1
|
Sanadgol N, Amini J, Khalseh R, Bakhshi M, Nikbin A, Beyer C, Zendehdel A. Mitochondrial genome-derived circRNAs: Orphan epigenetic regulators in molecular biology. Mitochondrion 2024; 79:101968. [PMID: 39321951 DOI: 10.1016/j.mito.2024.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are vital for cellular activities, influencing ATP production, Ca2+ signaling, and reactive oxygen species generation. It has been proposed that nuclear genome-derived circular RNAs (circRNAs) play a role in biological processes. For the first time, this study aims to comprehensively explore experimentally confirmed human mitochondrial genome-derived circRNAs (mt-circRNAs) via in-silico analysis. We utilized wide-ranging bioinformatics tools to anticipate their roles in molecular biology, involving miRNA sponging, protein antagonism, and peptide translation. Among five well-characterized mt-circRNAs, SCAR/mc-COX2 stands out as particularly significant with the potential to sponge around 41 different miRNAs, which target several genes mostly involved in endocytosis, MAP kinase, and PI3K-Akt pathways. Interestingly, circMNTND5 and mecciND1 specifically interact with miRNAs through their unique back-splice junction sequence. These exclusively targeted miRNAs (has-miR-5186, 6888-5p, 8081, 924, 672-5p) are predominantly associated with insulin secretion, proteoglycans in cancer, and MAPK signaling pathways. Moreover, all mt-circRNAs intricately affect the P53 pathway through miRNA sequestration. Remarkably, mc-COX2 and circMNTND5 appear to be involved in the RNA's biogenesis by antagonizing AGO1/2, EIF4A3, and DGCR8. All mt-circRNAs engaged with IGF2BP proteins crucial in redox signaling, and except mecciND1, they all potentially generate at least one protein resembling the immunoglobulin heavy chain protein. Given P53's function as a redox-sensitive transcription factor, and insulin's role as a crucial regulator of energy metabolism, their indirect interplay with mt-circRNAs could influence cellular outcomes. However, due to limited attention and infrequent data availability, it is advisable to conduct more thorough investigations to gain a deeper understanding of the functions of mt-circRNA.
Collapse
Affiliation(s)
- Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, 94149-75516 Bojnurd, Iran
| | - Roghayeh Khalseh
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Mostafa Bakhshi
- Department of Electrical and Computer Engineering, Kharazmi University, 15719-14911 Tehran, Iran
| | - Arezoo Nikbin
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendehdel
- Institut of Anatomy, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
2
|
Mu M, Liu G, Ding X, Xue L, Li D, Zhu Y, Zhang N, Wu J, Wang J. miR-520e and its promoter region DNA methylation as potential biomarkers in atherosclerosis. Biochem Cell Biol 2024; 102:385-393. [PMID: 38917487 DOI: 10.1139/bcb-2023-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
In atherosclerosis, DNA methylation plays a key regulatory role in the expression of related genes. However, the molecular mechanisms of these processes in human umbilical vein endothelial cells (HUVECs) are unclear. Here, using high-throughput sequencing from the Infinium HumanMethylation450 assay, we manifested that the cg19564375 methylation of miR-520e promoter region in the peripheral blood of acute coronary syndrome (ACS) patients was higher than that of healthy controls. As shown by RQ-MSP, the upstream DNA methylation level of the miR-520e promoter region was considerably increased in ACS patients. miR-520e was markedly downregulated in ACS patients compared with healthy controls. In the oxidized low-density lipoprotein (ox-LDL)-induced HUVECs injury model, DNA methylation of the upstream region of miR-520e was significantly increased. With increasing concentrations of the methylase inhibitor 5-Aza, miR-520e expression was upregulated. The silence of methyltransferase DNMT1, rather than DNMT3a or DNMT3b, abolished the influence of miR-520e expression by ox-LDL treatment in HUVECs. A dual luciferase reporter assay revealed that miR-520e regulated the TGFBR2 3'-untranslated region region. After silencing TGFBR2, the promoting effect of miR-520e inhibitor on cell proliferation and migration may be attenuated. In conclusion, the expression of miR-520e is modified by its promoter region DNA methylation, and miR-520e and its promoter region DNA methylation may be potential biomarkers in atherosclerosis.
