1
|
Cofactor F420, an emerging redox power in biosynthesis of secondary metabolites. Biochem Soc Trans 2022; 50:253-267. [PMID: 35191491 DOI: 10.1042/bst20211286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
Abstract
Cofactor F420 is a low-potential hydride-transfer deazaflavin that mediates important oxidoreductive reactions in the primary metabolism of archaea and a wide range of bacteria. Over the past decade, biochemical studies have demonstrated another essential role for F420 in the biosynthesis of various classes of natural products. These studies have substantiated reports predating the structural determination of F420 that suggested a potential role for F420 in the biosynthesis of several antibiotics produced by Streptomyces. In this article, we focus on this exciting and emerging role of F420 in catalyzing the oxidoreductive transformation of various imine, ketone and enoate moieties in secondary metabolites. Given the extensive and increasing availability of genomic and metagenomic data, these F420-dependent transformations may lead to the discovery of novel secondary metabolites, providing an invaluable and untapped resource in various biotechnological applications.
Collapse
|
2
|
Ye Y, Fu H, Hyster TK. Activation modes in biocatalytic radical cyclization reactions. J Ind Microbiol Biotechnol 2021; 48:kuab021. [PMID: 33674826 PMCID: PMC8210684 DOI: 10.1093/jimb/kuab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Radical cyclizations are essential reactions in the biosynthesis of secondary metabolites and the chemical synthesis of societally valuable molecules. In this review, we highlight the general mechanisms utilized in biocatalytic radical cyclizations. We specifically highlight cytochrome P450 monooxygenases (P450s) involved in the biosynthesis of mycocyclosin and vancomycin, nonheme iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGDs) used in the biosynthesis of kainic acid, scopolamine, and isopenicillin N, and radical S-adenosylmethionine (SAM) enzymes that facilitate the biosynthesis of oxetanocin A, menaquinone, and F420. Beyond natural mechanisms, we also examine repurposed flavin-dependent "ene"-reductases (ERED) for non-natural radical cyclization. Overall, these general mechanisms underscore the opportunity for enzymes to augment and enhance the synthesis of complex molecules using radical mechanisms.
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Drenth J, Trajkovic M, Fraaije MW. Chemoenzymatic Synthesis of an Unnatural Deazaflavin Cofactor That Can Fuel F420-Dependent Enzymes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01506] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jeroen Drenth
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
4
|
A revised biosynthetic pathway for the cofactor F 420 in prokaryotes. Nat Commun 2019; 10:1558. [PMID: 30952857 PMCID: PMC6450877 DOI: 10.1038/s41467-019-09534-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/13/2019] [Indexed: 01/19/2023] Open
Abstract
Cofactor F420 plays critical roles in primary and secondary metabolism in a range of bacteria and archaea as a low-potential hydride transfer agent. It mediates a variety of important redox transformations involved in bacterial persistence, antibiotic biosynthesis, pro-drug activation and methanogenesis. However, the biosynthetic pathway for F420 has not been fully elucidated: neither the enzyme that generates the putative intermediate 2-phospho-l-lactate, nor the function of the FMN-binding C-terminal domain of the γ-glutamyl ligase (FbiB) in bacteria are known. Here we present the structure of the guanylyltransferase FbiD and show that, along with its archaeal homolog CofC, it accepts phosphoenolpyruvate, rather than 2-phospho-l-lactate, as the substrate, leading to the formation of the previously uncharacterized intermediate dehydro-F420-0. The C-terminal domain of FbiB then utilizes FMNH2 to reduce dehydro-F420-0, which produces mature F420 species when combined with the γ-glutamyl ligase activity of the N-terminal domain. These new insights have allowed the heterologous production of F420 from a recombinant F420 biosynthetic pathway in Escherichia coli. Cofactor F420 plays crucial roles in bacterial and archaeal metabolism, but its biosynthetic pathway is not fully understood. Here, the authors present the structure of one of the enzymes and provide experimental evidence for a substantial revision of the pathway, including the identification of a new intermediate.
