1
|
Grundmann CO, Guzman J, Vilcinskas A, Pupo MT. The insect microbiome is a vast source of bioactive small molecules. Nat Prod Rep 2024; 41:935-967. [PMID: 38411238 DOI: 10.1039/d3np00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.
Collapse
Affiliation(s)
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Cai C, Wang F, Xiao X, Sheng W, Liu S, Chen J, Zheng J, Xie R, Bai Z, Wang H. Macrocyclization of bioactive peptides with internal thiazole motifs via palladium-catalyzed C-H olefination. Chem Commun (Camb) 2022; 58:4861-4864. [PMID: 35348132 DOI: 10.1039/d1cc06764h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptides containing thiazole fragments represent a large group of bioactive compounds with potential medicinal applications. However, methods for efficient synthesis of these compounds with structural diversity are limited. Herein, we report a method for modification and macrocyclization of thiazole-containing peptides through palladium-catalyzed δ-C(sp2)-H olefination. In this protocol, the thiazole and neighboring amide bonds act as directing groups, which allows site-specific olefination of phenylalanine, tryptophan and tyrosine residues. This chemistry exhibits broad substrate scope and provides facile access to peptide-peptide conjugates and peptide macrocycles. Our results highlight the potency and applicability of thiazole motifs in promoting Pd-catalyzed functionalization of peptides.
Collapse
Affiliation(s)
- Chuangxu Cai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Feifei Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiuyun Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wangjian Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shu Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Chan DCK, Burrows LL. Thiocillin and micrococcin exploit the ferrioxamine receptor of Pseudomonas aeruginosa for uptake. J Antimicrob Chemother 2021; 76:2029-2039. [PMID: 33907816 DOI: 10.1093/jac/dkab124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Thiopeptides are a class of antibiotics that are active against Gram-positive bacteria and inhibit translation. They were considered inactive against Gram-negative bacteria due to their inability to cross the outer membrane. However, we discovered previously that a member of this class, thiostrepton (TS), has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. TS hijacks the pyoverdine siderophore receptors of P. aeruginosa to cross the outer membrane and synergizes with iron chelators. OBJECTIVES To test other thiopeptides for antimicrobial activity against P. aeruginosa and determine their mechanism of uptake, action and spectrum of activity. METHODS Eight thiopeptides were screened in chequerboard assays against a mutant of P. aeruginosa PA14 lacking both pyoverdine receptors. Thiopeptides that retain activity against a pyoverdine receptor-null mutant may use alternative siderophore receptors for entry. Susceptibility testing against siderophore receptor mutants was used to determine thiopeptide mechanism of uptake. RESULTS The thiopeptides thiocillin (TC) and micrococcin (MC) use the ferrioxamine siderophore receptor (FoxA) for uptake and inhibit the growth of P. aeruginosa at low micromolar concentrations. The activity of TC required the TonB-ExbBD system used to energize siderophore uptake. TC acted through its canonical mechanism of action of translation inhibition. CONCLUSIONS Multiple thiopeptides have antimicrobial activity against P. aeruginosa, countering the historical assumption that they cannot cross the outer membrane. These results demonstrate the potential for thiopeptides to act as antipseudomonal antibiotics.
