1
|
Labuda R, Bacher M, Rosenau T, Gratzl H, Doppler M, Hager S, Marko D, Wiesner C, Očková M, Ollinger N, Wagner M, Schüller C, Strauss J. Chemical composition of anti-microbially active fractions derived from extract of filamentous fungus Keratinophyton Lemmensii including three novel bioactive compounds. Sci Rep 2024; 14:25310. [PMID: 39455635 PMCID: PMC11511975 DOI: 10.1038/s41598-024-75510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Screening for new bioactive microbial metabolites, we found a novel okaramine derivative, for which we propose the trivial name lemmokaramine, as well as two already known okaramine congeners - okaramine H and okaramine J - responsible for antimicrobial activity of the recently described microscopic filamentous fungus, Keratinophyton lemmensii BiMM-F76 (= CCF 6359). In addition, two novel substances, a new cyclohexyl denominated lemmensihexol and a new tetrahydroxypyrane denominated lemmensipyrane, were purified and characterized. The compounds were isolated from the culture extract of the fungus grown on modified yeast extract sucrose medium by means of flash chromatography followed by preparative HPLC. The chemical structures were elucidated by NMR and LC-MS. The new okaramine (lemmokaramine) exerted antimicrobial activity against Gram-positive and Gram-negative bacteria, yeasts and fungi and anticancer activity against different mammalian cell lines (Caco-2, HCT116, HT29, SW480, MCM G1, and MCM DLN). Furthermore, we found a significant antioxidant effect of lemmokaramine following H2O2 treatment indicated by activation of the Nrf2 pathway. This is the first report describing analysis and structural elucidation of bioactive metabolites for the onygenalean genus Keratinophyton.
Collapse
Affiliation(s)
- Roman Labuda
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
| | - Markus Bacher
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
| | - Thomas Rosenau
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, 20500, Turku, Finland
| | - Hannes Gratzl
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
| | - Maria Doppler
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
| | - Sonja Hager
- Department for Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, 1090, Vienna, Austria
| | - Doris Marko
- Department for Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, 1090, Vienna, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Krems AT, 3500, Krems, Austria
| | - Monika Očková
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Krems AT, 3500, Krems, Austria
| | - Nicole Ollinger
- FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Stelzhamerstr. 23, 4600, Wels, Austria
| | - Martin Wagner
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Christoph Schüller
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
| | - Joseph Strauss
- Core Facility Bioactive Molecules, Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
| |
Collapse
|
2
|
Shabana S, Lakshmi KR, Satya AK. An Updated Review of Secondary Metabolites from Marine Fungi. Mini Rev Med Chem 2021; 21:602-642. [PMID: 32981503 DOI: 10.2174/1389557520666200925142514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022]
Abstract
Marine fungi are valuable and richest sources of novel natural products for medicinal and pharmaceutical industries. Nutrient depletion, competition or any other type of metabolic stress which limits marine fungal growth promotes the formation and secretion of secondary metabolites. Generally secondary metabolites can be produced by many different metabolic pathways and include antibiotics, cytotoxic and cyto-stimulatory compounds. Marine fungi produce many different types of secondary metabolites that are of commercial importance. This review paper deals with around 187 novel compounds and 212 other known compounds with anticancer and antibacterial activities with a special focus on the period from 2011-2019. Furthermore, this review highlights the sources of organisms, chemical classes and biological activities (anticancer and antibacterial) of metabolites, that were isolated and structurally elucidated from marine fungi to throw a helping hand for novel drug development.
Collapse
Affiliation(s)
- Syed Shabana
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| | - K Rajya Lakshmi
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| | - A Krishna Satya
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| |
Collapse
|
3
|
Choi BK, Jo SH, Choi DK, Trinh PTH, Lee HS, Anh CV, Van TTT, Shin HJ. Anti-Neuroinflammatory Agent, Restricticin B, from the Marine-Derived Fungus Penicillium janthinellum and Its Inhibitory Activity on the NO Production in BV-2 Microglia Cells. Mar Drugs 2020; 18:md18090465. [PMID: 32937930 PMCID: PMC7551942 DOI: 10.3390/md18090465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
A new compound containing a triene, a tetrahydropyran ring and glycine ester functionalities, restricticin B (1), together with four known compounds (2–5) were obtained from the EtOAc extract of the marine-derived fungus Penicillium janthinellum. The planar structure of 1 was determined by detailed analyses of MS, 1D and 2D NMR data. The relative and absolute configurations of 1 were established via the analyses of NOESY spectroscopy data, the comparison of optical rotation values with those of reported restricticin derivatives and electronic circular dichroism (ECD). All the compounds were screened for their anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced BV-2 microglia cells. Restricticin B (1) and N-acetyl restricticin (2) exhibited anti-neuroinflammatory effects by suppressing the production of pro-inflammatory mediators in activated microglial cells.
Collapse
Affiliation(s)
- Byeoung-Kyu Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (B.-K.C.); (H.-S.L.); (C.V.A.)
| | - Song-Hee Jo
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju 27478, Korea; (S.-H.J.); (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju 27478, Korea; (S.-H.J.); (D.-K.C.)
| | - Phan Thi Hoai Trinh
- Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam; (P.T.H.T.); (T.T.T.V.)
| | - Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (B.-K.C.); (H.-S.L.); (C.V.A.)
| | - Cao Van Anh
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (B.-K.C.); (H.-S.L.); (C.V.A.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Tran Thi Thanh Van
- Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam; (P.T.H.T.); (T.T.T.V.)
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (B.-K.C.); (H.-S.L.); (C.V.A.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-51-664-3341; Fax: +82-51-664-3340
| |
Collapse
|
4
|
Barrett AGM, Bennett AJ, Menzer S, Smith ML, White AJP, Williams DJ. Applications of Crotonyldiisopinocampheylboranes in Synthesis: Total Synthesis of Restrictinol. J Org Chem 1999; 64:162-171. [PMID: 11674099 DOI: 10.1021/jo9815305] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total synthesis of restrictinol, the hydrolysis product of the antifungal natural product restricticin, starting from commercially available methyl (S)-(+)-3-hydroxy-2-methylpropionate is described. Key stages in the strategy involved (i) the use of Brown's allylboration chemistry to construct an acyclic intermediate bearing three of the four stereogenic centers of the natural product, (ii) formation of a C-glycosidic vinyl iodide, and (iii) introduction of the triene side chain via a Suzuki coupling reaction.
Collapse
Affiliation(s)
- Anthony G. M. Barrett
- Department of Chemistry, Imperial College of Science Technology and Medicine, London SW7 2AY, England
| | | | | | | | | | | |
Collapse
|