1
|
Ahsan T, Shoily SS, Fatema K, Sajib AA. Impacts of 119 missense variants at functionally important sites of drug-metabolizing human cytosolic sulfotransferase SULT1A1: An in silico study. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
2
|
Jia RY, Zhang ZP, Qin GQ, Zhang W, Yang K, Liu YZ, Jiang C, Fang ZZ. Inhibition of hydroxylated polychlorinated biphenyls (OH-PCBs) on sulfotransferases (SULTs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118214. [PMID: 34740292 DOI: 10.1016/j.envpol.2021.118214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been demonstrated as a kind of the persistent organic pollutants (POPs) that could exert complicated influences towards metabolism in human bodies. Since hydroxylated polychlorinated biphenyls (OH-PCBs) are important metabolites of PCBs, our study focuses on investigating the potential inhibitory capability of OH-PCBs on four human sulfotransferase (SULT) isoforms. P-nitrophenol (PNP) was utilized as nonselective probe substrate for this study, and recombinant SULT isoforms were utilized as the enzyme resources. Ultra-performance liquid chromatography (UPLC)-UV detecting system was used to analyze PNP and its metabolite PNP-sulfate. As result, 100 μM of most tested OH-PCBs significantly inhibited the activity of four SULT isoforms. Concentration-dependent inhibition of OH-PCBs towards SULTs was found, and half inhibition concentration values (IC50) of some inhibition processes were determined. Inhibition kinetics (inhibition kinetic type and parameters) were determined using 4'-OH-PCB106 as the representative OH-PCB, SULT1B1 and SULT1E1 as representative SULT isoforms. The inhibition kinetic parameters (Ki) were 1.73 μM and 1.81 μM for the inhibition of 4'-OH-PCB106 towards SULT1B1 and SULT1E1, respectively. In silico docking simulation was utilized to analyze the inhibition capability of 2'-OH-PCB5, 4'-OH-PCB9, 2'-OH-PCB12 towards SULT1A3.All these results obtained in this study are helpful for further understanding the toxicity of PCBs.
Collapse
Affiliation(s)
- Ruo-Yong Jia
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi-Peng Zhang
- Department of Surgery, Peking University Third Hospital, Beijing, China
| | - Guo-Qiang Qin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yong-Zhe Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China.
| |
Collapse
|
3
|
Walia HK, Singh N, Sharma S. Genetic polymorphism of Arg213His variant in the SULT1A1 gene is associated with reduced susceptibility to lung cancer in North Indian population. Xenobiotica 2021; 51:1071-1080. [PMID: 34328372 DOI: 10.1080/00498254.2021.1963008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulfotransferases (SULTs) are phase II detoxification enzymes that is involved in the biotransformation of many compounds including tobacco carcinogens. A polymorphism in the SULT1A1 (Arg213His) gene results in reduced enzyme activity.We investigated the association between the SULT1A1 (Arg213/His) genotype and lung cancer (LC). This case-control study comprised of 550 cases and controls, matched on age, gender and smoking status.The variant genotype exhibited no association with LC risk, even after stratification on basis of histological subtypes. Male LC patients carrying the variant His213 allele (p = 0.02) did not exhibit an increased risk towards LC. Smokers harbouring the Arg/His genotype did demonstrate a reduced risk towards LC (AOR = 0.70; p = 0.019). Furthermore, the LC subjects who were heavy smokers and harbouring the Arg/His genotype (AOR = 0.28; p = 0.019) did not show a genetic predisposition towards LC susceptibility. The subjects who smoked pack years of above 40 and carrying the His/His (AOR = 0.28; p = 0.036) genotype were found to have a reduced risk for LC. Furthermore, 473 subjects were analysed in regards to overall survival, wherein the His/His genotype exhibited better OS than Arg/Arg genotype (11.30 vs. 8.07 months).This study provides evidence of no genetic predisposition towards LC risk associated with SULT1A1 Arg213His polymorphism in relation to tobacco smoking.
Collapse
Affiliation(s)
- Harleen Kaur Walia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
4
|
Nikonoshina NA, Zaitseva NV, Dolgikh ОV. Peculiarities of Immune Regulation in Men of Perm Region with Atherosclerosis Related to Polymorphism of Candidate Genes. Bull Exp Biol Med 2021; 170:645-648. [PMID: 33788099 DOI: 10.1007/s10517-021-05124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/26/2022]
Abstract
The study examined peculiarities of immune regulation and associated polymorphic variants of candidate genes in men with atherosclerosis in Perm region. The revealed deficiency of CD127 lymphocytes and Annexin V-FITC+7AAD- cells, as well as enhanced level of CD3+CD4+ lymphocytes against the background of variant alleles of candidate genes FAS (rs1159120), CPOX (rs1131857) and wild-type alleles SULT1A1 (rs9282861), MMP9 (rs17576) are responsible for peculiar features of hereditary determination and pathogenesis of atherosclerosis in examined sample (p<0.05). The genetically determined degradation of extracellular matrix in vascular wall and implication of regulated Fas/APO1 apoptosis in the development of progressive atherosclerotic lesions indicate important role of immune system in atherogenesis. The revealed immunological and genetic features are recommended as the markers for early diagnosis of atherosclerosis and its prevention in men of Perm region.