Collapse
Affiliation(s)
- Derek C K Chan
- Department of Biochemistry and Biomedical Sciences, McMaster Children's Hospital, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster Children's Hospital, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
5
|
Liu S, Cai C, Bai Z, Sheng W, Tan J, Wang H. Late-Stage Macrocyclization of Bioactive Peptides with Internal Oxazole Motifs via Palladium-Catalyzed C–H Olefination. Org Lett 2021; 23:2933-2937. [DOI: 10.1021/acs.orglett.1c00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shu Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chuangxu Cai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wangjian Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiantao Tan
- School of Primary Education, Chongqing Normal University, Chongqing 400700, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Dahiya S, Dahiya R. A comprehensive review of chemistry and pharmacological aspects of natural cyanobacterial azoline-based circular and linear oligopeptides. Eur J Med Chem 2021; 218:113406. [PMID: 33823395 DOI: 10.1016/j.ejmech.2021.113406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
The cyanobacterial oligopeptides are recognized for being highly selective, efficacious and relatively safer compounds with diverse bioactivities. Azoline-based natural compounds consist of heterocycles which are reduced analogues of five-membered heterocyclic azoles. Among other varieties of azoline-based natural compounds, the heteropeptides bearing oxazoline or thiazoline heterocycles possess intrinsic structural properties with captivating pharmacological profiles, representing excellent templates for the design of novel therapeutics. The specificity of heteropeptides has been translated into prominent safety, tolerability, and efficacy profiles in humans. These peptidic congeners serve as ideal intermediary between small molecules and biopharmaceuticals based on their typically low production complexity compared to the protein-based biopharmaceuticals. The distinct bioproperties and unique structures render these heteropeptides one of the most promising lead compounds for drug discovery. The high degree of chemical diversity in cyanobacterial secondary metabolites may constitute a prolific source of new entities leading to the development of new pharmaceuticals. This review focuses on the azoline-based natural oligopeptides with emphasis on distinctive structural features, stereochemical aspects, biological activities, structure activity relationship, synthetic and biosynthetic aspects as well as mode of action of cyanobacteria-derived peptides.
Collapse
Affiliation(s)
- Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies.
| |
Collapse
|
7
|
Bird KE, Xander C, Murcia S, Schmalstig AA, Wang X, Emanuele MJ, Braunstein M, Bowers AA. Thiopeptides Induce Proteasome-Independent Activation of Cellular Mitophagy. ACS Chem Biol 2020; 15:2164-2174. [PMID: 32589399 PMCID: PMC7442609 DOI: 10.1021/acschembio.0c00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thiopeptide antibiotics are emerging clinical candidates that exhibit potent antibacterial activity against a variety of intracellular pathogens, including Mycobacterium tuberculosis (Mtb). Many thiopeptides directly inhibit bacterial growth by disrupting protein synthesis. However, recent work has shown that one thiopeptide, thiostrepton (TSR), can also induce autophagy in infected macrophages, which has the potential to be exploited for host-directed therapies against intracellular pathogens, such as Mtb. To better define the therapeutic potential of this class of antibiotics, we studied the host-directed effects of a suite of natural thiopeptides that spans five structurally diverse thiopeptide classes, as well as several analogs. We discovered that thiopeptides as a class induce selective autophagic removal of mitochondria, known as mitophagy. This activity is independent of other biological activities, such as proteasome inhibition or antibiotic activity. We also find that many thiopeptides exhibit potent activity against intracellular Mtb in macrophage infection models. However, the thiopeptide-induced mitophagy occurs outside of pathogen-containing autophagosomes and does not appear to contribute to thiopeptide control of intracellular Mtb. These results expand basic understanding of thiopeptide biology and provide key guidance for the development of new thiopeptide antibiotics and host-directed therapeutics.
Collapse
Affiliation(s)
- Kelly E. Bird
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christian Xander
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sebastian Murcia
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alan A. Schmalstig
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J. Emanuele
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Chang PT, Rao K, Longo LO, Lawton ES, Scherer G, Van Arnam EB. Thiopeptide Defense by an Ant's Bacterial Symbiont. JOURNAL OF NATURAL PRODUCTS 2020; 83:725-729. [PMID: 31961674 DOI: 10.1021/acs.jnatprod.9b00897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fungus-growing ants and their microbial symbionts have emerged as a model system for understanding antibiotic deployment in an ecological context. Here we establish that bacterial symbionts of the ant Trachymyrmex septentrionalis antagonize their most likely competitors, other strains of ant-associated bacteria, using the thiopeptide antibiotic GE37468. Genomic analysis suggests that these symbionts acquired the GE37468 gene cluster from soil bacteria. This antibiotic, with known activity against human pathogens, was previously identified in a biochemical screen but had no known ecological role. GE37468's host-associated defense role in this insect niche intriguingly parallels the function of similar thiopeptides in the human microbiome.