Collapse
|
5
|
Yokoyama K, Lilla EA. C-C bond forming radical SAM enzymes involved in the construction of carbon skeletons of cofactors and natural products. Nat Prod Rep 2018; 35:660-694. [PMID: 29633774 PMCID: PMC6051890 DOI: 10.1039/c8np00006a] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to the end of 2017 C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites. Therefore, free radical mediated C-C bond formations are frequently found in the construction of structurally unique and complex metabolites. This review discusses our current understanding of the functions and mechanisms of C-C bond forming radical SAM enzymes and highlights their important roles in the biosynthesis of structurally complex, naturally occurring organic molecules. Mechanistic consideration of C-C bond formation by radical SAM enzymes identifies the significance of three key mechanistic factors: radical initiation, acceptor substrate activation and radical quenching. Understanding the functions and mechanisms of these characteristic enzymes will be important not only in promoting our understanding of radical SAM enzymes, but also for understanding natural product and cofactor biosynthesis.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
6
|
Discovery and characterization of an F 420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1. Appl Microbiol Biotechnol 2016; 101:2831-2842. [PMID: 27966048 PMCID: PMC5352752 DOI: 10.1007/s00253-016-8038-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/22/2016] [Accepted: 11/26/2016] [Indexed: 12/16/2022]
Abstract
Cofactor F420, a 5-deazaflavin involved in obligatory hydride transfer, is widely distributed among archaeal methanogens and actinomycetes. Owing to the low redox potential of the cofactor, F420-dependent enzymes play a pivotal role in central catabolic pathways and xenobiotic degradation processes in these organisms. A physiologically essential deazaflavoenzyme is the F420-dependent glucose-6-phosphate dehydrogenase (FGD), which catalyzes the reaction F420 + glucose-6-phosphate → F420H2 + 6-phospho-gluconolactone. Thereby, FGDs generate the reduced F420 cofactor required for numerous F420H2-dependent reductases, involved e.g., in the bioreductive activation of the antitubercular prodrugs pretomanid and delamanid. We report here the identification, production, and characterization of three FGDs from Rhodococcus jostii RHA1 (Rh-FGDs), being the first experimental evidence of F420-dependent enzymes in this bacterium. The crystal structure of Rh-FGD1 has also been determined at 1.5 Å resolution, showing a high similarity with FGD from Mycobacterium tuberculosis (Mtb) (Mtb-FGD1). The cofactor-binding pocket and active-site catalytic residues are largely conserved in Rh-FGD1 compared with Mtb-FGD1, except for an extremely flexible insertion region capping the active site at the C-terminal end of the TIM-barrel, which also markedly differs from other structurally related proteins. The role of the three positively charged residues (Lys197, Lys258, and Arg282) constituting the binding site of the substrate phosphate moiety was experimentally corroborated by means of mutagenesis study. The biochemical and structural data presented here provide the first step towards tailoring Rh-FGD1 into a more economical biocatalyst, e.g., an F420-dependent glucose dehydrogenase that requires a cheaper cosubstrate and can better match the demands for the growing applications of F420H2-dependent reductases in industry and bioremediation.
Collapse
|
7
|
Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:724-737. [DOI: 10.1016/j.bbapap.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
8
|
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev 2016; 80:451-93. [PMID: 27122598 DOI: 10.1128/mmbr.00070-15] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.
Collapse
|
9
|
Xia K, Shen GB, Zhu XQ. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile. Org Biomol Chem 2015; 13:6255-68. [DOI: 10.1039/c5ob00538h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
32 F420 coenzyme model were designed and synthesized; their thermodynamic driving forces to release electrons, hydride ions, hydrogen atoms and protons in acetonitrile were determined. The difference between F420 coenzyme and NADH coenzyme as sources of electrons, hydride ions, hydrogen atoms and protons was examined.
