1
|
Qi J, Kang SJ, Zhao L, Gao JM, Liu C. Natural and engineered xylosyl products from microbial source. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:13. [PMID: 38296905 PMCID: PMC10830979 DOI: 10.1007/s13659-024-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Glycosylation is a prevalent post-modification found in natural products and has a significant impact on the structural diversity and activity variation of natural products. Glucosylation is the most common type of glycosylation, whereas xylosylation is relatively rare. Despite their unique chemical structures and beneficial activities, xylosylated natural products from microorganisms have received little attention. This review provides, for the first time, a comprehensive summary of 126 microbial-derived xylosylated natural products, including xylosyl-cyathane diterpenes, xylosylated triterpenes, xylosyl aromatic compounds, and others. Among these compounds, xylosyl-cyathane diterpenes represent the highest number of derivatives, followed by xylosylated triterpenes. Xylosyl compounds from bacterial sources have less defined structural profiles compared to those from fungi. The characterization of xylosyltransferase EriJ from Basidiomycota extended the structural diversity of xylosyl cyathane diterpenes. This work provides a valuable reference for the research and use of xylosyltransferase for drug discovery and synthetic chemistry. Further work is needed to explore the potential applications of microbial derived xylosyl compounds and to develop novel xylosyl transferases. With the deepening of genomic sequencing of medicinal fungi, more biosynthesis of bioactive xylosyl compounds is expected to be elucidated in the future.
Collapse
Affiliation(s)
- Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an, 710077, China.
- Key Laboratory for Enzyme and Enzyme‑Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Shi-Jie Kang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Ling Zhao
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an, 710077, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Chengwei Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory for Enzyme and Enzyme‑Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev 2015; 44:7591-697. [PMID: 25735878 PMCID: PMC4560691 DOI: 10.1039/c4cs00426d] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts.
Collapse
Affiliation(s)
- Sherif I Elshahawi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Madan K Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Abstract
Lectins are proteins of non-immune origin that bind specific carbohydrates without chemical modification. Coupled with the emerging biological and pathological significance of carbohydrates, lectins have become extensively used as research tools in glycobiology. However, lectin-based drug development has been impeded by high manufacturing costs, low chemical stability, and the potential risk of initiating an unfavorable immune response. As alternatives to lectins, non-protein small molecules having carbohydrate-binding properties (lectin mimics) are currently attracting a great deal of attention because of their ease of preparation and chemical modification. Lectin mimics of synthetic origin are divided roughly into two groups, boronic acid-dependent and boronic acid-independent lectin mimics. This article outlines their representative architectures and carbohydrate-binding properties, and discusses their therapeutic potential by reviewing recent attempts to develop antiviral and antimicrobial agents using their architectures. We also focus on the naturally occurring lectin mimics, pradimicins and benanomicins. They are the only class of non-protein natural products having a C-type lectin-like ability to recognize d-mannopyranosides in the presence of Ca2 + ions. Their molecular basis of carbohydrate recognition and therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Yu Nakagawa
- Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | |
Collapse
|
4
|
Zilke L, Hall DG. Synthetic Studies Towards the Core Tricyclic Ring System of Pradimicin A. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Nakagawa Y, Ito Y. Carbohydrate-Binding Molecules with Non-Peptidic Skeletons. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Affiliation(s)
- Jonas J. Forsman
- Laboratory of Organic Chemistry, Åbo Akademi University, FI-20500 Åbo, Finland
| | - Reko Leino
- Laboratory of Organic Chemistry, Åbo Akademi University, FI-20500 Åbo, Finland
| |
Collapse
|
7
|
Tamiya M, Ohmori K, Kitamura M, Kato H, Arai T, Oorui M, Suzuki K. General Synthesis Route to Benanomicin-Pradimicin Antibiotics. Chemistry 2007; 13:9791-823. [PMID: 17907132 DOI: 10.1002/chem.200700863] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A general approach to the regio- and stereoselective total synthesis of the benanomicin-pradimicin antibiotics (BpAs) is described. Construction of the aglycon has been achieved by 1) the diastereoselective ring-opening of a biaryl lactone by using (R)-valinol as a chiral nucleophile and 2) the stereocontrolled semi-pinacol cyclization of the aldehyde acetal by using SmI(2) in the presence of BF(3)OEt(2) and a proton source to afford the ABCD tetracyclic monoprotected diol. This strategy enabled us to control the two stereogenic sites in the B ring (C-5 and C-6) and the regioselective introduction of the carbohydrate moiety. The ABCD tetracycle could serve as an ideal platform for the divergent access to various BpAs. The amino acid (D-alanine) was introduced onto the ABCD tetracycle. Glycosylation was promoted by the combination of Cp(2)HfCl(2) and AgOTf (1:2 ratio). Construction of the E ring followed by deprotection completed the first total synthesis of benanomicin A (2 a), benanomicin B (2 b), and pradimicin A (1 a). The route is flexible enough to allow the synthesis of other congeners differing in their amino acid and carbohydrate moieties.
Collapse
Affiliation(s)
- Minoru Tamiya
- Department of Chemistry, Tokyo Institute of Technology, SORST-JST, 2-12-1 O-okayama, Meguro-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Hu M, Ishizuka Y, Igarashi Y, Oki T, Nakanishi H. Interaction of three pradimicin derivatives with divalent cations in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2000; 56:1233-1243. [PMID: 10845552 DOI: 10.1016/s1386-1425(00)00229-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study focused on further analysis of the aggregation behavior of pradimicin derivatives and their interaction with cations in aqueous solution. BMY was compared with two other pradimicin antibiotics (T2 and FB) with the same aglycone moiety but consisting of different substitute groups. The surface tension measurement showed a clear critical micelle concentration at 1-2 mM of the BMY aqueous solution. The role of Zn2+ in replacing the Ca2+ was examined using 1H nuclear magnetic resonance (NMR) method. From changes in the NMR spectrum and precipitability, it was concluded that zinc ion has lower affinity and higher precipitating ability to BMY than the divalent cations of alkaline earth metal. The aggregation behavior of T2 and FB in aqueous solution was also studied using NMR method. The results suggest that the supramolecular behavior of T2 is similar to BMY whether or not Ca2+ ions are present in solution and that there are two binding sites for calcium ions in a T2 molecule. Unlike BMY and T2, the NMR spectrum of FB does not show distinct change upon Ca2+ addition. The interaction of pradimicin antibiotics with divalent metal ions was thought to be related to ionic electronegativity and to the amphoteric property of the antibiotics.
Collapse
Affiliation(s)
- M Hu
- National Institute of Bioscience and Human-Technology, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
9
|
Groll AH, Piscitelli SC, Walsh TJ. Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1998; 44:343-500. [PMID: 9547888 DOI: 10.1016/s1054-3589(08)60129-5] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A H Groll
- Immunocompromised Host Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
10
|
Chapter 16. Problems and Progress in Opportunistic Infections. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1994. [DOI: 10.1016/s0065-7743(08)60729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|