Collapse
Affiliation(s)
- Preston T Chang
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Krithika Rao
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Lauren O Longo
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Elisabeth S Lawton
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Georgia Scherer
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Ethan B Van Arnam
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| |
Collapse
|
9
|
Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic development. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02361-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Abstract
Natural cyclic peptides are conformationally constrained notable biomolecules and reveal several drug-like properties such as high binding affinity, metabolic stability, target selectivity, bioavailability, low toxicity and flexibility. They have attracted a lot of attention as alternative sources of new drugs to traditional small molecules in drug discovery. Compared to classical medicines, cyclic peptides with a novel mechanism of action are attractive for their potential therapeutic applications particularly for cancer therapy and several diseases caused by resistant and non-resistant bacteria, virus, and fungi. Herein, we provide an overview of the naturally occurring biologically active cyclic peptide therapeutic landscape, including promising candidates, which are under trial in different stages for future and/or clinically used drugs against different diseases. This will certainly be an essential resource for upcoming and existing researchers and scientists within industry and academia in medicinal, bioorganic, and natural product chemistry.
Collapse
Affiliation(s)
- Smritilekha Bera
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar - 382030, India
| | - Dhananjoy Mondal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar - 382030, India
| |
Collapse
|
11
|
Abstract
Covering: 2006 to 2017Actinomycetes have been, for decades, one of the most important sources for the discovery of new antibiotics with an important number of drugs and analogs successfully introduced in the market and still used today in clinical practice. The intensive antibacterial discovery effort that generated the large number of highly potent broad-spectrum antibiotics, has seen a dramatic decline in the large pharma industry in the last two decades resulting in a lack of new classes of antibiotics with novel mechanisms of action reaching the clinic. Whereas the decline in the number of new chemical scaffolds and the rediscovery problem of old known molecules has become a hurdle for industrial natural products discovery programs, new actinomycetes compounds and leads have continued to be discovered and developed to the preclinical stages. Actinomycetes are still one of the most important sources of chemical diversity and a reservoir to mine for novel structures that is requiring the integration of diverse disciplines. These can range from novel strategies to isolate species previously not cultivated, innovative whole cell screening approaches and on-site analytical detection and dereplication tools for novel compounds, to in silico biosynthetic predictions from whole gene sequences and novel engineered heterologous expression, that have inspired the isolation of new NPs and shown their potential application in the discovery of novel antibiotics. This review will address the discovery of antibiotics from actinomycetes from two different perspectives including: (1) an update of the most important antibiotics that have only reached the clinical development in the recent years despite their early discovery, and (2) an overview of the most recent classes of antibiotics described from 2006 to 2017 in the framework of the different strategies employed to untap novel compounds previously overlooked with traditional approaches.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
12
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
13
|
Cal PMSD, Matos MJ, Bernardes GJL. Trends in therapeutic drug conjugates for bacterial diseases: a patent review. Expert Opin Ther Pat 2016; 27:179-189. [PMID: 27828733 DOI: 10.1080/13543776.2017.1259411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Drug conjugates are trend topics in Chemical Biology. These entities are an emerging class of highly potent biopharmaceutical drugs, best known in the field of oncology, that have been also designed as a targeted therapy/diagnosis for the treatment/prevention of several bacterial diseases. Antibiotic resistance is now a major threat to public health, and targeted strategies can reduce resistance. The following review aims at giving an overview of the patented therapeutic innovations covering these areas. Particular attention has been given to antibacterial drug conjugates in the last 30 years. Areas covered: The authors provide an overview of the scientific reports describing the research and development of new drug conjugates for bacterial diseases. The review emphasizes the rationale behind synthesis, biological activities and improvement of the new drug conjugates. New technologies applied for the research in this field have also been discussed. The article is based on the most relevant literature related to the development of new therapeutic solutions. The patents presented in this review have been collected from multiple electronic databases including SciFinder, Pubmed, Espacenet and Mendeley. Expert opinion: The new drug conjugates described in the current review proved to display improved delivery, efficacy, targeting abilities and fewer side effects. Versatile approaches were invented to achieve these goals.
