1
|
Kannapadi NV, Shah PP, Mathios D, Jackson CM. Synthesizing Molecular and Immune Characteristics to Move Beyond WHO Grade in Meningiomas: A Focused Review. Front Oncol 2022; 12:892004. [PMID: 35712492 PMCID: PMC9194503 DOI: 10.3389/fonc.2022.892004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022] Open
Abstract
No portion of this manuscript has previously been presented. Meningiomas, the most common primary intracranial tumors, are histologically categorized by the World Health Organization (WHO) grading system. While higher WHO grade is generally associated with poor clinical outcomes, a significant subset of grade I tumors recur or progress, indicating a need for more reliable models of meningioma behavior. Several groups have developed risk scores based on molecular or immunologic characteristics. These classification schemes show promise, with several models preliminarily demonstrating similar or superior accuracy to WHO grading. Improved understanding of immune system recognition and targeting of meningioma subtypes is necessary to advance the predictive power, as well as develop new therapies. Here, we characterize meningioma molecular drivers, predictive of recurrence and progression, and describe specific aspects of the immune response to meningiomas while highlighting critical questions and ongoing research. Relevant manuscripts of interest were identified using a systematic approach and synthesized into this focused review. Finally, we summarize the ongoing and completed clinical trials for immunotherapy in meningiomas and offer perspective on future directions.
Collapse
Affiliation(s)
- Nivedha V Kannapadi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pavan P Shah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Borch JDS, Haslund-Vinding J, Vilhardt F, Maier AD, Mathiesen T. Meningioma-Brain Crosstalk: A Scoping Review. Cancers (Basel) 2021; 13:4267. [PMID: 34503077 PMCID: PMC8428351 DOI: 10.3390/cancers13174267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: In recent years, it has become evident that the tumoral microenvironment (TME) plays a key role in the pathogenesis of various cancers. In meningiomas, however, the TME is poorly understood, and it is unknown if glia cells contribute to meningioma growth and behaviour. Objective: This scoping review investigates if the literature describes and substantiates tumour-brain crosstalk in meningiomas and summarises the current evidence regarding the role of the brain parenchyma in the pathogenesis of meningiomas. Methods: We identified studies through the electronic database PubMed. Articles describing glia cells and cytokines/chemokines in meningiomas were selected and reviewed. Results: Monocytes were detected as the most abundant infiltrating immune cells in meningiomas. Only brain-invasive meningiomas elicited a monocytic response at the tumour-brain interface. The expression of cytokines/chemokines in meningiomas has been studied to some extent, and some of them form autocrine loops in the tumour cells. Paracrine interactions between tumour cells and glia cells have not been explored. Conclusion: It is unknown to what extent meningiomas elicit an immune response in the brain parenchyma. We speculate that tumour-brain crosstalk might only be relevant in cases of invasive meningiomas that disrupt the pial-glial basement membrane.
Collapse
Affiliation(s)
- Josefine de Stricker Borch
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (J.d.S.B.); (A.D.M.); (T.M.)
| | - Jeppe Haslund-Vinding
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (J.d.S.B.); (A.D.M.); (T.M.)
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (J.d.S.B.); (A.D.M.); (T.M.)
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (J.d.S.B.); (A.D.M.); (T.M.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Yang P, Hu Y, Zhou Q. The CXCL12-CXCR4 Signaling Axis Plays a Key Role in Cancer Metastasis and is a Potential Target for Developing Novel Therapeutics against Metastatic Cancer. Curr Med Chem 2020; 27:5543-5561. [PMID: 31724498 DOI: 10.2174/0929867326666191113113110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the main cause of death in cancer patients; there is currently no effective treatment for cancer metastasis. This is primarily due to our insufficient understanding of the metastatic mechanisms in cancer. An increasing number of studies have shown that the C-X-C motif chemokine Ligand 12 (CXCL12) is overexpressed in various tissues and organs. It is a key niche factor that nurtures the pre-metastatic niches (tumorigenic soil) and recruits tumor cells (oncogenic "seeds") to these niches, thereby fostering cancer cell aggression and metastatic capabilities. However, the C-X-C motif chemokine Receptor 4 (CXCR4) is aberrantly overexpressed in various cancer stem/progenitor cells and functions as a CXCL12 receptor. CXCL12 activates CXCR4 as well as multiple downstream multiple tumorigenic signaling pathways, promoting the expression of various oncogenes. Activation of the CXCL12-CXCR4 signaling axis promotes Epithelial-Mesenchymal Transition (EMT) and mobilization of cancer stem/progenitor cells to pre-metastatic niches. It also nurtures cancer cells with high motility, invasion, and dissemination phenotypes, thereby escalating multiple proximal or distal cancer metastasis; this results in poor patient prognosis. Based on this evidence, recent studies have explored either CXCL12- or CXCR4-targeted anti-cancer therapeutics and have achieved promising results in the preclinical trials. Further exploration of this new strategy and its potent therapeutics effect against metastatic cancer through the targeting of the CXCL12- CXCR4 signaling axis may lead to a novel therapy that can clean up the tumor microenvironment ("soil") and kill the cancer cells, particularly the cancer stem/progenitor cells ("seeds"), in cancer patients. Ultimately, this approach has the potential to effectively treat metastatic cancer.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Yae Hu
