1
|
Rampazzo S, Ferrari M, Sotgiu MA, Piu G, Solinas MG, Usai N, Bulla A, Serra PL, Grieco F, Montella A, Mazzarello V, Rubino C. Objective Non-Invasive Bio-Parametric Evaluation of Regenerated Skin: A Comparison of Two Acellular Dermal Substitutes. Life (Basel) 2024; 14:121. [PMID: 38255736 PMCID: PMC10817643 DOI: 10.3390/life14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Several dermal substitutes are available on the market, but there is no precise indication that helps surgeons choose the proper one. Few studies have tried to compare different xenogeneic bioengineered products, but no objective bio-parametric comparison has been made yet. Fifteen patients who underwent skin reconstruction with Integra® or Pelnac® were retrospectively evaluated. After at least 12 months of follow-up, an objective and quantitative assessment of several skin biophysical properties, such as color, texture, elasticity, hydration, glossiness and trans-epidermal water loss, were measured with non-invasive skin measurement devices. The grafted skin showed a reduction of the superficial hydration level and a tendency to lower values of trans-epidermal water loss with both dermal substitutes. Melanic and hemoglobin pigmentation were higher in comparison to the donor site in both groups, while a melanic pigmentation increase versus the surrounding skin was seen just with Integra®. Finally, the skin was found to be more elastic when reconstructed with Integra®. The skin barrier appeared to be intact in both groups. Hence, these substitutes are valuable means of skin regeneration. Integra® seems to be more advantageous for reconstructing areas that need more skin flexibility.
Collapse
Affiliation(s)
- Silvia Rampazzo
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Marco Ferrari
- Skinlab, Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.P.); (V.M.)
| | - Maria Alessandra Sotgiu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.A.S.); (M.G.S.); (A.M.)
| | - Gabriella Piu
- Skinlab, Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.P.); (V.M.)
| | - Maria Giuliana Solinas
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.A.S.); (M.G.S.); (A.M.)
| | - Noemi Usai
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Antonio Bulla
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
| | - Pietro Luciano Serra
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Federica Grieco
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.A.S.); (M.G.S.); (A.M.)
| | - Vittorio Mazzarello
- Skinlab, Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.P.); (V.M.)
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.A.S.); (M.G.S.); (A.M.)
| | - Corrado Rubino
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
2
|
Avila-Martinez N, Gansevoort M, Verbakel J, Jayaprakash H, Araujo IM, Vitorino M, Tiscornia G, van Kuppevelt TH, Daamen WF. Matrisomal components involved in regenerative wound healing in axolotl and Acomys: implications for biomaterial development. Biomater Sci 2023; 11:6060-6081. [PMID: 37525590 DOI: 10.1039/d3bm00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Achieving regeneration in humans has been a long-standing goal of many researchers. Whereas amphibians like the axolotl (Ambystoma mexicanum) are capable of regenerating whole organs and even limbs, most mammals heal their wounds via fibrotic scarring. Recently, the African spiny mouse (Acomys sp.) has been shown to be injury resistant and capable of regenerating several tissue types. A major focal point of research with Acomys has been the identification of drivers of regeneration. In this search, the matrisome components related to the extracellular matrix (ECM) are often overlooked. In this review, we compare Acomys and axolotl skin wound healing and blastema-mediated regeneration by examining their wound healing responses and comparing the expression pattern of matrisome genes, including glycosaminoglycan (GAG) related genes. The goal of this review is to identify matrisome genes that are upregulated during regeneration and could be potential candidates for inclusion in pro-regenerative biomaterials. Research papers describing transcriptomic or proteomic coverage of either skin regeneration or blastema formation in Acomys and axolotl were selected. Matrisome and GAG related genes were extracted from each dataset and the resulting lists of genes were compared. In our analysis, we found several genes that were consistently upregulated, suggesting possible involvement in regenerative processes. Most of the components have been implicated in regulation of cell behavior, extracellular matrix remodeling and wound healing. Incorporation of such pro-regenerative factors into biomaterials may help to shift pro-fibrotic processes to regenerative responses in treated wounds.