Collapse
Affiliation(s)
- Ke Xia
- The State Key Laboratory of Elemento-Organic Chemistry
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Guang-Bin Shen
- The State Key Laboratory of Elemento-Organic Chemistry
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| |
Collapse
|
10
|
Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M. Natural riboflavin analogs. Methods Mol Biol 2014; 1146:41-63. [PMID: 24764087 DOI: 10.1007/978-1-4939-0452-5_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Riboflavin analogs have a good potential to serve as basic structures for the development of novel anti-infectives. Riboflavin analogs have multiple cellular targets, since riboflavin (as a precursor to flavin cofactors) is active at more than one site in the cell. As a result, the frequency of developing resistance to antimicrobials based on riboflavin analogs is expected to be significantly lower. The only known natural riboflavin analog with antibiotic function is roseoflavin from the bacterium Streptomyces davawensis. This antibiotic negatively affects flavoenzymes and FMN riboswitches. Another roseoflavin producer, Streptomyces cinnabarinus, was recently identified. Possibly, flavin analogs with antibiotic activity are more widespread than anticipated. The same could be true for flavin analogs yet to be discovered, which could constitute tools for cellular chemistry, thus allowing a further extension of the catalytic spectrum of flavoenzymes.
Collapse
Affiliation(s)
- Danielle Biscaro Pedrolli
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Wang P, Bashiri G, Gao X, Sawaya MR, Tang Y. Uncovering the Enzymes that Catalyze the Final Steps in Oxytetracycline Biosynthesis. J Am Chem Soc 2013; 135:7138-41. [DOI: 10.1021/ja403516u] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ghader Bashiri
- Structural
Biology Laboratory,
Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological
Sciences, The University of Auckland, Auckland,
New Zealand
| | | | | | | |
Collapse
|
13
|
Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75:321-60. [PMID: 21646432 PMCID: PMC3122625 DOI: 10.1128/mmbr.00030-10] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.
Collapse
Affiliation(s)
| | - Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
- University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
14
|
Bashiri G, Rehan AM, Greenwood DR, Dickson JMJ, Baker EN. Metabolic engineering of cofactor F420 production in Mycobacterium smegmatis. PLoS One 2010; 5:e15803. [PMID: 21209917 PMCID: PMC3012119 DOI: 10.1371/journal.pone.0015803] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/24/2010] [Indexed: 01/16/2023] Open
Abstract
Cofactor F420 is a unique electron carrier in a number of microorganisms including Archaea and Mycobacteria. It has been shown that F420 has a direct and important role in archaeal energy metabolism whereas the role of F420 in mycobacterial metabolism has only begun to be uncovered in the last few years. It has been suggested that cofactor F420 has a role in the pathogenesis of M. tuberculosis, the causative agent of tuberculosis. In the absence of a commercial source for F420, M. smegmatis has previously been used to provide this cofactor for studies of the F420-dependent proteins from mycobacterial species. Three proteins have been shown to be involved in the F420 biosynthesis in Mycobacteria and three other proteins have been demonstrated to be involved in F420 metabolism. Here we report the over-expression of all of these proteins in M. smegmatis and testing of their importance for F420 production. The results indicate that co–expression of the F420 biosynthetic proteins can give rise to a much higher F420 production level. This was achieved by designing and preparing a new T7 promoter–based co-expression shuttle vector. A combination of co–expression of the F420 biosynthetic proteins and fine-tuning of the culture media has enabled us to achieve F420 production levels of up to 10 times higher compared with the wild type M. smegmatis strain. The high levels of the F420 produced in this study provide a suitable source of this cofactor for studies of F420-dependent proteins from other microorganisms and for possible biotechnological applications.
