1
|
Hotta K. Basic and applied research on multiple aminoglycoside antibiotic resistance of actinomycetes: an old-timer's recollection. J Ind Microbiol Biotechnol 2021; 48:6353527. [PMID: 34402899 PMCID: PMC8788812 DOI: 10.1093/jimb/kuab059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/03/2021] [Indexed: 11/14/2022]
Abstract
A list of our research achievements on multiple aminoglycoside antibiotic (AG) resistance in AG-producing actinomycetes is outlined. In 1979, the author discovered a novel AG (istamycin)-producing Streptomyces tenjimariensis SS-939 by screening actinomycetes with kanamycin (KM)-resistance and plasmid profiles. This discovery directed our biochemical and genetic approaches to multiple AG resistance (AGR) of AG producers. In this article, the following discoveries will be outlined: (1) AGR profiles correlating with the productivity of AGs in AG-producers, (2) Wide distribution of multiple AG resistance in AG-nonproducing actinomycetes, (3) Involvement of ribosomal resistance and AG-acetylating enzymes as underlying AGR factors, (4) Activation by single nucleotide substitution of a silent gene coding for aminoglycoside 3-N-acetyltransferase, AAC(3), in S. griseus, (5) Discovery of a novel antibiotic indolizomycin through protoplast fusion treatment between S. tenjimariensis and S. griseus strains with different AGR phenotypes, and (6) Double stage-acting activity of arbekacin (ABK; an anti-MRSA semisynthetic AG) discovered by acetylation of ABK with cloned AACs; that is both ABK and its acetylated derivatives showed remarkable antibiotic activities.
Collapse
Affiliation(s)
- Kunimoto Hotta
- Functional Water Foundation, 2-20-8 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
2
|
Isolation of Actinomycetes Strains and their Different Levels of Resistance against Antibiotics. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Şen Karaman D, Sarwar S, Desai D, Björk EM, Odén M, Chakrabarti P, Rosenholm JM, Chakraborti S. Shape engineering boosts antibacterial activity of chitosan coated mesoporous silica nanoparticle doped with silver: a mechanistic investigation. J Mater Chem B 2016; 4:3292-3304. [DOI: 10.1039/c5tb02526e] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanism of antibacterial activity of MSPs with high aspect ratio and surface modification.
Collapse
Affiliation(s)
- D. Şen Karaman
- Pharmaceutical Sciences Laboratory
- Faculty of Science and Engineering
- Åbo Akademi University
- Turku
- Finland
| | - S. Sarwar
- Department of Biochemistry
- Bose Institute
- Kolkata 700054
- India
| | - D. Desai
- Pharmaceutical Sciences Laboratory
- Faculty of Science and Engineering
- Åbo Akademi University
- Turku
- Finland
| | - E. M. Björk
- Nanostructured Materials Division
- Department of Physics
- Chemistry and Biology
- Linköping University
- Sweden
| | - M. Odén
- Nanostructured Materials Division
- Department of Physics
- Chemistry and Biology
- Linköping University
- Sweden
| | - P. Chakrabarti
- Department of Biochemistry
- Bose Institute
- Kolkata 700054
- India
| | - J. M. Rosenholm
- Pharmaceutical Sciences Laboratory
- Faculty of Science and Engineering
- Åbo Akademi University
- Turku
- Finland
| | - S. Chakraborti
- Department of Biochemistry
- Bose Institute
- Kolkata 700054
- India
- Department of Chemistry
| |
Collapse
|
4
|
Joe YA, Goo YM. Kanamycin acetyltransferase gene from kanamycin-producing Streptomyces kanamyceticus IFO 13414. Arch Pharm Res 1998; 21:470-4. [PMID: 9875478 DOI: 10.1007/bf02974645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A kanamycin producer, Streptomyces kanamyceticus IFO 13414 is highly resistant to kanamycin. Cloning of the kanamycin resistance genes in S. lividans 1326 with pIJ702 gave several kanamycin resistant transformants. Two transformants, S. lividans SNUS 90041 and S. lividans SNUS 91051 showed similar resistance patterns to various aminoglycoside antibiotics. Gene mapping experiments revealed that plasmids pSJ5030 and pSJ2131 isolated from the transformants have common resistant gene fragments. Subcloning of pSJ5030 gave a 1.8 Kb gene fragment which showed resistance to kanamycin. Cell free extracts of S. lividans SNUS 90041, S. lividans SNUS 91051 and subclone a S. lividans SNUS 91064 showed kanamycin acetyltransferase activity. The detailed gene map is included.
