1
|
Tichauer KM, Machado P, Liu JB, Sarathchandra ASC, Stanczak M, Kraft WK, Forsberg F. Macrophage uptake rate of Sonazoid in breast lymphosonography is highly conserved in healthy controls. Phys Med Biol 2024; 69:205006. [PMID: 39317237 DOI: 10.1088/1361-6560/ad7f1c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Subcutaneous microbubble administration in connection with contrast enhanced ultrasound (CEUS) imaging is showing promise as a noninvasive and sensitive way to detect tumor draining sentinel lymph nodes (SLNs) in patients with breast cancer. Moreover, there is potential to harness the results from these approaches to directly estimate cancer burden, since some microbubble formulas, such as the Sonazoid used in this study, are rapidly phagocytosed by macrophages, and the macrophage concentration in a lymph node is inversely related to the cancer burden. This work presents a mathematical model that can approximate a rate constant governing macrophage uptake of Sonazoid,ki, given dynamic CEUS Sonazoid imaging data. Twelve healthy women were injected with 1.0 ml of Sonazoid in an upper-outer quadrant of one of their breasts and SLNs were imaged in each patient immediately after injection, and then at 0.25, 0.5, 1, 2, 4, 6, and 24 h after injection. The mathematical model developed was fit to the dynamic CEUS data from each subject resulting in a mean ± sd of 0.006 ± 0.005 h-1and 0.4 ± 0.1 h-1for relative lymphatic flow (EFl) andki, respectively. Furthermore, the roughly 25% sd of thekimeasurement was similar to the sd that would be expected from realistic noise simulations for a stable 0.4 h-1value ofki, suggesting that macrophage concentration is highly consistent among cancer-free SLNs. These results, along with the significantly smaller variance inkimeasurement observed compared to relative lymphatic flow suggest thatkimay be a more precise and promising approach of estimating macrophage abundance, and inversely cancer burden. Future studies comparing tumor-free to tumor-bearing nodes are planned to verify this hypothesis.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, United States of America
| | - Priscilla Machado
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | | | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Walter K Kraft
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
2
|
Wang Y, Zhou D, Ma H, Liu D, Liang Y, Zhu S. An ultra-small organic dye nanocluster for enhancing NIR-II imaging-guided surgery outcomes. Eur J Nucl Med Mol Imaging 2024; 51:2941-2952. [PMID: 38581443 DOI: 10.1007/s00259-024-06702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/16/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE The accuracy of surgery for patients with solid tumors can be greatly improved through fluorescence-guided surgery (FGS). However, existing FGS technologies have limitations due to their low penetration depth and sensitivity/selectivity, which are particularly prevalent in the relatively short imaging window (< 900 nm). A solution to these issues is near-infrared-II (NIR-II) FGS, which benefits from low autofluorescence and scattering under the long imaging window (> 900 nm). However, the inherent self-assembly of organic dyes has led to high accumulation in main organs, resulting in significant background signals and potential long-term toxicity. METHODS We rationalize the donor structure of donor-acceptor-donor-based dyes to control the self-assembly process to form an ultra-small dye nanocluster, thus facilitating renal excretion and minimizing background signals. RESULTS Our dye nanocluster can not only show clear vessel imaging, tumor and tumor sentinel lymph nodes definition, but also achieve high-performance NIR-II imaging-guided surgery of tumor-positive sentinel lymph nodes. CONCLUSION In summary, our study demonstrates that the dye nanocluster-based NIR-II FGS has substantially improved outcomes for radical lymphadenectomy.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Ding Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.
| | - Huilong Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
3
|
Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q, Ma X, He K, Chi C, Tang J, Liu B, Ji J, Wang J, Dong J, Hu Z, Tian J. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:449-467. [PMID: 38693335 DOI: 10.1038/s41571-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Novel strategies utilizing light in the second near-infrared region (NIR-II; 900-1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.
Collapse
Affiliation(s)
- Zeyu Zhang
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Qiaojun Qu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
4
|
Yu M, Meng Z, Yi S, Chen J, Xu W, Ruan B, Wang J, Han F, Huang J. A β-Galactosidase-Activated Fluorogenic Reporter for the Detection of Gastric Cancer In Vivo and in Urine. Anal Chem 2024; 96:6390-6397. [PMID: 38608159 DOI: 10.1021/acs.analchem.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Although gastric cancer (GC) is one of the most frequent malignant tumors in the digestive tract with high morbidity and mortality, it remains a diagnostic dilemma due to its reliance on invasive biopsy or insensitive assays. Herein, we report a fluorescent gastric cancer reporter (FGCR) with activatable near-infrared fluorescence (NIRF) signals and high renal-clearance efficiency for the detection of orthotopic GC in a murine model via real-time imaging and remote urinalysis. In the presence of gastric-tumor-associated β-galactosidase (β-Gal), FGCR can be fluorescently activated for in vivo NIRF imaging. Relying on its high renal-clearance efficiency (∼95% ID), it can be rapidly excreted through kidneys to urine for the ultrasensitive detection of tumors with a diameter down to ∼2.1 mm and for assessing the prognosis of oxaliplatin-based chemotherapy. This study not only provides a new approach for noninvasive auxiliary diagnosis and prognosis of GC but also provides guidelines for the development of fluorescence probes for cancer diagnosis.
