1
|
Nakashima K, Shimohara H, Watanabe H, Ono M. Improvement of tumor-to-blood ratio of radioimmunoconjugates by poly(ethyleneimine)-containing chelating agent. Ann Nucl Med 2025; 39:323-333. [PMID: 39585568 DOI: 10.1007/s12149-024-02003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Monoclonal antibody (mAb)-based radioimmunoconjugates (RICs) exhibit marked tumor uptake in cancer imaging and therapy, although their high blood retention has limited the development of RICs. In our previous study, a trifunctional chelating agent with a cationic poly(ethyleneimine) (PEI) structure of tetraethylenepentamine (PEI4), maleimide-DOTA-PEI4 (MDI4), improved the tumor-to-blood ratio of RICs by increasing tumor retention compared with a conventional bifunctional chelating agent. In this study, we developed a novel chelating agent composed of a maleimide moiety, DOTA derivative, and two PEI4 structures as a PEI4-2 unit, maleimide-DOTA-PEI4-2 (MDI4-2), a design for a highly cationized chelating agent to synthesize RICs. The properties of MDI4-2 were compared with MDI4 to evaluate the effect of the PEI4-2 unit on the pharmacokinetics of RICs. METHODS Trastuzumab and 111In were selected as a model mAb and radiometal, respectively. Trastuzumab-based RICs were synthesized using MDI4-2 by two-step radiolabeling, wherein conjugation with mAbs is followed by radiolabeling of chelating agents, to obtain trastuzumab-[111In]In-MDI4-2 ([111In]In-TMDI4-2). The immunoreactivity and residualizing properties of [111In]In-TMDI4-2 were evaluated using human epidermal growth factor receptor 2 (HER2)/neu-expressing SK-OV-3 cells. A biodistribution assay using SK-OV-3 tumor-bearing mice was also performed for [111In]In-TMDI4-2 and the results were compared with trastuzumab-[111In]In-MDI4 ([111In]In-TMDI4). RESULTS [111In]In-TMDI4-2 was successfully synthesized by two-step radiolabeling at a radiochemical yield of 37.7%. The immunoreactivity of [111In]In-TMDI4-2 was determined as 81.7%, suggesting the maintained binding ability through radiolabeling steps. The internalization assay revealed equivalent internalizing properties of [111In]In-TMDI4-2 to [111In]In-TMDI4. In the biodistribution assay, [111In]In-TMDI4-2 exhibited lower blood retention of radioactivity to and comparable tumor uptake with [111In]In-TMDI4, resulting in an improved tumor-to-blood ratio. These in vitro and in vivo results indicate that the PEI4-2 unit largely contributed to the decrease in the blood radioactivity of RICs without compromising the tumor uptake. CONCLUSION MDI4-2 with the PEI4-2 unit exhibited favorable properties for designing RICs with an improved tumor-to-blood ratio.
Collapse
Affiliation(s)
- Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroki Shimohara
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
2
|
Sarkar S, Pham JM, Edwards KJ, Sharma N, Xu K, King AP, Del Castillo AF, Farwell MD, Pryma DA, Schuster SJ, Sellmyer MA. A biorthogonal chemistry approach for high-contrast antibody imaging of lymphoma at early time points. EJNMMI Res 2025; 15:26. [PMID: 40122966 PMCID: PMC11930911 DOI: 10.1186/s13550-025-01213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Monoclonal antibodies are highly specific for their targets making them effective for cancer therapy. However, their large molecular weight causes slow blood clearance, often requiring weeks to be removed from circulation. This limitation affects companion nuclear imaging and antibody-based diagnostics, necessitating delayed imaging. We report the expansion of a methodology improving positron emission tomography (PET) contrast of the lymphoma biomarker CD20 at early time points after radiolabeled antibody administration. Intact radioimmunoconjugates are allowed to stay in circulation long enough to accumulate in tumors, and then, using a chemical trigger, we induced rapid clearance of the radioactivity from non-target tissues by cleaving the linker between the antibody and the radioactivity. For brevity, we refer to the this as the Tetrazine KnockOut (TKO) method which uses the transcyclooctene-tetrazine (TCO-Tz) reaction, wherein an antibody is conjugated with linker containing TCO and a radioisotope. RESULTS We optimized the TCO linker with several different radioisotopes and evaluated the ability of tetrazines to knockout radioactivity from circulating antibodies. We explored several cell types and antibodies with varying internalization rates, to characterize the parameters of TKO and tested [89Zr]Zr-DFO-TCO-rituximab in a lymphoma model with PET imaging after Tz or vehicle administration. Treatment with Tz induced > 70% cleavage of the TCO linker in vitro within 30 min. Internalizing radioimmunoconjugates exhibited similar cellular uptake with Tz compared to vehicle, whereas decreased uptake was seen with slowly internalizing antibodies. In rodents, Tz rapidly liberated the radioactivity from the antibody, cleared from the blood, and accumulated in the bladder. TKO resulted in > 50% decreased radioactivity in non-target organs following Tz injection. No decrease in tumor uptake was observed when rate of antibody internalization is higher in a lymphoma model, and the target-to-background ratio increased by > twofold in comparison with Tz nontreated groups at 24 h. CONCLUSION The TKO approach potentiates early imaging of rituximab radioimmunoconjugates and has translational potential for lymphoma imaging.