Collapse
Affiliation(s)
- Ghader Bashiri
- Structural Biology Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
15
|
Forouhar F, Abashidze M, Xu H, Grochowski LL, Seetharaman J, Hussain M, Kuzin A, Chen Y, Zhou W, Xiao R, Acton TB, Montelione GT, Galinier A, White RH, Tong L. Molecular insights into the biosynthesis of the F420 coenzyme. J Biol Chem 2008; 283:11832-40. [PMID: 18252724 PMCID: PMC2431047 DOI: 10.1074/jbc.m710352200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/28/2008] [Indexed: 11/06/2022] Open
Abstract
Coenzyme F(420), a hydride carrier, is found in Archaea and some bacteria and has crucial roles in methanogenesis, antibiotic biosynthesis, DNA repair, and activation of antitubercular compounds. CofD, 2-phospho-l-lactate transferase, catalyzes the last step in the biosynthesis of F(420)-0 (F(420) without polyglutamate), by transferring the lactyl phosphate moiety of lactyl(2)diphospho-(5')guanosine to 7,8-didemethyl-8-hydroxy-5-deazariboflavin ribitol (Fo). CofD is highly conserved among F(420)-producing organisms, and weak sequence homologs are also found in non-F(420)-producing organisms. This superfamily does not share any recognizable sequence conservation with other proteins. Here we report the first crystal structures of CofD, the free enzyme and two ternary complexes, with Fo and P(i) or with Fo and GDP, from Methanosarcina mazei. The active site is located at the C-terminal end of a Rossmann fold core, and three large insertions make significant contributions to the active site and dimer formation. The observed binding modes of Fo and GDP can explain known biochemical properties of CofD and are also supported by our binding assays. The structures provide significant molecular insights into the biosynthesis of the F(420) coenzyme. Large structural differences in the active site region of the non-F(420)-producing CofD homologs suggest that they catalyze a different biochemical reaction.
Collapse
Affiliation(s)
- Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mack M, Grill S. Riboflavin analogs and inhibitors of riboflavin biosynthesis. Appl Microbiol Biotechnol 2006; 71:265-75. [PMID: 16607521 DOI: 10.1007/s00253-006-0421-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/06/2006] [Accepted: 03/06/2006] [Indexed: 11/30/2022]
Abstract
Flavins are active components of many enzymes. In most cases, riboflavin (vitamin B(2)) as a coenzyme represents the catalytic part of the holoenzyme. Riboflavin is an amphiphatic molecule and allows a large variety of different interactions with the enzyme itself and also with the substrate. A great number of active riboflavin analogs can readily be synthesized by chemical methods and, thus, a large number of possible inhibitors for many different enzyme targets is conceivable. As mammalian and especially human biochemistry depends on flavins as well, the target of the inhibiting flavin analog has to be carefully selected to avoid unwanted effects. In addition to flavoproteins, enzymes, which are involved in the biosynthesis of flavins, are possible targets for anti-infectives. Only a few flavin analogs or inhibitors of flavin biosynthesis have been subjected to detailed studies to evaluate their biological activity. Nevertheless, flavin analogs certainly have the potential to serve as basic structures for the development of novel anti-infectives and it is possible that, in the future, the urgent need for new molecules to fight multiresistant microorganisms will be met.
Collapse
Affiliation(s)
- Matthias Mack
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Germany.
| | | |
Collapse
|
17
|
Abstract
The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate. The imidazole ring of GTP is hydrolytically opened, yielding a 2,5-diaminopyrimidine that is converted to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction, and dephosphorylation. Condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate affords 6,7-dimethyl-8-ribityllumazine. Dismutation of the lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is recycled in the biosynthetic pathway. The enzymes of the riboflavin pathway are potential targets for antibacterial agents.