Collapse
Affiliation(s)
- Nancy Avila-Martinez
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Merel Gansevoort
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Juul Verbakel
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Haarshaadri Jayaprakash
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
| | - Ines Maria Araujo
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Marta Vitorino
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Gustavo Tiscornia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Eugin Barcelona, Balmes, 236, 08006 Barcelona, Spain
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
3
|
De Decker I, Hoeksema H, Verbelen J, De Coninck P, Speeckaert M, De Schepper S, Blondeel P, Pirayesh A, Monstrey S, Claes KEY. A single-stage bilayered skin reconstruction using Glyaderm® as an acellular dermal regeneration template results in improved scar quality: an intra-individual randomized controlled trial. BURNS & TRAUMA 2023; 11:tkad015. [PMID: 37143955 PMCID: PMC10152996 DOI: 10.1093/burnst/tkad015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Background Absence of almost the entire reticular dermal layer is inherent to the use of autologous split-thickness skin grafting (STSG) to close full-thickness wounds, often resulting in hypertrophic scars and contractures. Many dermal substitutes have been developed, but unfortunately most have varying results in terms of cosmetic and/or functional improvement as well as patient satisfaction, in addition to high costs. Bilayered skin reconstruction using the human-derived glycerolized acellular dermis (Glyaderm®) has been reported to result in significantly improved scar quality using a two-step procedure. Unlike the necessary two-step procedure for most commercially available dermal substitutes, in this study we aimed to investigate the use of Glyaderm® in a more cost-effective single-stage engrafting. This is a method which, if autografts are available, is preferred by the majority of surgeons given the reduction in costs, hospitalization time and infection rate. Methods A prospective, randomized, controlled, intra-individual, single-blinded study was performed, investigating the simultaneous application of Glyaderm® and STSG vs. STSG alone in full-thickness burns or comparable deep skin defects. During the acute phase, bacterial load, graft take and time to wound closure were assessed and were the primary outcomes. Aesthetic and functional results (secondary outcomes) were evaluated at 3, 6, 9 and 12 months follow-up using subjective and objective scar measurement tools. Biopsies for histological analysis were taken at 3 and 12 months. Results A total of 66 patients representing 82 wound comparisons were included. Graft take (>95%), pain management and healing time were comparable in both groups. At 1 year follow-up, the overall Patient and Observer Scar Assessment Scale assessed by the patient was significantly in favour of sites where Glyaderm® was used. Not infrequently, patients attributed this difference to improved skin sensation. Histological analysis showed the presence of a well-formed neodermis, with donor elastin present for up to 12 months. Conclusions A single-stage bilayered reconstruction with Glyaderm® and STSG results in optimal graft take without loss of Glyaderm® nor the overlaying autografts due to infection. The presence of elastin in the neodermis was demonstrated during long-term follow-up in all but one patient, which is a crucial factor contributing to the significantly improved overall scar quality as evaluated by the blinded patients. Trial registration The trial was registered on clinicaltrials.gov and received the following registration code: NCT01033604.
Collapse
Affiliation(s)
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Jozef Verbelen
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Petra De Coninck
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Marijn Speeckaert
- Department of Nephrology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Sofie De Schepper
- Department of Dermatology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ali Pirayesh
- Plastic surgeon in private practice in Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
4
|
Hahn HM, Jeong YS, Lee IJ, Kim MJ, Lim H. Efficacy of split-thickness skin graft combined with novel sheet-type reprocessed micronized acellular dermal matrix. BMC Surg 2022; 22:358. [PMID: 36221130 PMCID: PMC9555098 DOI: 10.1186/s12893-022-01801-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autologous split-thickness skin grafts (STSGs) remain the mainstay for treatment of large skin defects. Despite its many advantages, there exist critical disadvantages such as unfavorable scar and graft contracture. In addition, it cannot be used when structures such as tendons and bones are exposed. To overcome these limitations, acellular dermal matrix (ADM) is widely used with STSG. CGDerm Matrix®, which was recently developed, is a novel reprocessed micronized ADM (RMADM). In this study, outcomes of the combined application of RMADM and STSG on full-thickness wounds were analyzed. METHODS Forty-one patients with full-thickness skin defects due to trauma, scar contracture release, and diabetic foot ulcers, who underwent STSGs, from January 2021 to July 2021, were retrospectively reviewed. The primary outcome of interest was skin loss rate, which was measured 14 days after surgery. RESULTS The most common cause of skin defect was trauma (36 patients), diabetic foot (2 patients), scar contracture release (2 patients), and malignancy (1 patient). The average defect size was 109.6 cm2 (range, 8-450 cm2). The average skin loss rate was 9.1%, showing a graft take rate of > 90%. CONCLUSION The use of combined RMADM and STSG in full-thickness wound reconstruction provides stable and acceptable outcomes. The newly developed ADM can be a promising option in wound reconstruction.
