1
|
Mori M, Jeelani G, Masuda Y, Sakai K, Tsukui K, Waluyo D, Tarwadi, Watanabe Y, Nonaka K, Matsumoto A, Ōmura S, Nozaki T, Shiomi K. Identification of natural inhibitors of Entamoeba histolytica cysteine synthase from microbial secondary metabolites. Front Microbiol 2015; 6:962. [PMID: 26441896 PMCID: PMC4568418 DOI: 10.3389/fmicb.2015.00962] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Amebiasis is a common worldwide diarrheal disease, caused by the protozoan parasite, Entamoeba histolytica. Metronidazole has been a drug of choice against amebiasis for decades despite its known side effects and low efficacy against asymptomatic cyst carriers. E. histolytica is also capable of surviving sub-therapeutic levels of metronidazole in vitro. Novel drugs with different mode of action are therefore urgently needed. The sulfur assimilatory de novo L-cysteine biosynthetic pathway is essential for various cellular activities, including the proliferation and anti-oxidative defense of E. histolytica. Since the pathway, consisting of two reactions catalyzed by serine acetyltransferase (SAT) and cysteine synthase (CS, O-acetylserine sulfhydrylase), does not exist in humans, it is a rational drug target against amebiasis. To discover inhibitors against the CS of E. histolytica (EhCS), the compounds of Kitasato Natural Products Library were screened against two recombinant CS isozymes: EhCS1 and EhCS3. Nine compounds inhibited EhCS1 and EhCS3 with IC50 values of 0.31-490 μM. Of those, seven compounds share a naphthoquinone moiety, indicating the structural importance of the moiety for binding to the active site of EhCS1 and EhCS3. We further screened >9,000 microbial broths for CS inhibition and purified two compounds, xanthofulvin and exophillic acid from fungal broths. Xanthofulvin inhibited EhCS1 and EhCS3. Exophillic acid showed high selectivity against EhCS1, but exhibited no inhibition against EhCS3. In vitro anti-amebic activity of the 11 EhCS inhibitors was also examined. Deacetylkinamycin C and nanaomycin A showed more potent amebicidal activity with IC50 values of 18 and 0.8 μM, respectively, in the cysteine deprived conditions. The differential sensitivity of trophozoites against deacetylkinamycin C in the presence or absence of L-cysteine in the medium and the IC50 values against EhCS suggest the amebicidal effect of deacetylkinamycin C is due to CS inhibition.
Collapse
Affiliation(s)
- Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious DiseasesTokyo, Japan
| | - Yui Masuda
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Kazunari Sakai
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Kumiko Tsukui
- Department of Parasitology, National Institute of Infectious DiseasesTokyo, Japan
| | - Danang Waluyo
- Biotech Center, Badan Pengkajian Dan Penerapan TeknologiBanten, Indonesia
| | - Tarwadi
- Biotech Center, Badan Pengkajian Dan Penerapan TeknologiBanten, Indonesia
| | - Yoshio Watanabe
- Research and Development Division, MicroBiopharm Japan Co. LtdIwata, Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Atsuko Matsumoto
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious DiseasesTokyo, Japan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| |
Collapse
|
2
|
Park HB, Lee JK, Lee KR, Kwon HC. Angumycinones A and B, two new angucyclic quinones from Streptomyces sp. KMC004 isolated from acidic mine drainage. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.10.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Kim K, Boyd VA, Sobti A, Sulikowski GA. A Unified Strategy for the Total Synthesis of the Angucycline Antibiotics SF 2315A, Urdamycinone B, and the Shunt Metabolite 104-2. Isr J Chem 2013. [DOI: 10.1002/ijch.199700004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Osman H, Larsen DS, Simpson J. Synthesis of orthogonally protected d-olivoside, 1,3-di-O-acetyl-4-O-benzyl-2,6-dideoxy-d-arabinopyranose, as a C-glycosyl donor. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.03.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Kallio P, Liu Z, Mäntsälä P, Niemi J, Metsä-Ketelä M. Sequential action of two flavoenzymes, PgaE and PgaM, in angucycline biosynthesis: chemoenzymatic synthesis of gaudimycin C. ACTA ACUST UNITED AC 2008; 15:157-66. [PMID: 18291320 DOI: 10.1016/j.chembiol.2007.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/24/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
Abstract
Tailoring steps in aromatic polyketide antibiotic biosynthesis are an important source of structural diversity and, consequently, an intriguing focal point for enzymological studies. PgaE and PgaM from Streptomyces sp. PGA64 are representatives of flavoenzymes catalyzing early post-PKS reactions in angucycline biosynthesis. This in vitro study illustrates that the chemoenzymatic conversion of UWM6 into the metabolite, gaudimycin C, requires multiple closely coupled reactions to prevent intermediate degradation. The NMR structure of gaudimycin C confirms that the reaction cascade involves C12- and C12b-hydroxylation, C2,3-dehydration, and stereospecific ketoreduction at C6. Enzymatic 18O incorporation studies verify that the oxygens at C12 and C12b derive from O2 and H2O, respectively. The results indicate that PgaM deviates mechanistically from flavoprotein monooxygenases, and suggest an alternative catalytic mechanism involving a quinone methide intermediate.
Collapse
Affiliation(s)
- Pauli Kallio
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | |
Collapse
|
7
|
Bililign T, Griffith BR, Thorson JS. Structure, activity, synthesis and biosynthesis of aryl-C-glycosides. Nat Prod Rep 2005; 22:742-60. [PMID: 16311633 DOI: 10.1039/b407364a] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The focus of this review is to highlight the structure, bioactivity and biosynthesis of naturally occurring aryl-C-glycosides. General synthetic methods and their relevance to proposed biochemical mechanisms for the aryl-C-glycoside bond formation are also presented.
Collapse
Affiliation(s)
- Tsion Bililign
- Chemistry Department, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
8
|
Krohn K, Flörke U, Freund C, Hayat N. Biomimetic-Type Synthesis of the Racemic Non-Aromatic Angucyclinones of the SF 2315 and SS 228Y Types. European J Org Chem 2000. [DOI: 10.1002/(sici)1099-0690(200004)2000:8<1627::aid-ejoc1627>3.0.co;2-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Mal D, Roy HN, Hazra NK, Adhikari S. A rapid access to hydroxylated benz[a]anthraquinones: Hypervalent iodine oxidation of β-naphthols. Tetrahedron 1997. [DOI: 10.1016/s0040-4020(96)01119-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Abstract
Bioactive microbial metabolites are attracting increasing attention as useful agents for medicine, veterinary medicine, agriculture, and as unique biochemical tools. A review of the current trends in the discovery of new metabolites shows that the number of active compounds with non-antibiotic type of activity has increased, resulting in an expansion of the variety of bioactivity of microbial metabolites. Factors that contribute to the increased rate of discovery include: development of new methods for activity measurement, exploitation of novel groups of microorganisms as sources of active compounds, new directions for chemical modification, and incorporation of newer knowledge of biotechnology into screening systems. To exemplify this, typical screening methods, and chemical and biological properties of several bioactive compounds obtained by these methods are discussed.
Collapse
Affiliation(s)
- S Omura
- Research Center for Biological Function, Kitasato Institute, Tokyo, Japan
| |
Collapse
|
12
|
Sugai T, Kakeya H, Ohta H. A synthesis of (R)-(-)-mevalonolactone by the combination of enzymatic and chemical methods. Tetrahedron 1990. [DOI: 10.1016/s0040-4020(01)81516-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|