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University; Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Burnett BA, Womeldorff MR, Jensen R. Meningioma: Signaling pathways and tumor growth. HANDBOOK OF CLINICAL NEUROLOGY 2020; 169:137-150. [PMID: 32553285 DOI: 10.1016/b978-0-12-804280-9.00009-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Meningiomas are the most common primary intracranial brain tumor in adult humans; however, our understanding of meningioma tumorigenesis is relatively limited in comparison with the body of research available for other intracranial tumors such as gliomas. Here we briefly describe the current understanding of aberrant signaling pathways and tumor growth mechanisms responsible for meningioma differentiation, cellular growth, development, inhibition, and death. Numerous cellular functions impacted by these signaling pathways are critical for angiogenesis, proliferation, and apoptosis. Ultimately, a further understanding of the signaling pathways involved in meningioma tumorigenesis will lead to better treatment modalities in the future.
Collapse
Affiliation(s)
- Brian Andrew Burnett
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | | | - Randy Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
5
|
Tang T, Xia QJ, Qiao X, Xi M. Expression of C-X-C chemokine receptor type 7 in otorhinolaryngologic neoplasms. Singapore Med J 2017; 57:157-60. [PMID: 26996902 DOI: 10.11622/smedj.2016057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION C-X-C chemokine receptor type 7 (CXCR7) has recently been characterised as a novel receptor for the C-X-C motif chemokine 12 (CXCL12)/stromal cell-derived factor 1-alpha. CXCR7 has been thought to play an important role in the pathogenesis of chronic rhinosinusitis, angiogenesis and tumour metastasis. The present study aimed to examine the expression of CXCR7 in tissue samples of laryngeal cancer and maxillary sinus carcinoma to determine its role in the development of otorhinolaryngologic neoplasms. METHODS Samples of otorhinolaryngologic neoplasms were obtained from 17 patients with either nasal polyps (n = 7), laryngeal cancer (n = 5) or maxillary sinus carcinoma (n = 5), and who underwent surgical resection at West China Hospital of Sichuan University. Total RNA was isolated and CXCR7 mRNA expression was examined and quantified by relative real-time reverse transcription polymerase chain reaction. A one-way analysis of variance was performed using SPSS Statistics version 11.0 (SPSS Inc, Chicago, IL, USA) to compare the CXCR7 mRNA levels among the three groups of patients. RESULTS All samples tested positive for CXCR7 mRNA. The quantitative results showed that the CXCR7 mRNA levels were highest in laryngeal cancer and lowest in maxillary sinus carcinoma neoplasms, although there was no significant difference among the three samples. CONCLUSION CXCL12 and its receptor CXCR7 may contribute to eosinophilic inflammation in patients with chronic sinusitis and nasal polyps. Our results also suggest that CXCR7 may play a role in the progression, metastasis and angiogenesis of otorhinolaryngologic tumours.
Collapse
Affiliation(s)
- Tian Tang
- West China Medical School, Department of Gynecology and Obstetrics, West China Second University Hospital, Chengdu, China
| | - Qing Jie Xia
- West China Laboratory of Molecular Genetics, Sichuan University, Chengdu, China
| | - Xiaoming Qiao
- Department of Otorhinolaryngology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Kremer D, Cui QL, Göttle P, Kuhlmann T, Hartung HP, Antel J, Küry P. CXCR7 Is Involved in Human Oligodendroglial Precursor Cell Maturation. PLoS One 2016; 11:e0146503. [PMID: 26741980 PMCID: PMC4704822 DOI: 10.1371/journal.pone.0146503] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Differentiation of oligodendroglial precursor cells (OPCs), a crucial prerequisite for central nervous system (CNS) remyelination in diseases such as Multiple Sclerosis (MS), is modulated by a multitude of extrinsic and intrinsic factors. In a previous study we revealed that the chemokine CXCL12 stimulates rodent OPC differentiation via activation of its receptor CXCR7. We could now demonstrate that CXCR7 is also expressed on NogoA- and Nkx2.2-positive oligodendroglial cells in human MS brains and that stimulation of cultured primary fetal human OPCs with CXCL12 promotes their differentiation as measured by surface marker expression and morphologic complexity. Pharmacological inhibition of CXCR7 effectively blocks these CXCL12-dependent effects. Our findings therefore suggest that a specific activation of CXCR7 could provide a means to promote oligodendroglial differentiation facilitating endogenous remyelination activities.