Collapse
Affiliation(s)
- Swarbhanu Sarkar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Jonathan M Pham
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Kimberly J Edwards
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Nitika Sharma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Kexiang Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - A Paden King
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Andres Fernandez Del Castillo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Daniel A Pryma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Sellmyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA.
- The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
de Roode KE, Rossin R, Robillard MS. Toward Realization of Bioorthogonal Chemistry in the Clinic. Top Curr Chem (Cham) 2025; 383:12. [PMID: 40042792 PMCID: PMC11882664 DOI: 10.1007/s41061-025-00495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
In the last decade, the use of bioorthogonal chemistry toward medical applications has increased tremendously. Besides being useful for the production of pharmaceuticals, the efficient, nontoxic reactions open possibilities for the development of therapies that rely on in vivo chemistry between two bioorthogonal components. Here we discuss the latest developments in bioorthogonal chemistry, with a focus on their use in living organisms, the translation from model systems to humans, and the challenges encountered during preclinical development. We aim to provide the reader a broad presentation of the current state of the art and demonstrate the numerous possibilities that bioorthogonal reactions have for clinical use, now and in the near future.
Collapse
Affiliation(s)
- Kim E de Roode
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Di Ianni E, Jeon J, Hu H, Quintana JM, Lee C, Haidar EA, Mohammadi S, Zargani-Piccardi A, Mahamdeh M, Hernández IC, Ng TSC, Breyne K, Lee H, Breakefield XO, Miller MA. Enhanced mRNA delivery using ultrasound-delivered click reactive anchors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635330. [PMID: 39975219 PMCID: PMC11838329 DOI: 10.1101/2025.01.28.635330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Therapeutic nucleic acid delivery has many potential applications, but it remains challenging to target extrahepatic tissues in a flexible and image-guided manner. To address this issue, we report a bioorthogonal pre-targeting strategy that uses focused ultrasound to promote the delivery of mRNA-loaded lipid nanoparticles (mRNA-LNP). We synthesized amphiphilic click reactive anchors (ACRAs) consisting of a phospholipid PEG-conjugate functionalized with transcyclooctene (TCO) or its companion reactive partner methyltetrazine (mTz), yielding ACRA-TCO and ACRA-mTz. ACRA derivatives were screened for cellular activity, yielding functionalized DOPE-PEG (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N- (polyethylene glycol)) derivatives outperforming those containing saturated lipid or branched PEG. Nanobubbles encapsulating ultrasound-responsive gas precursor delivered ACRA-TCO to targeted cells and tissues using focused ultrasound, and this pre-targeting promoted the subsequent delivery of mRNA- LNP functionalized with companion ACRA-mTz. In cell cultures and in mice, ultrasound pre-targeting enhanced the accumulation of mTz-functionalized small molecule and nanoparticle compounds by 75% and 3.6-fold, respectively, and increased gene expression using mRNA-LNP in vivo . Taken together, this report presents a modular, ultrasound-enabled strategy for enhancing nucleic acid delivery in targeted tissues.