Collapse
Affiliation(s)
- Y A Joe
- College of Pharmacy, Seoul National University, Korea
| | | |
Collapse
|
5
|
Hotta K, Ishikawa J, Ogata T, Mizuno S. Secondary aminoglycoside resistance in aminoglycoside-producing strains of Streptomyces. Gene X 1992; 115:113-7. [PMID: 1612424 DOI: 10.1016/0378-1119(92)90548-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of aminoglycoside (AG) acetyltransferases (AACs) and of the corresponding genes in resistance to foreign AGs in AG-producing strains of Streptomyces were studied. The research focussed on (i) the activation mechanism of the cryptic kanamycin(Km)-resistance-encoding gene that encodes an AAC(3) in streptomycin-producing S. griseus SS-1198, and (ii) an AAC(2') with novel activity and substrate specificity in kasugamycin-producing S. kasugaensis MB273. Activation of the cryptic kan gene in S. griseus SS-1198 is probably due to a single base substitution at the putative -10 promoter region, leading to the enhancement of transcription, resulting in resistance to AG. The coding region of the kan gene was highly homologous to that of the aacC7 gene of paromomycin-producing S. rimosus forma paromomycinus. On the other hand, resistance in S. kasugaensis MB273 was found to be due to an AAC(2') capable of acetylating astromicin group AGs at two different sites (1-NH2 with istamycin B, and 2'-NH2 with astromicin and istamycin A). These additional antibiotic resistances that are independent of a self-resistance basis may be regarded as 'secondary' resistances, so as to distinguish them from 'primary' resistances arising from a self-resistance basis.
Collapse
Affiliation(s)
- K Hotta
- Department of Antibiotics, National Institute of Health, Tokyo, Japan
| | | | | | | |
Collapse
|
6
|
Gusek TW, Kinsella JE. Review of the Streptomyces lividans/vector pIJ702 system for gene cloning. Crit Rev Microbiol 1992; 18:247-60. [PMID: 1524674 DOI: 10.3109/10408419209113517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interest in the biology of the Streptomyces and application of these soil bacteria to production of commercial antibiotics and enzymes has stimulated the development of efficient cloning techniques and a variety of streptomycete plasmid and phage vectors. Streptomyces lividans is routinely employed as a host for gene cloning, largely because this species recognizes a large number of promoters and appears to lack a restriction system. Vector pIJ702 was constructed from a variant of a larger autonomous plasmid and is often used as a cloning vehicle in conjunction with S. lividans. The host range of vector pIJ702 extends beyond Streptomyces spp., and its high copy number has been exploited for the overproduction of cloned gene products. This combination of host and vector has been used successfully to investigate antibiotic biosynthesis, gene structure and expression, and to map various Streptomyces mutants.
Collapse
Affiliation(s)
- T W Gusek
- Institute of Food Science, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
7
|
Strauch E, Wohlleben W, Pühler A. Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene 1988; 63:65-74. [PMID: 3290054 DOI: 10.1016/0378-1119(88)90546-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphinothricin-tripeptide (Ptt), also known as bialaphos, contains phosphinothricin (Pt), a potent inhibitor of glutamine synthetase. A 4.0-kb Bam HI fragment coding for Ptt resistance was cloned in Streptomyces lividans TK23. The fragment was isolated from a Ptt-resistant mutant of Streptomyces viridochromogenes Tü494. Subcloning experiments revealed that Ptt resistance can be assigned to a 0.8-kb Bg/II fragment. This fragment was shown to include the Ptt-resistance promoter. Subcloning this fragment downstream from the lacZ promoter conferred Ptt resistance to Escherichia coli JM83 in one of the two possible orientations. Biochemical investigations revealed that the Bg/II fragment codes for a Pt N-acetyltransferase.
Collapse
Affiliation(s)
- E Strauch
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, F.R.G
| | | | | |
Collapse
|
8
|
|
9
|
|
10
|
Nakanishi N, Oshida T, Yano S, Takeda K, Yamaguchi T, Ito Y. Construction and characterization of new cloning vectors derived from Streptomyces griseobrunneus plasmid pBT1 and containing amikacin and sulfomycin resistance genes. Plasmid 1986; 15:217-29. [PMID: 3714878 DOI: 10.1016/0147-619x(86)90040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three cryptic plasmids, designated pBT1 (5.6 kb), pBT2 (9.7 kb), and pBT3 (16.6 kb), were isolated from Streptomyces griseobrunneus ISP5066 and physically characterized. pBT1 and pBT2, which differ by a 4.1-kb segment, are high copy-number plasmids (40-100 copies per chromosome) that coexist with each other. pBT3 is a low copy-number plasmid. Vectors containing amikacin (or kanamycin) and sulfomycin (or thiostrepton) resistance genes from Streptomyces litmocidini ISP5164 and Streptomyces viridochromogenes subsp. sulfomycini ATCC 29776, respectively, were constructed from pBT1. One such vector, pBT37, has unique restriction sites for cloning, including BglII, XhoI, PvuII, ClaI, and SacI, with the PvuII and ClaI sites allowing clone recognition by insertional inactivation of sulfomycin resistance. Since many Streptomyces species were very sensitive to amikacin and sulfomycin, these resistance genes serve as useful selective markers. pBT37 could transform several Streptomyces strains that produce antibiotics such as tetracyclines, macrolides, beta-lactams, and aminoglycosides. This plasmid is a potentially useful vector for cloning antibiotic biosynthetic genes.