Collapse
Affiliation(s)
- Markus Fischer
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany.
| | | |
Collapse
|
18
|
Deppenmeier U. The unique biochemistry of methanogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:223-83. [PMID: 12102556 DOI: 10.1016/s0079-6603(02)71045-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Methanogenic archaea have an unusual type of metabolism because they use H2 + CO2, formate, methylated C1 compounds, or acetate as energy and carbon sources for growth. The methanogens produce methane as the major end product of their metabolism in a unique energy-generating process. The organisms received much attention because they catalyze the terminal step in the anaerobic breakdown of organic matter under sulfate-limiting conditions and are essential for both the recycling of carbon compounds and the maintenance of the global carbon flux on Earth. Furthermore, methane is an important greenhouse gas that directly contributes to climate changes and global warming. Hence, the understanding of the biochemical processes leading to methane formation are of major interest. This review focuses on the metabolic pathways of methanogenesis that are rather unique and involve a number of unusual enzymes and coenzymes. It will be shown how the previously mentioned substrates are converted to CH4 via the CO2-reducing, methylotrophic, or aceticlastic pathway. All catabolic processes finally lead to the formation of a mixed disulfide from coenzyme M and coenzyme B that functions as an electron acceptor of certain anaerobic respiratory chains. Molecular hydrogen, reduced coenzyme F420, or reduced ferredoxin are used as electron donors. The redox reactions as catalyzed by the membrane-bound electron transport chains are coupled to proton translocation across the cytoplasmic membrane. The resulting electrochemical proton gradient is the driving force for ATP synthesis as catalyzed by an A1A0-type ATP synthase. Other energy-transducing enzymes involved in methanogenesis are the membrane-integral methyltransferase and the formylmethanofuran dehydrogenase complex. The former enzyme is a unique, reversible sodium ion pump that couples methyl-group transfer with the transport of Na+ across the membrane. The formylmethanofuran dehydrogenase is a reversible ion pump that catalyzes formylation and deformylation of methanofuran. Furthermore, the review addresses questions related to the biochemical and genetic characteristics of the energy-transducing enzymes and to the mechanisms of ion translocation.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Microbiology and Genetics, Universität Göttingen, Germany
| |
Collapse
|
19
|
Isabelle D, Simpson DR, Daniels L. Large-scale production of coenzyme F420-5,6 by using Mycobacterium smegmatis. Appl Environ Microbiol 2002; 68:5750-5. [PMID: 12406775 PMCID: PMC129890 DOI: 10.1128/aem.68.11.5750-5755.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of coenzyme F420 and its biosynthetic precursor FO was examined with a variety of aerobic actinomycetes to identify an improved source for these materials. Based on fermentation costs, safety, and ease of growth, Mycobacterium smegmatis was the best source for F420-5,6. M. smegmatis produced 1 to 3 micromol of intracellular F420 per liter of culture, which was more than the 0.85 to 1.0 micromol of F420-2 per liter usually obtained with Methanobacterium thermoautotrophicum and approximately 10-fold higher than what was previously reported for the best aerobic actinomycetes. An improved chromatography system using rapidly flowing quaternary aminoethyl ion-exchange material and Florisil was used to more quickly and easily purify F420 than with previous methods.
Collapse
Affiliation(s)
- Dale Isabelle
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
20
|
Choi KP, Kendrick N, Daniels L. Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F(420) and FO biosynthesis. J Bacteriol 2002; 184:2420-8. [PMID: 11948155 PMCID: PMC134996 DOI: 10.1128/jb.184.9.2420-2428.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using the nitroimidazopyran-based antituberculosis drug PA-824 as a selective agent, transposon-generated Mycobacterium bovis strain BCG (M. bovis) mutants that could not make coenzyme F(420) were identified. Four independent mutants that could not make F(420) or the biosynthesis intermediate FO were examined more closely. These mutants contained transposons inserted in the M. bovis homologue of the Mycobacterium tuberculosis gene Rv1173, which we have named fbiC. Complementation of an M. bovis FbiC(-) mutant with fbiC restored the F(420) phenotype. These data demonstrate that fbiC is essential for F(420) production and that FbiC participates in a portion of the F(420) biosynthetic pathway between pyrimidinedione and FO. Homologues of fbiC were found in all 11 microorganisms that have been fully sequenced and that are known to make F(420). Four of these homologues (all from members of the aerobic actinomycetes) coded for proteins homologous over the entire length of the M. bovis FbiC, but in seven microorganisms two separate genes were found to code for proteins homologous with either the N-terminal or C-terminal portions of the M. bovis FbiC. Histidine-tagged FbiC overexpressed in Escherichia coli produced a fusion protein of the molecular mass predicted from the M. bovis BCG sequence (approximately 95,000 Da), as well as three other histidine-tagged proteins of significantly smaller size, which are thought to be proteolysis products of the FbiC fusion protein.