Collapse
Affiliation(s)
- Pedro M S D Cal
- a Department of Chemistry , University of Cambridge , Cambridge , United Kingdom.,b Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| | - Maria J Matos
- a Department of Chemistry , University of Cambridge , Cambridge , United Kingdom
| | - Gonçalo J L Bernardes
- a Department of Chemistry , University of Cambridge , Cambridge , United Kingdom.,b Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
14
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Abstract
α,β-Dehydroamino acids are naturally occurring non-coded amino acids, found primarily in peptides. The review focuses on the type of α,β-dehydroamino acids, the structure of dehydropeptides, the source of their origin and bioactivity. Dehydropeptides are isolated primarily from bacteria and less often from fungi, marine invertebrates or even higher plants. They reveal mainly antibiotic, antifungal, antitumour, and phytotoxic activity. More than 60 different structures were classified, which often cover broad families of peptides. 37 different structural units containing the α,β-dehydroamino acid residues were shown including various side chains, Z and E isomers, and main modifications: methylation of peptide bond as well as the introduction of ester group and heterocycle ring. The collected data show the relation between the structure and bioactivity. This allows the activity of compounds, which were not studied in this field, but which belong to a larger peptide family to be predicted. A few examples show that the type of the geometrical isomer of the α,β-dehydroamino acid residue can be important or even crucial for biological activity.
Collapse
Affiliation(s)
- Dawid Siodłak
- Faculty of Chemistry, University of Opole, Oleska, 48 45-052, Opole, Poland,
| |
Collapse
|
16
|
Growing the seeds sown by Piero Sensi. J Antibiot (Tokyo) 2014; 67:613-7. [PMID: 25118102 DOI: 10.1038/ja.2014.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 11/08/2022]
Abstract
Piero Sensi is probably known primarily for his role in the discovery of rifamycin and for developing it to be a drug of fundamental importance in the treatment of tuberculosis. He has also contributed to promote screening programs of microbial products and research approaches for antibacterial agents that have been further developed up to the present day. This paper reports a sequence of discovery approaches, failures and successes that spans for about 50 years and is still in progress.
Collapse
|
17
|
Just-Baringo X, Albericio F, Álvarez M. From 2,6-Dichloronicotinic Acid to Thiopeptide Cores. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Young TS, Dorrestein PC, Walsh CT. Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants. ACTA ACUST UNITED AC 2013; 19:1600-10. [PMID: 23261603 DOI: 10.1016/j.chembiol.2012.10.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/03/2012] [Accepted: 10/08/2012] [Indexed: 01/22/2023]
Abstract
Thiopeptide antibiotics exhibit a profound level of chemical diversity that is installed through cascades of posttranslational modifications on ribosomal peptides. Here, we present a technique to rapidly explore the chemical space of the thiopeptide GE37468 through codon randomization, yielding insights into thiopeptide maturation as well as structure and activity relationships. In this incarnation of the methodology, we randomized seven residues of the prepeptide-coding region, enabling the generation of 133 potential thiopeptide variants. Variant libraries were subsequently queried in two ways. First, high-throughput MALDI-TOF mass spectrometry was applied to colony-level expressions to sample mutants that permitted full maturation of the antibiotic. Second, the activity of producing mutants was detected in an antibiotic overlay assay. In total, 29 of the 133 variants produced mature compound, 12 of which retained antibiotic activity and 1 that had improved activity.
Collapse
Affiliation(s)
- Travis S Young
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Armenise 608, Boston, MA 02115, USA
| | | | | |
Collapse
|
19
|
Kocurin, the true structure of PM181104, an anti-methicillin-resistant Staphylococcus aureus (MRSA) thiazolyl peptide from the marine-derived bacterium Kocuria palustris. Mar Drugs 2013; 11:387-98. [PMID: 23380989 PMCID: PMC3640387 DOI: 10.3390/md11020387] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/09/2013] [Accepted: 01/21/2013] [Indexed: 11/30/2022] Open
Abstract
A new thiazolyl peptide, kocurin (1), was isolated from culture broths of a marine-derived Kocuria palustris. Its structural elucidation was accomplished using a combination of spectroscopic and chemical methods, including HRMS, extensive 1D and 2D NMR analysis, MS/MS fragmentation, and chemical degradation and Marfey’s analysis of the resulting amino acid residues. The structure herein reported corrects that previously assigned to PM181104 (3). Kocurin displayed activity against methicillin-resistant Staphylococcus aureus (MRSA), with MIC values in the submicromolar range.