Collapse
|
5
|
Wilkovitsch M, Kuba W, Keppel P, Sohr B, Löffler A, Kronister S, Del Castillo AF, Goldeck M, Dzijak R, Rahm M, Vrabel M, Svatunek D, Carlson JCT, Mikula H. Transforming Aryl-Tetrazines into Bioorthogonal Scissors for Systematic Cleavage of trans-Cyclooctenes. Angew Chem Int Ed Engl 2025; 64:e202411707. [PMID: 39254137 DOI: 10.1002/anie.202411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Bioorthogonal bond-cleavage reactions have emerged as a powerful tool for precise spatiotemporal control of (bio)molecular function in the biological context. Among these chemistries, the tetrazine-triggered elimination of cleavable trans-cyclooctenes (click-to-release) stands out due to high reaction rates, versatility, and selectivity. Despite an increasing understanding of the underlying mechanisms, application of this reaction remains limited by the cumulative performance trade-offs (i.e., click kinetics, release kinetics, release yield) of existing tools. Efficient release has been restricted to tetrazine scaffolds with comparatively low click reactivity, while highly reactive aryl-tetrazines give only minimal release. By introducing hydroxyl groups onto phenyl- and pyridyl-tetrazine scaffolds, we have developed a new class of 'bioorthogonal scissors' with unique chemical performance. We demonstrate that hydroxyaryl-tetrazines achieve near-quantitative release upon accelerated click reaction with cleavable trans-cyclooctenes, as exemplified by click-triggered activation of a caged prodrug, intramitochondrial cleavage of a fluorogenic probe (turn-on) in live cells, and rapid intracellular bioorthogonal disassembly (turn-off) of a ligand-dye conjugate.
Collapse
Affiliation(s)
- Martin Wilkovitsch
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Walter Kuba
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Patrick Keppel
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Barbara Sohr
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Andreas Löffler
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Stefan Kronister
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Andres Fernandez Del Castillo
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
- Center for Systems Biology & Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA
| | - Marion Goldeck
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic
| | - Michal Rahm
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, 16628, Prague 6, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Jonathan C T Carlson
- Center for Systems Biology & Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| |
Collapse
|
6
|
Versteegen RM, Rossin R, Filot IAW, Hoeben FJM, van Onzen AHAM, Janssen HM, Robillard MS. Ortho-functionalized pyridinyl-tetrazines break the inverse correlation between click reactivity and cleavage yields in click-to-release chemistry. Commun Chem 2024; 7:302. [PMID: 39702778 DOI: 10.1038/s42004-024-01392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The bioorthogonal tetrazine-triggered cleavage of trans-cyclooctene(TCO)-linked payloads has strong potential for widespread use in drug delivery and in particular in click-cleavable antibody-drug conjugates (ADCs). However, clinical translation is hampered by an inverse correlation between click reactivity and payload release yield, requiring high doses of less reactive tetrazines to drive in vivo TCO reactions and payload release to completion. Herein we report that the cause for the low release when using the highly reactive bis-(2-pyridinyl)-tetrazine is the stability of the initially formed 4,5-dihydropyridazine product, precluding tautomerization to the releasing 1,4-dihydropyridazine tautomer. We demonstrate that efficient tautomerization and payload elimination can be achieved by ortho-substituting bis-pyridinyl-tetrazines with hydrogen-bonding hydroxyl or amido groups, achieving a.o. release yields of 96% with 18-fold more reactive tetrazines. Applied to on-tumor activation of a click-cleavable ADC in mice, these tetrazines afforded near-quantitative ADC conversion at a ca. 10- to 20-fold lower dose than what was previously needed, resulting in a strong therapeutic response.