Collapse
Affiliation(s)
- Mengya Yu
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Zhenqi Meng
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Shujuan Yi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianjiao Chen
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Weiping Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bankang Ruan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fanghai Han
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jiaguo Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Xu J, Zhu N, Du Y, Han T, Zheng X, Li J, Zhu S. Biomimetic NIR-II fluorescent proteins created from chemogenic protein-seeking dyes for multicolor deep-tissue bioimaging. Nat Commun 2024; 15:2845. [PMID: 38565859 PMCID: PMC10987503 DOI: 10.1038/s41467-024-47063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Near-infrared-I/II fluorescent proteins (NIR-I/II FPs) are crucial for in vivo imaging, yet the current NIR-I/II FPs face challenges including scarcity, the requirement for chromophore maturation, and limited emission wavelengths (typically < 800 nm). Here, we utilize synthetic protein-seeking NIR-II dyes as chromophores, which covalently bind to tag proteins (e.g., human serum albumin, HSA) through a site-specific nucleophilic substitution reaction, thereby creating proof-of-concept biomimetic NIR-II FPs. This chemogenic protein-seeking strategy can be accomplished under gentle physiological conditions without catalysis. Proteomics analysis identifies specific binding site (Cys 477 on DIII). NIR-II FPs significantly enhance chromophore brightness and photostability, while improving biocompatibility, allowing for high-performance NIR-II lymphography and angiography. This strategy is universal and applicable in creating a wide range of spectrally separated NIR-I/II FPs for real-time visualization of multiple biological events. Overall, this straightforward biomimetic approach holds the potential to transform fluorescent protein-based bioimaging and enables in-situ albumin targeting to create NIR-I/II FPs for deep-tissue imaging in live organisms.
Collapse
Affiliation(s)
- Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P.R. China
| | - Ningning Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yijing Du
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jia Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
| |
Collapse
|
6
|
Li M, Sun B, Zheng X, Ma S, Zhu S, Zhang S, Wang X. NIR-II Ratiometric Fluorescence Probes Enable Precise Determination of the Metastatic Status of Sentinel Lymph Nodes. ACS Sens 2024; 9:1339-1348. [PMID: 38382082 DOI: 10.1021/acssensors.3c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Accurately determining the metastatic status of sentinel lymph nodes (SLNs) through noninvasive imaging with high imaging resolution and sensitivity is crucial for cancer therapy. Herein, we report a dual-tracer-based NIR-II ratiometric fluorescence nanoplatform combining targeted and nontargeted moieties to determine the metastatic status of SLNs through the recording of ratio signals. Ratiometric fluorescence imaging revealed approximately 2-fold increases in signals in tumor-draining SLNs compared to inflamed and normal SLNs. Additionally, inflamed SLNs were diagnosed by combining the ratio value with the enlarged size outputted by NIR-II fluorescence imaging. The metastatic status diagnostic results obtained through NIR-II ratiometric fluorescence signals were further confirmed by standard H&E staining, indicating that the ratiometric fluorescence strategy could achieve distant metastases detection. Furthermore, the superior imaging quality of ratiometric probes enables visualization of the detailed change in the lymphatic network accompanying tumor growth. Compared to clinically available and state-of-the-art NIR contrast agents, our dual-tracer-based NIR-II ratiometric fluorescence probes provide significantly improved performance, allowing for the quick assessment of lymphatic function and guiding the removal of tumor-infiltrating SLNs during cancer surgery.