Collapse
|
20
|
Identification of the thiazolyl peptide GE37468 gene cluster from Streptomyces ATCC 55365 and heterologous expression in Streptomyces lividans. Proc Natl Acad Sci U S A 2011; 108:13053-8. [PMID: 21788474 DOI: 10.1073/pnas.1110435108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thiazolyl peptides are bacterial secondary metabolites that potently inhibit protein synthesis in Gram-positive bacteria and malarial parasites. Recently, our laboratory and others reported that this class of trithiazolyl pyridine-containing natural products is derived from ribosomally synthesized preproteins that undergo a cascade of posttranslational modifications to produce architecturally complex macrocyclic scaffolds. Here, we report the gene cluster responsible for production of the elongation factor Tu (EF-Tu)-targeting 29-member thiazolyl peptide GE37468 from Streptomyces ATCC 55365 and its heterologous expression in the model host Streptomyces lividans. GE37468 harbors an unusual β-methyl-δ-hydroxy-proline residue that may increase conformational rigidity of the macrocycle and impart reduced entropic costs of target binding. Isotope feeding and gene knockout were employed in the engineered S. lividans strain to identify the P450 monooxygenase GetJ as the enzyme involved in posttranslational transformation of isoleucine 8 to β-methyl-δ-hydroxy-proline through a predicted tandem double hydroxylation/cyclization mechanism. Loss of Ile8 oxygenative cyclization or mutation of Ile8 to alanine via preprotein gene replacement resulted in a 4-fold and 2-fold drop in antibiotic activity, respectively. This report of genetic manipulation of a 29-member thiazolyl peptide sets the stage for further genetic examination of structure activity relationships in the EF-Tu targeting class of thiazolyl peptides.
Collapse
|
21
|
Affiliation(s)
- Mark C Bagley
- School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, Wales, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Pucci MJ, Bronson JJ, Barrett JF, DenBleyker KL, Discotto LF, Fung-Tomc JC, Ueda Y. Antimicrobial evaluation of nocathiacins, a thiazole peptide class of antibiotics. Antimicrob Agents Chemother 2004; 48:3697-701. [PMID: 15388422 PMCID: PMC521901 DOI: 10.1128/aac.48.10.3697-3701.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nocathiacins are cyclic thiazolyl peptides with inhibitory activity against gram-positive bacteria. BMS-249524 (nocathiacin I), identified from screening a library of compounds against a multiply antibiotic-resistant Enterococcus faecium strain, was used as a lead chemotype to obtain additional structurally related compounds. The MIC assay results of BMS-249524 and two more water-soluble derivatives, BMS-411886 and BMS-461996, revealed potent in vitro activities against a variety of gram-positive pathogens including methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, vancomycin intermediate-resistant S. aureus, vancomycin-resistant enterococci, Mycobacterium tuberculosis and Mycobacterium avium. Analysis of killing kinetics revealed that these compounds are bactericidal for S. aureus with at least a 3-log(10) reduction of bacterial growth within 6 h of exposure to four times the MICs. Nocathiacin-resistant mutants were characterized by DNA sequence analyses. The mutations mapped to the rplK gene encoding the L11 ribosomal protein in the 50S subunit in a region previously shown to be involved in the binding of related thiazolyl peptide antibiotics. These compounds demonstrated potential for further development as a new class of antibacterial agents with activity against key antibiotic-resistant gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Michael J Pucci
- Achillion Pharmaceuticals, 300 George St., New Haven, CT 06511, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Constantine KL, Mueller L, Huang S, Abid S, Lam KS, Li W, Leet JE. Conformation and absolute configuration of nocathiacin I determined by NMR spectroscopy and chiral capillary electrophoresis. J Am Chem Soc 2002; 124:7284-5. [PMID: 12071733 DOI: 10.1021/ja026249t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nocathiacin I (BMS-249524) is a highly cross-linked thiazolyl peptide that displays potent activity against Gram-positive bacteria, including a number of antibiotic-resistant strains. This natural product contains 10 chiral centers. NMR studies have been performed to characterize the solution structure of nocathiacin I. A uniformly 13C,15N-labeled sample was used to obtain NMR assignments. Restrained simulated annealing calculations were performed by using accurately determined NOE distance restraints. All of the chiral centers were allowed to float during the simulated annealing protocol. Two clusters of structures were obtained that satisfy the NOE restraints very well and that are reasonably consistent with vicinal J-coupling constants. Within each cluster, all 10 chiral centers are uniquely defined. The two clusters are effectively mirror images of each other: all chiral centers that have the R(S) configuration in one cluster have the S(R) configuration in the other. The single threonine residue in nocathiacin I was subsequently determined to be l-threonine by chiral capillary electrophoresis, allowing the absolute configurations of all 10 chiral centers to be defined.
