1
|
Li N, Gong N, Duan B, Zhang Y, Jian Y, Xu Y, Liu J, Wang X, Zhang X, Du M, Zhou F, Zhao J, Guan X, Peng X, Wang S, Zhang H, Li X. Reduction of circulating IgE and allergens by a pH-sensitive antibody with enhanced FcγRIIb binding. Mol Ther 2024; 32:3729-3742. [PMID: 39228125 PMCID: PMC11489548 DOI: 10.1016/j.ymthe.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/29/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024] Open
Abstract
Allergen-crosslinked IgE triggers allergy by interacting with its receptor on basophils and mast cells. The anti-IgE monoclonal antibody omalizumab can alleviate allergy by competing with the receptor for IgE binding. However, along with neutralization, omalizumab also inhibits IgE degradation, which is clinically associated with high-dose and total IgE accumulation problems. In this study, we have developed an IgE-eliminating antibody on the basis of omalizumab, which has pH-dependent Fabs and an Fc with high affinity for FcγRIIb. In mice, the antibody rapidly eliminated total serum IgE to baseline levels and caused lower free IgE levels than omalizumab. At low dosages, the antibody also exhibited favorable IgE elimination effects. In addition, the antibody can degrade the corresponding allergen with the removal of IgE, addressing the allergy from its source. Introduction of the M252Y/S254T/T256E (YTE) mutation into this antibody prolongs its serum half-life without reducing potency. Thus, this engineered antibody holds a promising therapeutic option for allergy patients. Mechanistic insights are also included in this study.
Collapse
Affiliation(s)
- Na Li
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Nanxin Gong
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China; College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Baoxin Duan
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Yongyan Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Yi Jian
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Yanqin Xu
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Jinming Liu
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Xiaoqian Wang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Xiaoqi Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Mingjuan Du
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Feilong Zhou
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Jiliang Zhao
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Xiangchen Guan
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Xiangda Peng
- Shanghai Zelixir Biotech, Shanghai 200030, P.R. China
| | - Sheng Wang
- Shanghai Zelixir Biotech, Shanghai 200030, P.R. China
| | - Hongkai Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, P.R. China.
| | - Xin Li
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China.
| |
Collapse
|
2
|
Qi F, Su H, Wang B, Qian L, Wang Y, Wang C, Hou Y, Chen P, Zhang Q, Li D, Tang H, Jiang J, Bian H, Chen Z, Zhang S. Hypoxia-activated ADCC-enhanced humanized anti-CD147 antibody for liver cancer imaging and targeted therapy with improved selectivity. MedComm (Beijing) 2024; 5:e512. [PMID: 38469549 PMCID: PMC10927247 DOI: 10.1002/mco2.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Therapeutic antibodies (Abs) improve the clinical outcome of cancer patients. However, on-target off-tumor toxicity limits Ab-based therapeutics. Cluster of differentiation 147 (CD147) is a tumor-associated membrane antigen overexpressed in cancer cells. Ab-based drugs targeting CD147 have achieved inadequate clinical benefits for liver cancer due to side effects. Here, by using glycoengineering and hypoxia-activation strategies, we developed a conditional Ab-dependent cellular cytotoxicity (ADCC)-enhanced humanized anti-CD147 Ab, HcHAb18-azo-PEG5000 (HAP18). Afucosylated ADCC-enhanced HcHAb18 Ab was produced by a fed-batch cell culture system. Azobenzene (Azo)-linked PEG5000 conjugation endowed HAP18 Ab with features of hypoxia-responsive delivery and selective targeting. HAP18 Ab potently inhibits the migration, invasion, and matrix metalloproteinase secretion, triggers the cytotoxicity and apoptosis of cancer cells, and induces ADCC, complement-dependent cytotoxicity, and Ab-dependent cellular phagocytosis under hypoxia. In xenograft mouse models, HAP18 Ab selectively targets hypoxic liver cancer tissues but not normal organs or tissues, and has potent tumor-inhibiting effects. HAP18 Ab caused negligible side effects and exhibited superior pharmacokinetics compared to those of parent HcHAb18 Ab. The hypoxia-activated ADCC-enhanced humanized HAP18 Ab safely confers therapeutic efficacy against liver cancer with improved selectivity. This study highlights that hypoxia activation is a promising strategy for improving the tumor targeting potential of anti-CD147 Ab drugs.
Collapse
Affiliation(s)
- Fang‐Zheng Qi
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Hui‐Shan Su
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Bo Wang
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Luo‐Meng Qian
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Yang Wang
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Chen‐Hui Wang
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Ya‐Xin Hou
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Ping Chen
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Qing Zhang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Dong‐Mei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Hao Tang
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyState Key Laboratory of Cancer BiologyAir Force Medical UniversityXi'anChina
| | - Jian‐Li Jiang
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyState Key Laboratory of Cancer BiologyAir Force Medical UniversityXi'anChina
| | - Hui‐Jie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyState Key Laboratory of Cancer BiologyAir Force Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyState Key Laboratory of Cancer BiologyAir Force Medical UniversityXi'anChina
| | - Si‐He Zhang
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| |
Collapse
|