Collapse
Affiliation(s)
- Mengfei Li
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shengjie Ma
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Xin Wang
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
7
|
Li T, Zhang Y, Wu F, Chen G, Li C, Wang Q. Rational Design of NIR-II Ratiometric Fluorescence Probes for Accurate Bioimaging and Biosensing In Vivo. SMALL METHODS 2024:e2400132. [PMID: 38470209 DOI: 10.1002/smtd.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Intravital fluorescence imaging in the second near-infrared window (NIR-II, 900-1700 nm) has emerged as a promising method for non-invasive diagnostics in complex biological systems due to its advantages of less background interference, high tissue penetration depth, high imaging contrast, and sensitivity. However, traditional NIR-II fluorescence imaging, which is characterized by the "always on" or "turn on" mode, lacks the ability of quantitative detection, leading to low reproducibility and reliability during bio-detection. In contrast, NIR-II ratiometric fluorescence imaging can realize quantitative and reliable analysis and detection in vivo by providing reference signals for fluorescence correction, generating new opportunities and prospects during in vivo bioimaging and biosensing. In this review, the current design strategies and sensing mechanisms of NIR-II ratiometric fluorescence probes for bioimaging and biosensing applications are systematically summarized. Further, current challenges, future perspectives and opportunities for designing NIR-II ratiometric fluorescence probes are also discussed. It is hoped that this review can provide effective guidance for the design of NIR-II ratiometric fluorescence probes and promote its adoption in reliable biological imaging and sensing in vivo.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
8
|
Ma S, Sun B, Li M, Han T, Yu C, Wang X, Zheng X, Li S, Zhu S, Wang Q. High-precision detection and navigation surgery of colorectal cancer micrometastases. J Nanobiotechnology 2023; 21:403. [PMID: 37919717 PMCID: PMC10621104 DOI: 10.1186/s12951-023-02171-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Surgical resection is an effective treatment for colorectal cancer (CRC) patients, whereas occult metastases hinder the curative effect. Currently, there is no effective method to achieve intraoperatively diagnosis of tumor-positive lymph nodes (LNs). Herein, we adopt a near-infrared-II (NIR-II) organic donor-pi-acceptor-pi-donor probe FE-2PEG, which exhibits bright fluorescence over 1100 nm, excellent photostability, blood circulation time, and biocompatibility, to achieve high-performance bioimaging with improved temporal and spatial resolution. Importantly, the FE-2PEG shows efficient passive enrichment in orthotopic CRC, metastatic mesenteric LNs, and peritoneal metastases by enhanced permeability and retention effect. Under NIR-II fluorescence-guided surgery (FGS), the peritoneal micrometastases were resected with a sensitivity of 94.51%, specificity of 86.59%, positive predictive value (PPV) of 96.57%, and negative predictive value of 79.78%. The PPV still achieves 96.07% even for micrometastases less than 3 mm. Pathological staining and NIR-II microscopy imaging proved that FE-2PEG could successfully delineate the boundary between the tumor and normal tissues. Dual-color NIR-II imaging strategy with FE-2PEG (1100 ~ 1300 nm) and PbS@CdS quantum dots (> 1500 nm) successfully protects both blood supply and normal tissues during surgery. The NIR-II-based FGS provides a promising prospect for precise intraoperative diagnosis and minimally invasive surgery of CRC.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Mengfei Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Chenlong Yu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xin Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuang Li
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
9
|
Wang X, Li M, Zheng X, Sun B, Wang Y, Xu J, Han T, Ma S, Zhu S, Zhang S. Dye-Triplet-Sensitized Downshifting Nanoprobes with Ratiometric Dual-NIR-IIb Emission for Accurate In Vivo Detection. Anal Chem 2023; 95:15264-15275. [PMID: 37797318 DOI: 10.1021/acs.analchem.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Despite the emerging near-infrared-IIb (NIR-IIb, 1500-1700 nm) bioimaging significantly improving the in vivo penetration depth and resolution, quantitative detection with accuracy remains challenging due to its inhomogeneous fluorescence signal attenuation in biological tissue. Here, ratiometric dual-NIR-IIb in vivo detection with excitation wavelengths of 808 and 980 nm is presented using analyte-responsive dye-triplet-sensitized downshifting nanoprobes (DSNPs). NIR cyanine dye IR-808, a recognizer of biomarker hypochlorite (ClO-), is introduced to trigger a triplet energy transfer process from the dye to Er3+ ions of DSNPs under 808 nm excitation, facilitating the formation of an analyte-responsive 1525 nm NIR-IIb assay channel. Meanwhile, DSNPs also enable emitting intrinsic nonanalyte-dependent downshifting fluorescence at the same NIR-IIb window under 980 nm excitation, serving as a self-calibrated signal to alleviate the interference from the probe amount and depth. Due to the two detected emissions sharing identical light propagation and scattering, the ratiometric NIR-IIb signal is demonstrated to ignore the depth of penetration in biotissue. The arthritis lesions are distinguished from normal tissue using ratiometric probes, and the amount of ClO- can be accurately output by the established detection curves.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Mengfei Li
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yajun Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shengjie Ma
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
10
|
Zhang R, Bi Z, Zhang L, Yang H, Wang H, Zhang W, Qiu Z, Zhang C, Xiong Y, Li Y, Zhao Z, Tang BZ. Blood Circulation Assessment by Steadily Fluorescent Near-Infrared-II Aggregation-Induced Emission Nano Contrast Agents. ACS NANO 2023; 17:19265-19274. [PMID: 37728982 DOI: 10.1021/acsnano.3c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The dysfunction of the blood circulation system typically induces acute or chronic ischemia in limbs and vital organs, with high disability and mortality. While conventional tomographic imaging modalities have shown good performance in the diagnosis of circulatory diseases, multiple limitations remain for real-time and precise hemodynamic evaluation. Recently, fluorescence imaging in the second region of the near-infrared (NIR-II, 1000-1700 nm) has garnered great attention in monitoring and tracing various biological processes in vivo due to its advantages of high spatial-temporal resolution and real-time feature. Herein, we employed NIR-II imaging to carry out a blood circulation assessment by aggregation-induced emission fluorescent aggregates (AIE nano contrast agent, AIE NPs). Thanks to the longer excited wavelength, enhanced absorptivity, higher brightness in the NIR-II region, and broader optimal imaging window of the AIE NPs, we have realized a multidirectional assessment for blood circulation in mice with a single NIR-II imaging modality. Thus, our work provides a fluorescence contrast agent platform for accurate hemodynamic assessment.