Collapse
Affiliation(s)
- Keith L Constantine
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
So far, two strategies have been applied to develop new anti-infective agents: (a) the synthesis of analogs of classical antibiotics with enhanced activity against resistant pathogens and (b) the screening of naturally occurring substances and libraries of synthetic compounds for antimicrobial activity in whole-cell assays. Today, the same principles are being used; however, the search for antimicrobial compounds with novel modes of action is based on targeting specific resistance and virulence factors. Novel targets for anti-infective agents are currently being discovered as a consequence of a better understanding of cell biology, the molecular basis of bacterial resistance, the gene-pathogenicity relationship and the mechanism of the infection process.
Collapse
Affiliation(s)
- E L Setti
- Axys Pharmaceuticals, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
25
|
Heffron SE, Jurnak F. Structure of an EF-Tu complex with a thiazolyl peptide antibiotic determined at 2.35 A resolution: atomic basis for GE2270A inhibition of EF-Tu. Biochemistry 2000; 39:37-45. [PMID: 10625477 DOI: 10.1021/bi9913597] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of a 1:1 molar complex between Escherichia coli elongation factor (EF) Tu-GDP and the cyclic thiazolyl peptide antibiotic, GE2270A, has been determined by X-ray diffraction analysis to a resolution of 2.35 A and refined to a crystallographic refinement factor of 20.6%. The antibiotic binds in the second domain of EF-Tu-GDP, making contact with three segments of amino acids (residues 215-230, 256-264, and 273-277). The majority of the protein-antibiotic contacts are van der Waals interactions. A striking feature of the antibiotic binding site is the presence of a salt bridge, not previously observed in other EF-Tu complexes. The ionic interaction between Arg 223 and Glu 259 forms over the antibiotic and probably accounts for the strong affinity observed between EF-Tu and GE2270A. Arg 223 and Glu 259 are highly conserved, but not invariant throughout the prokaryotic EF-Tu family, suggesting that the antibiotic may bind EF-Tu from some organisms better than others may. Superposition of the antibiotic binding site on the EF-Tu-GTP conformation reveals that one region of the antibiotic would form steric clashes with the guanine nucleotide-binding domain in the GTP, but not the GDP, conformation. Another region of the antibiotic binds to the same site as the aminoacyl group of tRNA. Together with prior biochemical studies, the structural findings confirm that GE2270A inhibits protein synthesis by blocking the GDP to GTP conformational change and by directly competing with aminoacyl-tRNA for the same binding site on EF-Tu. In each of the bacterial strains that are resistant to GE2270A, the effect of a site-specific mutation in EF-Tu could explain resistance. Comparison of the GE2270A site in EF-Tu with sequence homologues, EF-G and EF-1alpha, suggests steric clashes that would prevent the antibiotic from binding to translocation factors or to the eukaryotic equivalent of EF-Tu. Although GE2270A is a potent antibiotic, its clinical efficacy is limited by its low aqueous solubility. The results presented here provide the details necessary to enhance the solubility of GE2270A without disrupting its inhibitory properties.