Collapse
Affiliation(s)
- Kwang-Pil Choi
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
21
|
Choi KP, Bair TB, Bae YM, Daniels L. Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F(420) biosynthesis by Mycobacterium bovis BCG. J Bacteriol 2001; 183:7058-66. [PMID: 11717263 PMCID: PMC95553 DOI: 10.1128/jb.183.24.7058-7066.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three transposon Tn5367 mutagenesis vectors (phAE94, pPR28, and pPR29) were used to create a collection of insertion mutants of Mycobacterium bovis strain BCG. A strategy to select for transposon-generated mutants that cannot make coenzyme F(420) was developed using the nitroimidazopyran-based antituberculosis drug PA-824. One-third of 134 PA-824-resistant mutants were defective in F(420) accumulation. Two mutants that could not make F(420)-5,6 but which made the biosynthesis intermediate FO were examined more closely. These mutants contained transposons inserted in two adjacent homologues of Mycobacterium tuberculosis genes, which we have named fbiA and fbiB for F(420) biosynthesis. Homologues of fbiA were found in all seven microorganisms that have been fully sequenced and annotated and that are known to make F(420). fbiB homologues were found in all but one such organism. Complementation of the fbiA mutant with fbiAB and complementation of the fbiB mutant with fbiB both restored the F(420)-5,6 phenotype. Complementation of the fbiA mutant with fbiA or fbiB alone did not restore the F(420)-5,6 phenotype, but the fbiA mutant complemented with fbiA produced F(420)-2,3,4 at levels similar to F(420)-5,6 made by the wild-type strain, but produced much less F(420)-5. These data demonstrate that both genes are essential for normal F(420)-5,6 production and suggest that the fbiA mutation has a partial polar effect on fbiB. Reverse transcription-PCR data demonstrated that fbiA and fbiB constitute an operon. However, very low levels of fbiB mRNA are produced by the fbiA mutant, suggesting that a low-level alternative start site is located upstream of fbiB. The specific reactions catalyzed by FbiA and FbiB are unknown, but both function between FO and F(420)-5,6, since FO is made by both mutants.
Collapse
Affiliation(s)
- K P Choi
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
22
|
Ebert S, Rieger PG, Knackmuss HJ. Function of coenzyme F420 in aerobic catabolism of 2,4, 6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J Bacteriol 1999; 181:2669-74. [PMID: 10217752 PMCID: PMC93703 DOI: 10.1128/jb.181.9.2669-2674.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,4,6-Trinitrophenol (picric acid) and 2,4-dinitrophenol were readily biodegraded by the strain Nocardioides simplex FJ2-1A. Aerobic bacterial degradation of these pi-electron-deficient aromatic compounds is initiated by hydrogenation at the aromatic ring. A two-component enzyme system was identified which catalyzes hydride transfer to picric acid and 2,4-dinitrophenol. Enzymatic activity was dependent on NADPH and coenzyme F420. The latter could be replaced by an authentic preparation of coenzyme F420 from Methanobacterium thermoautotrophicum. One of the protein components functions as a NADPH-dependent F420 reductase. A second component is a hydride transferase which transfers hydride from reduced coenzyme F420 to the aromatic system of the nitrophenols. The N-terminal sequence of the F420 reductase showed high homology with an F420-dependent NADP reductase found in archaea. In contrast, no N-terminal similarity to any known protein was found for the hydride-transferring enzyme.