Collapse
Affiliation(s)
- Mimi Mu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Gao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xiaoyu Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Lijun Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Dandan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Yunhua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Nan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Jia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Junjun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| |
Collapse
|
3
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
4
|
Müller-Dott S, Tsirvouli E, Vazquez M, Ramirez Flores R, Badia-i-Mompel P, Fallegger R, Türei D, Lægreid A, Saez-Rodriguez J. Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities. Nucleic Acids Res 2023; 51:10934-10949. [PMID: 37843125 PMCID: PMC10639077 DOI: 10.1093/nar/gkad841] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Gene regulation plays a critical role in the cellular processes that underlie human health and disease. The regulatory relationship between transcription factors (TFs), key regulators of gene expression, and their target genes, the so called TF regulons, can be coupled with computational algorithms to estimate the activity of TFs. However, to interpret these findings accurately, regulons of high reliability and coverage are needed. In this study, we present and evaluate a collection of regulons created using the CollecTRI meta-resource containing signed TF-gene interactions for 1186 TFs. In this context, we introduce a workflow to integrate information from multiple resources and assign the sign of regulation to TF-gene interactions that could be applied to other comprehensive knowledge bases. We find that the signed CollecTRI-derived regulons outperform other public collections of regulatory interactions in accurately inferring changes in TF activities in perturbation experiments. Furthermore, we showcase the value of the regulons by examining TF activity profiles in three different cancer types and exploring TF activities at the level of single-cells. Overall, the CollecTRI-derived TF regulons enable the accurate and comprehensive estimation of TF activities and thereby help to interpret transcriptomics data.
Collapse
Affiliation(s)
- Sophia Müller-Dott
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Eirini Tsirvouli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Pau Badia-i-Mompel
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Dénes Türei
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| |
Collapse
|
5
|
Li B, Yang T, Liu J, Yu X, Li X, Qin F, Zheng J, Liang J, Zeng Y, Zhou Z, Liu L, Zhang B, Yao W, Feng Z, Zeng G, Zhou Q, Chen L. Genetically engineered PD-1 displaying nanovesicles for synergistic checkpoint blockades and chemo-metabolic therapy against non-small cell lung cancer. Acta Biomater 2023; 161:184-200. [PMID: 36893957 DOI: 10.1016/j.actbio.2023.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Non-small cell lung cancer (NSCLC) remains the most frequently diagnosed lung cancer and the leading cause of cancer-related mortality worldwide. PD-1/PD-L1 axis inhibitors have changed the treatment paradigm for various cancer types, including NSCLC. However, success of these inhibitors in lung cancer clinic is severely limited by their inability to inhibit the PD-1/PD-L1 signaling axis due to heavy glycosylation and heterogeneity expression of PD-L1 in NSCLC tumor tissue. Taking advantage of the facts that tumor cell derived nanovesicles could efficiently accumulate in the homotypic tumor sites due to their innate targeting abilities and that specific and high affinity existed between PD-1 and PD-L1, we developed NSCLC targeting biomimetic nanovesicles (NV) cargos from genetically engineered NSCLC cell lines that overexpressed PD-1 (P-NV). We showed that P-NVs efficiently bound NSCLC cells in vitro and targeted tumor nodules in vivo. We further loaded P-NVs with 2-deoxy-D-glucose (2-DG) and doxorubicin (DOX), and found that these drugs co-loaded P-NVs efficiently shrank lung cancers in mouse models for both allograft and autochthonous tumor. Mechanistically, drug-loaded P-NVs efficiently caused cytotoxicity to tumor cells and simultaneously activated anti-tumor immunity function of tumor-infiltrating T cells. Our data therefore strongly argue that 2-DG and DOX co-loaded, PD-1-displaying nanovesicles is a highly promising therapy for treatment of NSCLC in clinic. STATEMENT OF SIGNIFICANCE: Lung cancer cells overexpressing PD-1 are developed for preparing nanoparticles (P-NV). PD-1s displayed on NVs enhance their homologous targeting abilities to tumor cells expressing PD-L1s. Chemotherapeutics such as DOX and 2-DG, are packaged in such nanovesicles (PDG-NV). These nanovesicles efficiently delivered chemotherapeutics to tumor nodules specifically. The synergy between DOX and 2-DG is observed in inhibiting lung cancer cells in vitro and in vivo. Importantly, 2-DG causes deglycosylation and downregulation of PD-L1 on tumor cells while PD-1 displayed on nanovesicles' membrane blocks PD-L1 on tumor cells. 2-DG loaded nanoparticles thus activate anti-tumor activities of T cells in the tumor microenvironment. Our work thus highlights the promising antitumor activity of PDG-NVs, which warrants further clinical evaluation.