Collapse
Affiliation(s)
- S E Heffron
- Department of Physiology, University of California, Irvine 92697-4560, USA
| | | |
Collapse
|
26
|
Okumura K, Nakamura Y, Shin CG. Total Synthesis of a Macrocyclic Antibiotic, Micrococcin P. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1999. [DOI: 10.1246/bcsj.72.1561] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
R. Lewis J. Muscarine, imidazole, oxazole, thiazole and peptide alkaloids, and other miscellaneous alkaloids. Nat Prod Rep 1998. [DOI: 10.1039/a815417y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Möhrle VG, Tieleman LN, Kraal B. Elongation factor Tu1 of the antibiotic GE2270A producer Planobispora rosea has an unexpected resistance profile against EF-Tu targeted antibiotics. Biochem Biophys Res Commun 1997; 230:320-6. [PMID: 9016775 DOI: 10.1006/bbrc.1996.5947] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sensitivity of EF-Tu1 of the GE2270A producer Planobispora rosea towards GE2270A, pulvomycin and kirromycin was determined by band-shift assays for EF-Tu1-antibiotic complex formation and by in vitro translation experiments. EF-Tu1 of P. rosea appeared to be not only totally resistant to GE2270A, but also ten times more resistant to kirromycin than EF-Tu1 of Streptomyces coelicolor. In contrast, P. rosea EF-Tu1 was found to be not resistant to pulvomycin, an antibiotic that just like GE2270A blocks EF-Tu x GTP x aminoacyl-tRNA complex formation. Previous in vivo and in vitro experiments with mixed populations of antibiotic resistant and sensitive EF-Tu species had shown that sensitivity to kirromycin and pulvomycin is dominant over resistance. In the case of GE2270A we observed, however, that sensitivity is recessive to resistance, which again points to a different action mechanism than in the case of pulvomycin. Besides the tuf1 gene encoding the regular elongation factor EF-Tu1 a gene similar to S. coelicolor tuf3 for a specialized EF-Tu was located in the P. rosea genome. The tuf1 gene was isolated and sequenced. The amino acid sequence of EF-Tul of P. rosea not only exhibits an unusual Tyr160 substitution (comparable to those described for kirromycin-resistant EF-Tus), but also shows significant changes of conserved amino acids in domain 2 that may be responsible for GE2270A resistance (the latter do not resemble those leading to pulvomycin resistance). P. rosea EF-Tu1 thus is a first example of a bacterial EF-Tu with resistance against two divergently acting antibiotics.
Collapse
Affiliation(s)
- V G Möhrle
- Department of Biochemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | |
Collapse
|
29
|
Sosio M, Amati G, Cappellano C, Sarubbi E, Monti F, Donadio S. An elongation factor Tu (EF-Tu) resistant to the EF-Tu inhibitor GE2270 in the producing organism Planobispora rosea. Mol Microbiol 1996; 22:43-51. [PMID: 8899707 DOI: 10.1111/j.1365-2958.1996.tb02654.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using a cell-free protein-synthesis system, we have established that the elongation factor (EF) Tu (EF-Tu) of the actinomycete Planobispora rosea, the producer of the thiazolyl peptide GE2270, a specific EF-Tu inhibitor, is highly resistant to its own antibiotic, while it is completely inhibited by kirromycin, which is another inhibitor of this factor. P. rosea was found to possess a single tuf gene, located between fus and rpsJ, encoding other components of the protein-synthesis machinery. The P. rosea tuf gene was expressed as a translational fusion to malE in Escherichia coli, and the resulting EF-Tu with an N-terminal Gly-Met extension was able to promote poly(U)-directed poly(Phe) synthesis in cell-free systems. This activity was not affected by GE2270, and the recombinant protein was incapable of binding the antibiotic, indicating that the P. rosea EF-Tu is intrinsically resistant to this inhibitor. Inspection of the translated tuf sequence revealed a number of amino acid substitutions in highly conserved positions. These residues, which are likely to be involved in conferring GE2270 resistance, map in EF-Tu domain II, as do the only two known mutations conferring resistance to this class of thiazolyl peptides in Bacillus subtilis.
Collapse
Affiliation(s)
- M Sosio
- Lepetit Research Centre, Gerenzano, Italy
| | | | | | | | | | | |
Collapse
|
30
|
|