Collapse
Affiliation(s)
- David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| | - Qiao-Ling Cui
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jack Antel
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
7
|
Razmkhah M, Arabpour F, Taghipour M, Mehrafshan A, Chenari N, Ghaderi A. Expression of chemokines and chemokine receptors in brain tumor tissue derived cells. Asian Pac J Cancer Prev 2015; 15:7201-5. [PMID: 25227814 DOI: 10.7314/apjcp.2014.15.17.7201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Chemokine and chemokine receptor expression by tumor cells contributes to tumor growth and angiogenesis and thus these factors may be considered as tumor markers. Here we aimed to characterize cells directly extracted from glioma, meningioma, and secondary brain tumors as well as non-tumoral cells in vitro. Cells were isolated from brain tissues using 0.2% collagenase and characterized by flow cytometry. Expression of SDF-1, CXCR4, CXCR7, RANTES, CCR5, MCP-1 and IP-10 was defined using flow cytometry and qRT-PCR methods. Brain tissue isolated cells were observed as spindle-shaped cell populations. No significant differences were observed for expression of SDF-1, CXCR4, CXCR7, RANTES, CCR5, and IP-10 transcripts. However, the expression of CXCR4 was approximately 13-fold and 110-fold higher than its counterpart, CXCR7, in meningioma and glioma cells, respectively. CXCR7 was not detectable in secondary tumors but CXCR4 was expressed. In non tumoral cells, CXCR7 had 1.3-fold higher mRNA expression than CXCR4. Flow cytometry analyses of RANTES, MCP- 1, IP-10, CCR5 and CXCR4 expression showed no significant difference between low and high grade gliomas. Differential expression of CXCR4 and CXCR7 in brain tumors derived cells compared to non-tumoral samples may have crucial impacts on therapeutic interventions targeting the SDF-1/CXCR4/CXCR7 axis.
Collapse
Affiliation(s)
- Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran E-mail :
| | | | | | | | | | | |
Collapse
|
8
|
Stuermer EK, Lipenksy A, Thamm O, Neugebauer E, Schaefer N, Fuchs P, Bouillon B, Koenen P. The role of SDF-1 in homing of human adipose-derived stem cells. Wound Repair Regen 2015; 23:82-9. [PMID: 25581571 DOI: 10.1111/wrr.12248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/02/2014] [Indexed: 12/29/2022]
Abstract
One of the putative pathophysiological mechanisms of chronic wounds is a disturbed homing of stem cells. In this project, the stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor (CXCR) 4 and SDF-1/CXCR7 pathway were focused in human adipose-derived stem cells (ASCs). ASCs were incubated with acute (AWF) or chronic wound fluid (CWF) to analyze their effects by quantitative real-time polymerase chain reaction (SDF-1, CXCR4, CXCR7, TIMP3), enzyme-linked immunosorbent assay (SDF-1 in WFs and supernatant), and transwell migration assay with/without antagonization. Whereas SDF-1 amounted 73.5 pg/mL in AWF, it could not be detected in CWF. Incubation with AWF led to a significant enhancement (129.7 pg/mL vs. 95.5 pg/mL), whereas CWF resulted in a significant reduction (30 pg/mL vs. 95.5 pg/mL) of SDF-1 in ASC supernatant. The SDF-1 receptor CXCR7 was detected on ASCs. AWF but not CWF significantly induced ASC migration, which was inhibited by CXCR4 and CXCR7 antagonists. Expressions of SDF-1, CXCR4, and CXCR7 were significantly stimulated by AWF while TIMP3 expression was reduced. In conclusion, an uncontrolled inflammation in the chronic wound environment, indicated by a reduced SDF-1 expression, resulted in a decreased ASC migration. A disturbed SDF-1/CXCR4 as well as SDF-1/CXCR7 pathway seems to play an important role in the impaired healing of chronic wounds.