Collapse
Affiliation(s)
- Bo Li
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Tong Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jin Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xixi Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xinying Li
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fei Qin
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiefei Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinxia Liang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Youyan Zeng
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenhua Zhou
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bin Zhang
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwei Yao
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhuo Feng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guandi Zeng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qian Zhou
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Liang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Yang L, Du X, Wang S, Lin C, Li Q, Li Q. A regulatory network controlling ovarian granulosa cell death. Cell Death Discov 2023; 9:70. [PMID: 36806197 PMCID: PMC9941584 DOI: 10.1038/s41420-023-01346-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Follicular atresia triggered by granulosa cell (GC) apoptosis severely reduces female fertility and accelerates reproductive aging. GC apoptosis is a complex process regulated by multiple factors, regulatory axes, and signaling pathways. Here, we report a novel, small regulatory network involved in GC apoptosis and follicular atresia. miR-187, a miRNA down-regulated during follicular atresia in sows, maintains TGFBR2 mRNA stability in sow GCs by directly binding to its 5'-UTR. miR-187 activates the transforming growth factor-β (TGF-β) signaling pathway and suppresses GC apoptosis via TGFBR2 activation. NORHA, a pro-apoptotic lncRNA expressed in sow GCs, inhibits TGFBR2-mediated activation of the TGF-β signaling pathway by sponging miR-187. In contrast, NORFA, a functional lncRNA associated with sow follicular atresia and GC apoptosis, enhances miR-187 and TGFBR2 expression by inhibiting NORHA and activating NFIX. Our findings define a simple regulatory network that controls GC apoptosis and follicular atresia, providing new insights into the mechanisms of GC apoptosis, follicular atresia, and female fertility.
Collapse
Affiliation(s)
- Liu Yang
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xing Du
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Siqi Wang
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chenggang Lin
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiqi Li
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Liu Z, Liu H, Wang Y, Li Z. A 9‑gene expression signature to predict stage development in resectable stomach adenocarcinoma. BMC Gastroenterol 2022; 22:435. [PMID: 36241983 PMCID: PMC9564244 DOI: 10.1186/s12876-022-02510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a highly heterogeneous disease and is among the leading causes of cancer-related death worldwide. At present, TNM stage remains the most effective prognostic factor for STAD. Exploring the changes in gene expression levels associated with TNM stage development may help oncologists to better understand the commonalities in the progression of STAD and may provide a new way of identifying early-stage STAD so that optimal treatment approaches can be provided. METHODS The RNA profile retrieving strategy was utilized and RNA expression profiling was performed using two large STAD microarray databases (GSE62254, n = 300; GSE15459, n = 192) from the Gene Expression Omnibus (GEO) and the RNA-seq database within the Cancer Genome Atlas (TCGA, n = 375). All sample expression information was obtained from STAD tissues after radical resection. After excluding data with insufficient staging information and lymph node number, samples were grouped into earlier-stage and later-stage. Samples in GSE62254 were randomly divided into a training group (n = 172) and a validation group (n = 86). Differentially expressed genes (DEGs) were selected based on the expression of mRNAs in the training group and the TCGA group (n = 156), and hub genes were further screened by least absolute shrinkage and selection operator (LASSO) logistic regression. Receiver operating characteristic (ROC) curves were used to