Collapse
Affiliation(s)
- Hyung Min Hahn
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Yon Soo Jeong
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Il Jae Lee
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Min Ji Kim
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Hyoseob Lim
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
5
|
Hosseini M, Brown J, Shafiee A. Strategies to Induce Blood Vessel Ingrowth into Skin Grafts and Tissue-Engineered Substitutes. Tissue Eng Part C Methods 2022; 28:113-126. [PMID: 35172639 DOI: 10.1089/ten.tec.2021.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skin is a multilayer organ consisting of several tissues and appendages residing in a complex niche. Adequate and physiologically regulated vascularization is an absolute requirement for skin homeostasis, regeneration, and wound healing. The lack of vascular networks and ischemia results in delayed wound closure. In addition, vascularization is critical for the prolonged function and survival of skin grafts and tissue-engineered skin substitutes. This study highlights the clinical challenges associated with the limited vascularization in the cutaneous wounds. Then, we highlight the novel approaches for the development of vascular networks in the skin autografts, allografts, and artificial substitutes. Also, the future directions to overcome the existing vascularization complications in skin grafting and synthetic skin substitutes are presented. Statement of Significance Delayed closure of large dermal wounds, such as burn injuries, results from the lack of vascular networks and ischemia. The amount of blood supply in the skin graft is the primary factor determining the quality of the transplanted grafts. The current skin grafts and their fabrication methods lack the appropriate features that contribute to the vascularization and integration of the wound bed and graft and adherence to the skin layers. Therefore, the new generation of skin grafts should consider advanced technologies to induce vascularization and overcome current challenges.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Jason Brown
- Herston Biofabrication Institute and Metro North Hospital and Health Service, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute and Metro North Hospital and Health Service, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia.,UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Zhou XB, Li SW, He SQ, Xu SJ, Cai Y, Xu SW, Li XK, Gu BB, Mao XL, Ye LP. Transplantation of acellularized dermis matrix (ADM) plus fully covered metal stent to prevent stricture after circumferential endoscopic submucosal dissection of early esophageal cancer (with video). Regen Ther 2021; 18:441-446. [PMID: 34754889 PMCID: PMC8551526 DOI: 10.1016/j.reth.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Backgroud and study aims Esophageal stricture is a serious adverse event occurring after circular endoscopic submucosal dissection (ESD) involving the whole esophagus. However, there is still a lack of effectively preventive methods. The main purpose of this study is to evaluate the efficacy of application of acellularized dermis matrix (ADM) for the prevention of post-ESD esophageal stricture. The main objective of this study was to evaluate the use of decellularized dermal matrix (ADM) in the prevention of post-esophageal ESD strictures. Patients and methods A pilot, single-center, prospective study was conducted. The study enrolled seven patients who had high-risks with extended resection of developing post-ESD esophageal stricture. After undergoing ESD, we attached different size of ADM patches to the mucosal defects using titanium clips then fixed with a metal mesh stent. The stent covered with metal mesh was removed at the median time of 27 days after the endoscopic procedure. Follow-up and repeated outpatient endoscopic screening were performed at appropriate scheduled times. Results The average longitudinal diameter of the resected specimens was 58.3 mm (range 38–90 mm). There were three patients developing strictures postoperatively at a mean time of 87 days (range 42–140). The median number of postoperative endoscopic balloon dilatation (EBD) in patients with stenosis was 2 (range 2–9). There were no deaths during a median follow-up period of 6 moths (range 1–12). Conclusions This study was performed to assess the efficacy and safe method of relieving the severity of esophageal stricture after ESD through transplantation of ADM.