Collapse
|
11
|
Haupt I, Thrum H, Noack D. Self-resistance of the nourseothricin-producing strain Streptomyces noursei. J Basic Microbiol 1986; 26:323-8. [PMID: 3027297 DOI: 10.1002/jobm.3620260604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nourseothricin producer Streptomyces noursei is resistant to its own antibiotic in submerged as well as in surface culture. The strain shows no cross-resistance to miscoding inducing aminoglycoside antibiotics. Cell free extracts of Streptomyces noursei inactivate nourseothricin by enzymatic acetylation. The pattern of cross-resistance of Streptomyces noursei correlates well with the substrate specificity of the nourseothricin acetyltransferase. Furthermore, the acetyltransferase activity parallels the resistance level in nourseothricin-producing strains and nonproducing mutants. The results suggest that the nourseothricin acetyltransferase is important in the self-defence strategy of the nourseothricin-producing strain.
Collapse
|
12
|
Thompson J, Skeggs PA, Cundliffe E. Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. MOLECULAR & GENERAL GENETICS : MGG 1985; 201:168-73. [PMID: 3866905 DOI: 10.1007/bf00425655] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When DNA fragments from Micromonospora purpurea (the producer of gentamicin) were cloned in Streptomyces lividans, a gentamicin-resistant strain was obtained in which the ribosomes were highly resistant both to gentamicin and to kanamycin. Reconstitution analysis revealed that such resistance resulted from some property of their 16S RNA. Extracts from the clone contained methylase activity which acted on 16S RNA within E. coli 30S ribosomal subunits and rendered them resistant to gentamicin and kanamycin.
Collapse
|
13
|
Skeggs PA, Thompson J, Cundliffe E. Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. MOLECULAR & GENERAL GENETICS : MGG 1985; 200:415-21. [PMID: 3862930 DOI: 10.1007/bf00425725] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A single gene from Streptomyces tenjimariensis, conferring resistance to kanamycin, apramycin and sisomicin, has been cloned in Streptomyces lividans. The mechanism of resistance involves methylation of 16S RNA in the 30S ribosomal subunit.
Collapse
|
14
|
Moreau N, Jaxel C, Le Goffic F. Comparison of fortimicins with other aminoglycosides and effects on bacterial ribosome and protein synthesis. Antimicrob Agents Chemother 1984; 26:857-62. [PMID: 6395800 PMCID: PMC180039 DOI: 10.1128/aac.26.6.857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fortimicins are bicyclic aminoglycoside antibiotics that contain a fortamine moiety instead of the deoxystreptamine found in other aminoglysides. Fortimicin A had a bactericidal effect on Escherichia coli and Staphylococcus epidermidis and was found to inhibit protein synthesis in vivo. In vitro, fortimicin A inhibited polyuridylic acid-directed phenylalanine polymerization and induced misreading, as shown by leucine incorporation. In contrast, fortimicin B had no effect on either polymerization or misreading. In assays programmed with natural mRNA, only a weak polymerization inhibition effect was observed with fortimicin A, whereas a strong stimulation was seen in the presence of fortimicin B. Both fortimicins A and B inhibited dissociation of 70S ribosomes into their subunits and neither was able to displace [3H]dihydrostreptomycin, [3H]tobramycin, or [3H]gentamicin from their respective binding sites on the 70S particle.
Collapse
|
15
|
Piendl W, Böck A, Cundliffe E. Involvement of 16S ribosomal RNA in resistance of the aminoglycoside-producers Streptomyces tenjimariensis, Streptomyces tenebrarius and Micromonospora purpurea. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:24-9. [PMID: 6083433 DOI: 10.1007/bf00327918] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Resistance to aminoglycoside antibiotics in Micromonospora purpurea (the producer of gentamicin C complex), Streptomyces tenebrarius (the nebramycin producer) and Streptomyces tenjimariensis (which makes istamycin) occurs at the level of the ribosome. Reconstitution analysis has revealed, in each case, that 16S rRNA plays a critical role in determining such resistance.