Collapse
Affiliation(s)
- S Ebert
- Institut für Mikrobiologie der Universität Stuttgart, Stuttgart, Germany
| | | | | |
Collapse
|
23
|
Purwantini E, Daniels L. Molecular analysis of the gene encoding F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis. J Bacteriol 1998; 180:2212-9. [PMID: 9555906 PMCID: PMC107150 DOI: 10.1128/jb.180.8.2212-2219.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gene fgd, which codes for F420-dependent glucose-6-phosphate dehydrogenase (FGD), was cloned from Mycobacterium smegmatis, and its sequence was determined and analyzed. A homolog of FGD which has a very high similarity to the M. smegmatis FGD-derived amino acid sequence was identified in Mycobacterium tuberculosis. FGD showed significant homology with F420-dependent N5,N10-methylene-tetrahydromethanopterin reductase (MER) from methanogenic archaea and with several hypothetical proteins from M. tuberculosis and Archaeoglobus fulgidus, but FGD showed no significant homology with NADP-dependent glucose-6-phosphate dehydrogenases. Multiple alignment of FGD and MER proteins revealed four conserved consensus sequences. Multiple alignment of FGD with the hypothetical proteins also revealed portions of the same conserved sequences. Moderately high levels of FGD were expressed in Escherichia coli BL21(DE3) carrying fgd in pBluescript.
Collapse
Affiliation(s)
- E Purwantini
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
24
|
Klein AR, Berk H, Purwantini E, Daniels L, Thauer RK. Si-face stereospecificity at C5 of coenzyme F420 for F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis and F420-dependent alcohol dehydrogenase from Methanoculleus thermophilicus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:93-7. [PMID: 8706724 DOI: 10.1111/j.1432-1033.1996.0093u.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coenzyme F420 is a 5-deazaflavin. Upon reduction, 1,5-dihydro-coenzyme F420 is formed with a prochiral center at C5. In this study we report that the F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis and the F420-dependent alcohol dehydrogenase from Methanoculleus thermophilicus are Si-face stereospecific with respect to C5 of the 5-deazaflavin. These results were obtained by following the stereochemical course of the reversible incorporation of 3H into F420 from tritium-labeled substrates. Our findings bring to eight the number of coenzyme-F420-dependent enzymes shown to be Si-face stereospecific. No F420-dependent enzyme with Re-face stereospecificity is known. This is noteworthy since coenzyme F420 is functionally similar to pyridine nucleotides for which both Si-face and Re-face specific enzymes have been found.
Collapse
Affiliation(s)
- A R Klein
- Max-Planck-Institut für terrestrische Mikrobiologie, Philipps-Universität, Marburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Purwantini E, Daniels L. Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis. J Bacteriol 1996; 178:2861-6. [PMID: 8631674 PMCID: PMC178021 DOI: 10.1128/jb.178.10.2861-2866.1996] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A variety of Mycobacterium species contained the 5-deazaflavin coenzyme known as F420. Mycobacterium smegmatis was found to have a glucose-6-phosphate dehydrogenase that was dependent on F420 as an electron acceptor and which did not utilize NAD or NADP. The enzyme was purified by ammonium sulfate fractionation, phenyl-Sepharose column chromatography, F420-ether-linked aminohexyl-Sepharose 4B affinity chromatography, and quaternary aminoethyl-Sephadex column chromatography, and the sequence of the first 26 N-terminal amino acids has been determined. The response of enzyme activity to a range of pHs revealed a two-peak pattern, with maxima at pH 5.5 and 8.0. The apparent Km values for F420 and glucose-6-phosphate were, respectively, 0.004 and 1.6 mM. The apparent native and subunit molecular masses were 78,000 and approximately 40,000 Da, respectively.