Collapse
Affiliation(s)
- Xian-Bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-Qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Shan-Jing Xu
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Shi-Wen Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Bin-Bin Gu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Xin-Li Mao
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Li-Ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
7
|
Tognetti L, Pianigiani E, Ierardi F, Lorenzini G, Casella D, Liso FG, De Pascalis A, Cinotti E, Rubegni P. The use of human acellular dermal matrices in advanced wound healing and surgical procedures: State of the art. Dermatol Ther 2021; 34:e14987. [PMID: 33993627 DOI: 10.1111/dth.14987] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
Wound closure after post-traumatic injuries and/or localized at peculiar body sites (head-and-neck, oral cavity, legs) are particularly challenging and can often be delayed due to local and systemic factors. In case of deep wounds and/or hard-to-heal wounds, grafting of dermal acellular matrices (ADM) is often needed. Though a great variety of synthetic and semisynthetic dermal and skin equivalents are available, viable human dermis, is still considered the most physiological alternative to replace the loss of autologous dermis, by acting as a physiological scaffold that add structural support to soft tissues. To date, human ADMs (hADMs) have been employed in the reconstruction of skin defects affecting almost all body sites, ranging from visceral sites to the skin and subcutaneous tissues. This review aims to investigate the use of hADM at different body sites and their peculiar advantages. A literature search was using the search terms "acellular dermal matrices", "dermal regeneration", "advances wound healing", "human acellular dermal matrices surgery". A total of 50 out of 150 papers was included. Based on the current body if evidence, hADMs appear to bring several advantages, such as: protection of deep structures (eg, tendons, bones, cartilage and nerves); stimulation of a functional new dermis (rather than a scar); reduction of wound closure time; control of pain and exudate. Finally, hADMs may represent the best treatment option for hard-to-heal wound not only in terms of efficacy and patient satisfaction bout also in terms of sanitary costs, especially across Europe, where hADMs cannot be commercialized as medical devices.
Collapse
Affiliation(s)
- Linda Tognetti
- Dermatology Unit and Skin Bank, Department of Medical, Surgical and Neuro-Sciences, University of Siena, Siena, Italy
| | - Elisa Pianigiani
- Dermatology Unit and Skin Bank, Department of Medical, Surgical and Neuro-Sciences, University of Siena, Siena, Italy
| | - Francesca Ierardi
- Dermatology Unit and Skin Bank, Department of Medical, Surgical and Neuro-Sciences, University of Siena, Siena, Italy
| | - Guido Lorenzini
- Department of Odontostomatologic and Ophthalmologic Sciences, University of Siena, Siena, Italy
| | - Donato Casella
- Department of Breast Cancer Surgery, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Flavio Giulio Liso
- Dermatology Unit and Skin Bank, Department of Medical, Surgical and Neuro-Sciences, University of Siena, Siena, Italy
| | - Andrea De Pascalis
- Dermatology Unit and Skin Bank, Department of Medical, Surgical and Neuro-Sciences, University of Siena, Siena, Italy
| | - Elisa Cinotti
- Dermatology Unit and Skin Bank, Department of Medical, Surgical and Neuro-Sciences, University of Siena, Siena, Italy
| | - Pietro Rubegni
- Dermatology Unit and Skin Bank, Department of Medical, Surgical and Neuro-Sciences, University of Siena, Siena, Italy
| |
Collapse
|
8
|
Use of Meshed Acellular Dermal Allograft as a Lining Material After Orbital Exenteration. Ophthalmic Plast Reconstr Surg 2021; 36:349-354. [PMID: 31809482 DOI: 10.1097/iop.0000000000001547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To evaluate the surgical outcome and safety of acellular human dermal allograft as a new lining material to the exposed orbit after exenteration. METHODS Retrospective case series of patients who underwent orbital exenteration followed by reconstruction with meshed-type acellular dermal allograft from 2009 to 2018 in a single tertiary institution. RESULTS There were 14 eyes (2 right, 12 left) of 14 patients (6 men, 8 women). Mean age at operation was 69.1 ± 16.5 years. Indication for surgery was malignancy in all patients. One patient underwent subtotal exenteration, while the rest underwent total exenteration. SureDerm Meshed was used in 12 patients, AlloDerm Meshed in 1, and CGDerm Meshed in 1. Mean follow-up period was 12.1 months. Full or nearly full epithelialization occurred in 10 of 14 patients (71.4%) at 1 month and 9 of 12 patients (75.0%) at 3 months. There was delayed epithelialization in 3 patients due to poor wound care (n = 1), adjuvant radiotherapy (n = 1), and adjuvant radiotherapy followed by cerebrospinal fluid leak (n = 1). CONCLUSIONS Meshed acellular human dermal allograft showed good success in reconstruction after orbital exenteration and may be considered as an alternative lining material to split-thickness skin graft after orbital exenteration.