Collapse
Affiliation(s)
- Ewa K Stuermer
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li XX, Zheng HT, Huang LY, Shi DB, Peng JJ, Liang L, Cai SJ. Silencing of CXCR7 gene represses growth and invasion and induces apoptosis in colorectal cancer through ERK and β-arrestin pathways. Int J Oncol 2014; 45:1649-57. [PMID: 25051350 DOI: 10.3892/ijo.2014.2547] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/27/2014] [Indexed: 12/28/2022] Open
Abstract
The CXC chemokine receptor 7 (CXCR7) has been reported to be involved in cell growth, metastasis and apoptosis in certain cancers. However, the function and molecular mechanisms of CXCR7 in human colorectal cancer (CRC) are still undefined. In the present study, sixty-eight cases of CRC tissues and corresponding adjacent non-cancer tissues (ANCT) were collected, and the expression of CXCR7 was assessed using immunohistochemistry (IHC) in biopsy samples. Furthermore, CXCR7 gene was silenced by small hairpin RNA-mediated lentiviral vector (Lv-shCXCR7), by transfection into human CRC cells (SW480 and HT-29). The levels of p-ERK, β-arrestin, proliferating cell nuclear antigen (PCNA), matrix metallopeptidase-2 (MMP-2) and caspase-3 (CAS-3) were detected by western blotting. Cell proliferative activities and invasive capability were respectively measured by MTT and Transwell assays. Cell apoptosis was analyzed by flow cytometry. The results demonstrated that CXCR7 expression was significantly upregulated in CRC tissues compared with the ANCT (54.4 vs. 36.8%, P=0.041), and correlated with Dukes staging and depth of invasion (P=0.007; P=0.002). Silencing of CXCR7 gene suppressed cell proliferation and invasion, and induced cell apoptosis in CRC cells with decreased expression of p-ERK, β-arrestin, PCNA and MMP-2 but increased expression of CAS-3. The tumor volumes in the SW480 subcutaneous tumor models treated with Lv-shCXCR7 were significantly smaller than those of the negative control (NC) and PBS groups (P<0.01). In conclusion, our findings indicate that upregulation of CXCR7 expression is associated with tumor invasion, and silencing of the CXCR7 gene represses the development of CRC cells through ERK and β-arrestin pathways, suggesting that CXCR7 may serve as a potential therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Xin-Xiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Hong-Tu Zheng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Li-Yong Huang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - De-Bing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jun-Jie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - San-Jun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
10
|
Zhang Y, Yang CQ, Gao Y, Wang C, Zhang CL, Zhou XH. Knockdown of CXCR7 inhibits proliferation and invasion of osteosarcoma cells through inhibition of the PI3K/Akt and β-arrestin pathways. Oncol Rep 2014; 32:965-72. [PMID: 24969680 DOI: 10.3892/or.2014.3290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 11/06/2022] Open
Abstract
CXC chemokine receptor 7 (CXCR7) has been implicated in tumor development and metastasis in multiple malignancies. Yet, the function and molecular mechanisms of CXCR7 in human osteosarcoma (OS) are still unclear. The aim of the present study was to investigate the role of CXCR7 in human OS. The expression of CXCR7 was assessed by immunohistochemical assay using a tissue microarray procedure in 45 cases of OS tissues. A loss‑of-function approach was used to observe the effects of lentiviral vector-mediated CXCR7 siRNA (Lv-siCXCR7) on biological behaviors including proliferative activities and invasive potential, as indicated by MTT and Transwell assays in OS (MG-63 and U-2 OS) cells. The results showed that the expression of CXCR7 protein in OS tissues was significantly increased compared to that in adjacent non-cancerous tissues (68.9 vs. 53.3%, P=0.033), and was correlated with the distant metastasis of the tumors (P=0.004). Knockdown of CXCR7 suppressed proliferation and invasion of OS cells through decreased expression of PI3K, AKT, β-arrestin, proliferating cell nuclear antigen (PCNA), and matrix metalloproteinase-9 (MMP-9). In addition, the tumor volume in U-2 OS subcutaneous tumor models treated with Lv-siCXCR7 was significantly smaller than the tumor volume in the negative control group (P<0.01). Collectively, our findings indicate that upregulation of CXCR7 expression is correlated with distant metastasis of OS, while knockdown of CXCR7 blocks the development of OS cells through inhibition of the PI3K/AKT and β-arrestin pathways, suggesting that CXCR7 may serve as a potential therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Orthopedic Surgery, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Chao-Qun Yang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yang Gao
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Ce Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Cheng-Lin Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xu-Hui Zhou
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
11
|
Barbieri F, Thellung S, Würth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M, Ferone D, Florio T. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. Int J Endocrinol 2014; 2014:753524. [PMID: 25484899 PMCID: PMC4248486 DOI: 10.1155/2014/753524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.
Collapse
Affiliation(s)
- Federica Barbieri
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
- *Federica Barbieri:
| | - Stefano Thellung
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Federico Gatto
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Valentina Villa
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| |
Collapse
|