Collapse
Affiliation(s)
- Rongyuan Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Zhenyu Bi
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Liping Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 100071 Hong Kong, People's Republic of China
| | - Weijie Zhang
- Department of Urology the First Affiliated Hospital of Soochow University Suzhou Suzhou 215006, People's Republic of China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- HKUST Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 100071 Hong Kong, People's Republic of China
| |
Collapse
|
11
|
Xu J, Du Y, Han T, Zhu N, Zhu S. Protein@Cyanine-Based NIR-II Lymphography Enables the Supersensitive Visualization of Lymphedema and Tumor Lymphatic Metastasis. Adv Healthc Mater 2023; 12:e2301051. [PMID: 37264990 DOI: 10.1002/adhm.202301051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Visualization of the lymphatic system is clinically indispensable for the diagnosis and/or treatment of lymphatic diseases. Although indocyanine green (ICG) lymphography becomes an alternate imaging modality compared to traditional lymphoscintigraphy, it is still far from ideal due to the insufficient detection depth and low spatiotemporal resolution. Herein, protein@cyanine probes are rationally developed to solve the limitations of the current near-infrared-I (NIR-I) lymphography. The protein@cyanine probes are synthesized following a chlorine-containing dye-labeling strategy based on structure-selectivity (facile covalent binding between the dye and protein with a 1:1 molar ratio). As expected, the probes display exceptional NIR-II imaging ability with much-improved imaging contrast/resolution and controllable pharmacokinetics, superior to the clinical ICG. The protein@cyanine probes locate lymph nodes and delineate lymphatic vessels with super-high sensitivity and signal-to-background ratio, enabling real-time diagnosing lymphatic diseases such as lymphedema and tumor lymphatic metastasis. In particular, the NIR-II lymphography provides an opportunity to discover the disparate morbidity rate of primary lymphedema in different types of mice. Given the fact of lacking clinically transferable NIR-II probes, this work not only provides a promising strategy for enriching of the current library of NIR-II probes, but also promotes the clinical translation of NIR-II lymphography technology.
Collapse
Affiliation(s)
- Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yijing Du
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ningning Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Zhang F, Xu J, Zhang C, Li Y, Gao J, Qu L, Zhang S, Zhu S, Zhang J, Yang B. Three-Dimensional Histological Electrophoresis for High-Throughput Cancer Margin Detection in Multiple Types of Tumor Specimens. NANO LETTERS 2023; 23:7607-7614. [PMID: 37527513 PMCID: PMC10450807 DOI: 10.1021/acs.nanolett.3c02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Accurate identification of tumor margins during cancer surgeries relies on a rapid detection technique that can perform high-throughput detection of multiple suspected tumor lesions at the same time. Unfortunately, the conventional histopathological analysis of frozen tissue sections, which is considered the gold standard, often demonstrates considerable variability, especially in many regions without adequate access to trained pathologists. Therefore, there is a clinical need for a multitumor-suitable complementary tool that can accurately and high-throughput assess tumor margins in every direction within the surgically resected tissue. We herein describe a high-throughput three-dimensional (3D) histological electrophoresis device that uses tumor-specific proteins to identify and contour tumor margins intraoperatively. Testing on seven cell-line xenograft models and human cervical cancer models (representing five types of tissues) demonstrated the high-throughput detection utility of this approach. We anticipate that the 3D histological electrophoresis device will improve the accuracy and efficiency of diagnosing a wide range of cancers.
Collapse
Affiliation(s)
- Feiran Zhang
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiajun Xu
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chengbin Zhang
- Department
of Pathology, The First Hospital of Jilin
University, Changchun 130021, P. R. China
| | - Yin Li
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiawei Gao
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Limei Qu
- Department
of Pathology, The First Hospital of Jilin
University, Changchun 130021, P. R. China
| | - Songling Zhang
- Department
of Obstetrics and Gynecology, The First
Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shoujun Zhu
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junhu Zhang
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|