Collapse
|
9
|
Maarof M, Mh Busra MF, Lokanathan Y, Bt Hj Idrus R, Rajab NF, Chowdhury SR. Safety and efficacy of dermal fibroblast conditioned medium (DFCM) fortified collagen hydrogel as acellular 3D skin patch. Drug Deliv Transl Res 2019; 9:144-161. [PMID: 30547385 DOI: 10.1007/s13346-018-00612-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Skin substitutes are one of the main treatments for skin loss, and a skin substitute that is readily available would be the best treatment option. However, most cell-based skin substitutes require long production times, and therefore, patients endure long waiting times. The proteins secreted from the cells and tissues play vital roles in promoting wound healing. Thus, we aimed to develop an acellular three-dimensional (3D) skin patch with dermal fibroblast conditioned medium (DFCM) and collagen hydrogel for immediate treatment of skin loss. Fibroblasts from human skin samples were cultured using serum-free keratinocyte-specific media (KM1 or KM2) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively. The acellular 3D skin patch was soft, semi-solid, and translucent. Collagen mixed with DFCM-KM1 and DFCM-KM2 showed higher protein release compared to collagen plus DFCM-FM. In vitro and in vivo testing revealed that DFCM and collagen hydrogel did not induce an immune response. The implantation of the 3D skin patch with or without DFCM on the dorsum of BALB/c mice demonstrated a significantly faster healing rate compared to the no-treatment group 7 days after implantation, and all groups had complete re-epithelialization at day 17. Histological analysis confirmed the structure and integrity of the regenerated skin, with positive expression of cytokeratin 14 and type I collagen in the epidermal and dermal layer, respectively. These findings highlight the possibility of using fibroblast secretory factors together with collagen hydrogel in an acellular 3D skin patch that can be used allogeneically for immediate treatment of full-thickness skin loss.
Collapse
Affiliation(s)
- Manira Maarof
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaccob Latiff, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Mohd Fauzi Mh Busra
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaccob Latiff, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaccob Latiff, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaccob Latiff, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Bioserasi Laboratory, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaccob Latiff, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Abstract
BACKGROUND To investigate the efficacy of acellular dermal matrix in penis augmentation (ADMPA) for premature ejaculation (PE). METHODS A total of 39 patients treated with ADM in penis augmentation from June 2014 to December 2017 were evaluated. Detailed evaluations on PE were conducted before operation and at the 6-month and 2-year follow-up visits after operation. Self-estimated intravaginal ejaculatory latency time (IELT) and 5-item version of the International Index of Erectile Function (IIEF-5) were used to measure the ejaculation and the erectile function for all subjects. RESULTS Compared to the baseline data, the IELT and IIEF-5 scores were increased, and PE was relieved at 6 months and 2 years after operation. No major complications occurred in the series. Minor complications were resolved with conservative treatment within 3 weeks. The psychosexual impact of the operation was beneficial in the majority of cases. CONCLUSION Our survey systematically evaluated the effects of ADMPA for PE. ADMPA might be an optional surgical method in patients with PE, especially for those who seek penile augmentation. However, given the small amount of cases involved in this study, further studies on the effect of ADMPA for PE were still needed.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Urology, Peking University People's Hospital
| | - Yuanyi Wu
- Department of Urology, First Affiliated Hospital of PLA General Hospital
| | - Min Zhang
- Department of Urology, Chengdu Kowloon Hospital, Southwest Institute of Sexual and Health Medicine, Chengdu, China
| | - Huaqi Yin
- Department of Urology, Peking University People's Hospital
| | - Qing Li
- Department of Urology, Peking University People's Hospital
| | - Wenjun Bai
- Department of Urology, Peking University People's Hospital
| | - Tao Xu
- Department of Urology, Peking University People's Hospital
| |
Collapse
|
11
|
Drupitha MP, Bankoti K, Pal P, Das B, Parameswar R, Dhara S, Nando GB, Naskar K. Morphology-induced physico-mechanical and biological characteristics of TPU-PDMS blend scaffolds for skin tissue engineering applications. J Biomed Mater Res B Appl Biomater 2018; 107:1634-1644. [PMID: 30332525 DOI: 10.1002/jbm.b.34256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/29/2018] [Accepted: 08/12/2018] [Indexed: 11/08/2022]
Abstract
Composition and architecture of scaffolds are the most important factors determining the performance of skin substitutes. In this work, morphology induced unique physical and biological characteristics of compatibilized TPU-PDMS blend scaffolds at 90:10, 80:20, and 70:30 blend ratios of TPU and PDMS was studied. The fiber morphology, porosity, surface wettability, and mechanical properties of electrospun scaffolds were distinctly influenced by the presence of PDMS. Interestingly, the scaffold architecture varied from electrospun fibers to porous fibers and finally occurrence of unique porous beads noticed at 30% PDMS in the microstructure which was confirmed using FESEM. Micro-CT analysis revealed that the porosity of electrospun scaffolds was enhanced from 61% to 79% with 30 parts of PDMS addition. Moreover, MTT assay and cell proliferation were studied using human skin fibroblast cells and found to be significantly enhanced with the PDMS percentage. TPU-PDMS blends offer better overall performance at 70:30 blend ratio of TPU and PDMS (T70P30). Only 4% of hemolysis was observed for T70P30 blends, which establishes the hemocompatibility of the material. In comparison, the results reveal the potential of the cytocompatible T70P30 scaffold for the fabrication of skin substitutes for tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1634-1644, 2019.