Collapse
Affiliation(s)
- E Purwantini
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
26
|
Abstract
Actinomycetes represent the microbial group richest in production of variable secondary metabolites. These mostly bioactive molecules are the end products of complex multistep biosynthetic pathways. Recent progress in the molecular genetics and biochemistry of the biosynthetic capacities of actinomycetes enables first attempts to redesign these pathways in a directed fashion. However, in contrast to several examples of designed biochemical improvement of primary metabolic processes in microorganisms, none of the products or strains derived from pathway engineering in actinomycetes discussed herein have reached pilot or production scale. The main reasons for this slow progress are the complicated pathways themselves, their complex regulation during the actinomycete cell cycle, and their uniqueness, as most pathways and products are specific for a strain rather than for a given species or larger taxonomic group. However, the modular use of a minimum of very similar enzymes and their conversion of similar intermediates to form the building blocks for the production of a maximum of divergent end products gives hope for the future application of these genetic models for the redesign of complex pathways for modified or new natural products. Several strategies that can be followed to reach this aim are discussed, mainly for the variable 6-deoxyhexose metabolism as an ubiquitously applicable example.
Collapse
|
27
|
Purwantini E, Mukhopadhyay B, Spencer RW, Daniels L. Effect of temperature on the spectral properties of coenzyme F420 and related compounds. Anal Biochem 1992; 205:342-50. [PMID: 1443583 DOI: 10.1016/0003-2697(92)90446-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The uv-visible spectra of 7,8-didemethyl-8-hydroxy-5-deazaflavin-5'-phosphoryllactyl glutamate (coenzyme F420), a naturally occurring 5-deazaflavin derivative, in three different buffers changed with a rise in temperature; the effect on the extinction coefficient at 420 nm (epsilon 420) was as follows: In phosphate-buffered solutions at pH less than 7.5, the epsilon 420 increased (at pH 5.0 for a temperature shift from 15 to 60 degrees C, delta epsilon 420 was +87%), but between pH 7.5 and 8, epsilon 420 changed very little. At pH greater than 8.0 in phosphate- or borate-buffered solutions, epsilon 420 decreased slightly. In morpholineethanesulfonic acid (Mes)-buffered F420 solutions at pH 5 and 5.5, epsilon 420 changed very little, whereas at pH 6-8, the epsilon 420 decreased. Absorbance of F420 at 401 nm in phosphate buffer at pH 5 to 9 was not significantly affected by temperature. Changes in epsilon 420 due to temperature change corresponded to changes in the pKa of 8-OH of the deazaflavin molecule; studies with adenylated F420 showed that the 8-OH of F420 was responsible for these changes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Purwantini
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
28
|
Mayerl F, Piret J, Kiener A, Walsh CT, Yasui A. Functional expression of 8-hydroxy-5-deazaflavin-dependent DNA photolyase from Anacystis nidulans in Streptomyces coelicolor. J Bacteriol 1990; 172:6061-5. [PMID: 2120199 PMCID: PMC526930 DOI: 10.1128/jb.172.10.6061-6065.1990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gene encoding Anacystis nidulans 5-deazaflavin-dependent photolyase (phr) was inserted into the Streptomyces vector pIJ385 to form a transcriptional fusion with the neomycin resistance (aph) gene. The resulting plasmid, pANPL, was introduced into Streptomyces coelicolor, a host which exhibits no detectable photolyase activity and provides 5-deazaflavins. Transformants expressed functional photolyase and could be cultured at much higher cell densities than A. nidulans. A two-step affinity protocol was used to purify photolyase to homogeneity. High-pressure liquid chromatographic analysis established the presence of 5-deazaflavin cofactors in the enzyme, showing that this expression system allows heterologous production of 5-deazaflavin-class photolyases.
Collapse
Affiliation(s)
- F Mayerl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|