Collapse
|
16
|
Nakano MM, Mashiko H, Ogawara H. Cloning of the kanamycin resistance gene from a kanamycin-producing Streptomyces species. J Bacteriol 1984; 157:79-83. [PMID: 6690428 PMCID: PMC215132 DOI: 10.1128/jb.157.1.79-83.1984] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A kanamycin-producing strain, Streptomyces kanamyceticus ISP5500, is resistant to kanamycin. A kanamycin resistance determinant was cloned from S. kanamyceticus into Streptomyces lividans 1326, using the plasmid vector pIJ702. The resulting plasmid, pMCP5, could also transform Streptomyces lavendulae S985 and Streptomyces parvulus 2283 to kanamycin resistance. Transformants carrying pMCP5 were markedly more resistant than S. kanamyceticus to the aminoglycoside antibiotics sisomicin, tobramycin, amikacin, and gentamicin. Studies in vitro polyphenylalanine synthesis showed that strains carrying pMCP5 contained kanamycin-resistant ribosomes. However, growing S. kanamyceticus contained kanamycin-sensitive ribosomes. Ribosomes from S. kanamyceticus grown under kanamycin-producing conditions were kanamycin resistant.
Collapse
|
17
|
|
18
|
Keeratipibul S, Sugiyama M, Nomi R. Mechanism of resistance to streptothricin of a producing microorganism. Biotechnol Lett 1983. [DOI: 10.1007/bf00132225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Pérez-González JA, Vara J, Jiménez A. Acetylation of puromycin by Streptomyces alboniger the producing organism. Biochem Biophys Res Commun 1983; 113:772-7. [PMID: 6870889 DOI: 10.1016/0006-291x(83)91066-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Streptomyces alboniger produces the antibiotic puromycin and expresses an enzymic activity which acetylates the drug using acetyl CoA. The N-acetyl-puromycin formed is biologically inactive against protein synthesis in Bacillus subtilis (as assayed in vivo).
Collapse
|
20
|
Gräfe U. [Secondary metabolites as endogenous effectors of microbial cytodifferentiation]. ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE 1983; 23:319-43. [PMID: 6624144 DOI: 10.1002/jobm.3630230507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present survey covers the regulatory role of microbial secondary metabolites and related compounds as endogenous signals of cell differentiation of the producing organisms. Several antibiotics have been shown to exert autoregulatory effects on differentiation-associated functions. The mechanisms of self-protection of the producing cells against the autotoxicity of secondary metabolites are discussed in terms of an integral part of the modulation of signal strength. As a further topic, the review deals with the hormone-like interference of particular metabolites with differentiating cells. Conclusive discussion concerns the potential use of microbial signal molecules either as tools for directed manipulations of product syntheses or as pharmaceutics.
Collapse
|
21
|
Piendl W, Böck A. Ribosomal resistance in the gentamicin producer organism Micromonospora purpurea. Antimicrob Agents Chemother 1982; 22:231-6. [PMID: 6927285 PMCID: PMC183717 DOI: 10.1128/aac.22.2.231] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mechanism of resistance of the gentamicin-producing organism Micromonospora purpurea was analyzed. Determination of minimal inhibitory concentrations revealed high resistance to the 4,6-substituted deoxystreptamine aminoglycosides amikacin, gentamicin, kanamycin, netilmicin, sisomicin, and tobramycin and also to lividomycin A and hygromycin B, but susceptibility to streptomycin, dihydrostreptomycin, paromomycin, and neomycin during all phases of the growth cycle. The nonproducing, closely related Micromonospora melanosporea was susceptible to these compounds. In agreement with results from previous studies (R. Benveniste and J. Davies, Proc. Natl. Acad. Sci. U.S.A. 70:2276-2280, 1973), extracts from M. purpurea showed no activity of enzymes specifically modifying gentamicin. 70S ribosomes from M. purpurea but not from M. melanosporea were resistant to inhibition by gentamicin, kanamycin, tobramycin, and lividomycin in a polyuridylic acid-dependent polyphenylalanine synthesis system and susceptible to those compounds which were inhibitory in vivo. The former antibiotics were also unable to induce misreading. Subunit exchange experiments between M. purpurea and M. melanosporea showed that the main site for inhibition and induction of misreading is the 30S subunit (up to gentamicin concentrations of 10 micrograms/ml).
Collapse
|