evaluate the performance of the hub genes in distinguishing STAD stage in the validation group and the GSE15459 dataset. Univariate and multivariate Cox regressions were performed sequentially. RESULTS 22 DEGs were commonly upregulated (n = 19) or downregulated (n = 3) in the training and TCGA datasets. Nine genes, including MYOCD, GHRL, SCRG1, TYRP1, LYPD6B, THBS4, TNFRSF17, SERPINB2, and NEBL were identified as hub genes by LASSO-logistic regression. The model achieved discrimination in the validation group (AUC = 0.704), training-validation group (AUC = 0.743), and GSE15459 dataset (AUC = 0.658), respectively. Gene Set Enrichment Analysis (GSEA) was used to identify the potential stage-development pathways, including the PI3K-Akt and Calcium signaling pathways. Univariate Cox regression indicated that the nine-gene score was a significant risk factor for overall survival (HR = 1.28, 95% CI 1.08-1.50, P = 0.003). In the multivariate Cox regression, only SCRG1 was an independent prognostic predictor of overall survival after backward stepwise elimination (HR = 1.21, 95% CI 1.11-1.32, P < 0.001). CONCLUSION Through a series of bioinformatics and validation processes, a nine-gene signature that can distinguish STAD stage was identified. This gene signature has potential clinical application and may provide a novel approach to understanding the progression of STAD.
Collapse
Affiliation(s)
- Zining Liu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yinkui Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ziyu Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
8
|
Guan Q, Pan J, Ren N, Qiao C, Wei M, Li Z. Identification of novel lactate metabolism signatures and molecular subtypes for prognosis in hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:960277. [PMID: 36147735 PMCID: PMC9486814 DOI: 10.3389/fcell.2022.960277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Evidence has shown that lactate, an immune signaling molecule, is associated with hepatocellular carcinoma (HCC) progression and immune suppression. Therefore, identifying lactate metabolism-related molecules is a promising therapeutic strategy to inhibit the development of HCC and overcome chemotherapy resistance. Long noncoding RNAs (lncRNAs) are related to tumorigenesis and metastasis. Hence, verifying the molecular subtypes of lncRNAs related to lactate metabolism will play a critical role in managing HCC. Methods: Based on HCC data in The Cancer Genome Atlas (TCGA), lactate metabolic pathway-related genes were enriched by gene collection and enrichment analysis (GSEA). Lactate metabolism-related lncRNAs (LM_lncRNAs) were identified by correlation analysis, HCC molecular subtypes were determined using nonnegative matrix factorization (NMF) clustering, and the response of the three subtypes to chemotherapeutics was further evaluated using the Genomic Tumor Sensitive Cell Line (GDSC) dataset. LM_lncRNAs were examined via Lasso-Cox regression analysis to determine prognosis for patients. A Nomagram plot was used to predict patient survival time. Results: Three molecular subtypes of HCC were identified. The survival rate of patients with C1 subtype was higher than that of those with C2 and C3. Additionally, patients with C3 subtype have higher levels of immune cell infiltration and high expression of genes related to immune checkpoints. The GDSC results indicated that patients with C3 subtypes were more sensitive to chemotherapy drugs such as sorafenib and sunitinib. The prognostic risk assessment model consisted of six risk factors (AC034229.4, AC131009.1, MYOSLID, AC008667.1, AC012073.1, AC068025.1) and two protective factors (LINC00402 and AC103858.1). Based on Kaplan-Meier analysis, low-risk HCC patients had a high survival rate, and the receiver operating characteristic curve (ROC), calibration curve, and C-index confirmed good prediction ability. Conclusion: In this study, the molecular subtyping method and prediction model of lactate metabolism-related lncRNAs (LM_lncRNAs) were constructed for the prognosis of HCC patients. This work demonstrated the potential targets of LM_lncRNAs and provided a novel perspective and therapeutic paradigm for future clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Minjie Wei
- *Correspondence: Minjie Wei, ; Zhenhua Li,
| | - Zhenhua Li
- *Correspondence: Minjie Wei, ; Zhenhua Li,
| |
Collapse
|