose- and time-dependent expression of FTH1 in C3H10T1/2 cells was assessed by western blot and immunofluorescence staining. The induced "ON" and non-induced "OFF" expressions of FTH1 were detected using a 3.0 T MRI scanner. Iron accumulation in cells was analyzed by Prussian blue staining and transmission electron microscopy (TEM). RESULTS The expression of FTH1 was both dose- and time-dependently induced, and FTH1 expression peaked in response to induction with doxycycline (Dox) at 0.2 μg/ml for 72 h. The induced expression of FTH1 resulted in a significant increase in the transverse relaxation rate of C3H10T1/2-FTH1 cells following iron supplementation. Prussian blue staining and TEM revealed extensive iron accumulation in C3H10T1/2-FTH1 cells in the presence of Dox. CONCLUSIONS Cellular MRI contrast can be produced as needed via the expression of FTH1 under the control of a Tet-On switch. This finding could lay the groundwork for the use of FTH1 to track stem cells in vivo in an inducible manner.
Collapse
Affiliation(s)
- Xiaoya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Bo Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Yi Zhong
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
11
|
Andrzejewska A, Nowakowski A, Janowski M, Bulte JWM, Gilad AA, Walczak P, Lukomska B. Pre- and postmortem imaging of transplanted cells. Int J Nanomedicine 2015; 10:5543-59. [PMID: 26366076 PMCID: PMC4562754 DOI: 10.2147/ijn.s83557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Therapeutic interventions based on the transplantation of stem and progenitor cells have garnered increasing interest. This interest is fueled by successful preclinical studies for indications in many diseases, including the cardiovascular, central nervous, and musculoskeletal system. Further progress in this field is contingent upon access to techniques that facilitate an unambiguous identification and characterization of grafted cells. Such methods are invaluable for optimization of cell delivery, improvement of cell survival, and assessment of the functional integration of grafted cells. Following is a focused overview of the currently available cell detection and tracking methodologies that covers the entire spectrum from pre- to postmortem cell identification.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Nowakowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff WM Bulte
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Assaf A Gilad
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Cao J, Li X, Chang N, Wang Y, Lei J, Zhao D, Gao K, Jin Z. Dual-modular molecular imaging to trace transplanted bone mesenchymal stromal cells in an acute myocardial infarction model. Cytotherapy 2015; 17:1365-73. [PMID: 26166321 DOI: 10.1016/j.jcyt.2015.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS The purpose of the study was to investigate the feasibility of in vitro and in vivo bioluminescence imaging (BLI), fluorescence imaging (FI) and magnetic resonance imaging (MRI) to trace transplanted bone mesenchymal stromal cells (BMSCs) labeled with the firefly luciferase (Fluc) reporter gene, CyI dyes and ultra-small super-paramagnetic iron oxide (USPIO) particles. METHODS Fluc-transfected BMSCs were further labeled with CyI dyes and USPIO particles, respectively. Acute myocardial infarction models of different weighted Sprague-Dawley rats and Balb/c mice were established, and BLI and FI were performed in vivo and ex vivo to determine the optimal method of optical imaging. Finally, BLI and MRI were selected to trace transplanted BMSCs in a murine model in vivo. RESULTS BLI was found to be the optimal optical imaging method in vivo, compared with FI, and mice were found to be the optimal animal model, compared with rats. A significant BLI signal intensity was detected in the heart region in the BMSC-treated mice group (40,552 ± 6073 counts, n = 26) and gradually decreased below the detection threshold. Two distinct hypo-intense regions were observed in the anterior wall of the heart, where stem cells were injected on MR images obtained with the gradient recalled echo cine sequence in the BMSC-treated mice group. CONCLUSIONS Transplanted BMSCs labeled with Fluc reporter gene and USPIO particles can be traced with the use of BLI and MRI in a mouse model of acute myocardial infarction.
Collapse
Affiliation(s)
- Jian Cao
- Department of Radiology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Xiao Li
- Department of Radiology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Ning Chang
- Department of Radiology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Yining Wang
- Department of Radiology, PUMC Hospital, CAMS and PUMC, Beijing, China.
| | - Jing Lei
- Department of Radiology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Dachun Zhao
- Department of Pathology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Kai Gao
- Institute of Laboratory Animal Sciences, CAMS and PUMC, Beijing, China
| | - Zhengyu Jin
- Department of Radiology, PUMC Hospital, CAMS and PUMC, Beijing, China.
| |
Collapse
|
13
|
Li X, Wang YN, Jin ZY. Molecular imaging of stem cells for the treatment of acute myocardial infarction. Int J Clin Exp Med 2015; 8:8938-8947. [PMID: 26309546 PMCID: PMC4538052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
Stem cell therapy has a unique potential and promises hope for the treatment of acute myocardial infarction. Preclinical studies have identified barriers to clinical translation, one of which involves the monitoring of transplanted cells and the elucidation of their fates in vivo. Molecular imaging may help the solutions for these challenges. In this review, we illustrate the mechanisms by which molecular imaging enables insights into and the development of stem cell therapy.
Collapse
Affiliation(s)
- Xiao Li
- Department of Radiology, PUMC Hospital, CAMS and PUMC Beijing, China
| | - Yi-Ning Wang
- Department of Radiology, PUMC Hospital, CAMS and PUMC Beijing, China
| | - Zheng-Yu Jin
- Department of Radiology, PUMC Hospital, CAMS and PUMC Beijing, China
| |
Collapse
|
14
|
Katsikis A, Koutelou M. Cardiac Stem Cell Imaging by SPECT and PET. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Hansen L, Hansen AB, Mathiasen AB, Ng M, Bhakoo K, Ekblond A, Kastrup J, Friis T. Ultrastructural characterization of mesenchymal stromal cells labeled with ultrasmall superparamagnetic iron-oxide nanoparticles for clinical tracking studies. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:437-46. [DOI: 10.3109/00365513.2014.900698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Abstract
This theme issue provides a timely overview on the current status of stem cell tracking with the nanoparticle-based contrast agents.
Collapse
|