Collapse
Affiliation(s)
- Ron M Versteegen
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Ivo A W Filot
- Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Freek J M Hoeben
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | | | - Henk M Janssen
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Ankrom E, Dalesandro B, Pires MM, Thévenin D. Selective Recruitment of Antibodies to Cancer Cells and Immune Cell-mediated Killing via In Situ Click Chemistry. ChemMedChem 2024; 19:e202400356. [PMID: 39087480 PMCID: PMC11617666 DOI: 10.1002/cmdc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/14/2024] [Accepted: 01/17/2024] [Indexed: 08/02/2024]
Abstract
Many current cancer immunotherapies function by redirecting immune system components to recognize cancer biomarkers and initiate a cytotoxic attack. The lack of a universal tumor biomarker limits the therapeutic potential of these approaches. However, one feature characteristic of nearly all solid tumors is extracellular acidity. This inherent acidity provides the basis for targeted drug delivery via the pH-low insertion peptide (pHLIP), which selectively accumulates in tumors in vivo due to a pH-dependent membrane insertion propensity. Previously, we established that we could selectively decorate cancer cells with antigen-pHLIP conjugates to facilitate antibody recruitment and subsequent killing by engineered effector cells via antibody-dependent cellular cytotoxicity (ADCC). Here, we present a novel strategy for opsonizing antibodies on target cell surfaces using click chemistry. We utilize pHLIP to facilitate selective tetrazine - trans-cyclooctene ligation of human IgGs to the cancer cell surface and induce ADCC. We demonstrate that our approach activates the primary ADCC signaling pathway via CD16a (FcγRIIIa) receptors on effector cells and induces the killing of cancer cell targets by engineered NK cells.
Collapse
Affiliation(s)
- Emily Ankrom
- Department of ChemistryLehigh UniversityBethlehem, Pennsylvania18015USA
| | - Brianna Dalesandro
- Department of ChemistryUniversity of VirginiaCharlottesville, Virginia22904USA
| | - Marcos M. Pires
- Department of ChemistryUniversity of VirginiaCharlottesville, Virginia22904USA
| | - Damien Thévenin
- Department of ChemistryLehigh UniversityBethlehem, Pennsylvania18015USA
| |
Collapse
|
8
|
Yamada K, Mukaimine A, Nakamura A, Kusakari Y, Pradipta AR, Chang TC, Tanaka K. Chemistry-driven translocation of glycosylated proteins in mice. Nat Commun 2024; 15:7409. [PMID: 39358337 PMCID: PMC11446924 DOI: 10.1038/s41467-024-51342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
Cell surface glycans form various "glycan patterns" consisting of different types of glycan molecules, thus enabling strong and selective cell-to-cell recognition. We previously conjugated different N-glycans to human serum albumin to construct glycoalbumins mimicking natural glycan patterns that could selectively recognize target cells or control excretion pathways in mice. Here, we develop an innovative glycoalbumin capable of undergoing transformation and remodeling of its glycan pattern in vivo, which induces its translocation from the initial target to a second one. Replacing α(2,3)-sialylated N-glycans on glycoalbumin with galactosylated glycans induces the translocation of the glycoalbumin from blood or tumors to the intestine in mice. Such "in vivo glycan pattern remodeling" strategy can be used as a drug delivery system to promote excretion of a drug or medical radionuclide from the tumor after treatment, thereby preventing prolonged exposure leading to adverse effects. Alternatively, this study provides a potential strategy for using a single glycoalbumin for the simultaneous treatment of multiple diseases in a patient.
Collapse
Affiliation(s)
- Kenshiro Yamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Akari Mukaimine
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Akiko Nakamura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yuriko Kusakari
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tsung-Che Chang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
9
|
Quintana J, Carlson JCT, Scott E, Ng TSC, Miller MA, Weissleder R. Scission-Enhanced Molecular Imaging (SEMI). Bioconjug Chem 2024; 35. [PMID: 39255972 PMCID: PMC11488501 DOI: 10.1021/acs.bioconjchem.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Positron emission tomography (PET) imaging methods have advanced our understanding of human biology, while targeted radiotherapeutic drug treatments are now routinely used clinically. The field is expected to grow considerably based on an expanding repertoire of available affinity ligands, radionuclides, conjugation chemistries, and their FDA approvals. With this increasing use, strategies for dose reduction have become of high interest to protect patients from unnecessary and off-target toxicity. Here, we describe a simple and powerful method, scission-enhanced molecular imaging (SEMI). The technique allows for rapid corporeal elimination of radionuclides once imaging or theranostic treatment is completed and relies on "click-to-release" bioorthogonal linkers.
Collapse
Affiliation(s)
- Jeremy
M. Quintana
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jonathan C. T. Carlson
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Cancer
Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Ella Scott
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Thomas S. C. Ng
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Cancer
Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|