Collapse
Affiliation(s)
- M P Drupitha
- Indian Institute of Technology, Rubber Technology Centre, Kharagpur, 721302, India
| | - Kamakshi Bankoti
- Indian Institute of Technology, School of Medical Science and Technology, Kharagpur, 721302, India
| | - Pallabi Pal
- Indian Institute of Technology, School of Medical Science and Technology, Kharagpur, 721302, India
| | - Bodhisatwa Das
- Indian Institute of Technology, School of Medical Science and Technology, Kharagpur, 721302, India
| | - Ramesh Parameswar
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Thiruvananthapuram, 695012, India
| | - Santanu Dhara
- Indian Institute of Technology, School of Medical Science and Technology, Kharagpur, 721302, India
| | - Golok B Nando
- Indian Institute of Technology, Rubber Technology Centre, Kharagpur, 721302, India
| | - Kinsuk Naskar
- Indian Institute of Technology, Rubber Technology Centre, Kharagpur, 721302, India
| |
Collapse
|
12
|
Farrokhi A, Pakyari M, Nabai L, Pourghadiri A, Hartwell R, Jalili R, Ghahary A. Evaluation of Detergent-Free and Detergent-Based Methods for Decellularization of Murine Skin. Tissue Eng Part A 2018; 24:955-967. [DOI: 10.1089/ten.tea.2017.0273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Da LC, Huang YZ, Xie HQ. Progress in development of bioderived materials for dermal wound healing. Regen Biomater 2017; 4:325-334. [PMID: 29026647 PMCID: PMC5633688 DOI: 10.1093/rb/rbx025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023] Open
Abstract
Treatment of acute and chronic wounds is one of the primary challenges faced by doctors. Bioderived materials have significant potential clinical value in tissue injury treatment and defect reconstruction. Various strategies, including drug loading, addition of metallic element(s), cross-linking and combining two or more distinct types of materials with complementary features, have been used to synthesize more suitable materials for wound healing. In this review, we describe the recent developments made in the processing of bioderived materials employed for cutaneous wound healing, including newly developed materials such as keratin and soy protein. The focus was on the key properties of the bioderived materials that have shown great promise in improving wound healing, restoration and reconstruction. With their good biocompatibility, nontoxic catabolites, microinflammation characteristics, as well as their ability to induce tissue regeneration and reparation, the bioderived materials have great potential for skin tissue repair.
Collapse
Affiliation(s)
- Lin-Cui Da
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
14
|
The pinking shears: a novel tool for improving skin graft cosmesis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 2:e269. [PMID: 25587503 PMCID: PMC4292251 DOI: 10.1097/gox.0000000000000227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/02/2014] [Indexed: 11/15/2022]
Abstract
Summary: A significant aesthetic disadvantage to split skin grafts is the obvious transition between the graft and the normal skin. We report on a novel method to interrupt this transition point by using pinking shears, which are dressmaking scissors with saw-toothed blades that create a chevron pattern instead of a straight edge. We describe a case where the pinking shears were utilized on a split skin graft and Integra for reconstruction of the skin on a volar forearm. This technique allows for breaking-up of the transition point between the skin graft and normal skin and gives rise to an improved aesthetic outcome as the boundary is significantly less well-defined. This novel method shows promise and further study is certainly warranted.
Collapse
|