Collapse
Affiliation(s)
- N A Nikonoshina
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia
| | - N V Zaitseva
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia
| | - О V Dolgikh
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia.
| |
Collapse
|
5
|
Liu C, Cui H, Gu D, Zhang M, Fang Y, Chen S, Tang M, Zhang B, Chen H. Genetic polymorphisms and lung cancer risk: Evidence from meta-analyses and genome-wide association studies. Lung Cancer 2017; 113:18-29. [PMID: 29110844 DOI: 10.1016/j.lungcan.2017.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 01/30/2023]
Abstract
A growing number of studies investigating the association between Single Nucleotide Polymorphisms (SNPs) and lung cancer risk have been published since over a decade ago. An updated integrative assessment on the credibility and strength of the associations is required. We searched PubMed, Medline, and Web of Science on or before August 29th, 2016. A total of 198 articles were deemed eligible for inclusion, which addressed the associations between 108 variants and lung cancer. Among the 108 variants, 63 were reported to be significantly associated with lung cancer while the remaining 45 were reported non-significant. Further evaluation integrating the Venice Criteria and false-positive report probability (FPRP) was performed to determine the strength of cumulative epidemiological evidence for the 63 significant associations. As a result, 15 SNPs on or near 12 genes and one miRNA with strong evidence of association with lung cancer risk were identified, including TERT (rs2736098), CHRNA3 (rs1051730), AGPHD1 (rs8034191), CLPTM1L (rs401681 and rs402710), BAT3 (rs3117582), TRNAA (rs4324798), ERCC2 (Lys751Gln), miR-146a2 (rs2910164), CYP1B1 (Arg48Gly), GSTM1 (null/present), SOD2 (C47T), IL-10 (-592C/A and -819C/T), and TP53 (intron 6). 19 SNPs were given moderate rating and 17 SNPs were rated as having weak evidence. In addition, all of the 29 SNPs identified in 12 genome-wide association studies (GWAS) were proved to be noteworthy based on FPRP value. This review summarizes and evaluates the cumulative evidence of genetic polymorphisms and lung cancer risk, which can serve as a general and useful reference for further genetic studies.
Collapse
Affiliation(s)
- Caiyang Liu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Huijie Cui
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Dongqing Gu
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Min Zhang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yanfei Fang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Siyu Chen
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Mingshuang Tang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Ben Zhang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huanwen Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing 400010, China.
| |
Collapse
|
6
|
Fernández-Santander A, Novillo A, Gaibar M, Romero-Lorca A, Moral P, Sánchez-Cuenca D, Amir N, Chaabani H, Harich N, Esteban ME. Cytochrome and sulfotransferase gene variation in north African populations. Pharmacogenomics 2016; 17:1415-23. [PMID: 27471773 DOI: 10.2217/pgs-2016-0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To describe the diversity of four cytochrome and four sulfotransferase polymorphisms in six north African samples. Scarce data have been compiled for these samples despite the rich genetic background of north African populations. MATERIALS & METHODS CYP3A4*1B, CYP3A4*17, CYP3A4*3, CYP3A5*3, SULT1A1*2, SULT1A2*2, SULT1A2*3 and SULT1E1*2 polymorphisms were explored in 556 individuals from Morocco, Algeria, Tunisia and Libya. RESULTS Allele frequencies in our samples largely exceeded the variation ranges described for European populations, especially for CYP3A4*1B, SULT1A1*2 and SULT1A2*3. CONCLUSION North African populations are heterogeneous, genetically diverse and show a considerable sub-Saharan African contribution for markers associated with increased risk of prostate cancer and with differential drug metabolism.
Collapse
Affiliation(s)
| | - Apolonia Novillo
- Basic Biomedical Sciences Department, Universidad Europea de Madrid, Madrid, Spain
| | - María Gaibar
- Basic Biomedical Sciences Department, Universidad Europea de Madrid, Madrid, Spain
| | - Alicia Romero-Lorca
- Basic Biomedical Sciences Department, Universidad Europea de Madrid, Madrid, Spain
| | - Pedro Moral
- Section of Zoology and Anthropology, Department of Evolutive Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - David Sánchez-Cuenca
- Departamento de Genética, Antropología Física y Fisiología Animal (UPV/EHU), Leioa, Spain
| | - Nadir Amir
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria
| | - Hassen Chaabani
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Nourdin Harich
- Départément de Biologie, Faculté des Sciences, Université Chouaib Doukkali, El Jadida, Morocco
| | - Maria Esther Esteban
- Section of Zoology and Anthropology, Department of Evolutive Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Rai V. Folate pathway gene MTHFR C677T polymorphism and risk of lung cancer in Asian populations. Asian Pac J Cancer Prev 2015; 15:9259-64. [PMID: 25422209 DOI: 10.7314/apjcp.2014.15.21.9259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies concerning the association between the 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism with lung cancer in Asian populations have provided inconclusive findings. AIM A meta-analysis was performed to investigate a more reliable association between MTHFR C677T polymorphism and lung cancer in Asians. MATERIALS AND METHODS A comprehensive search was conducted to identify all case-control studies of MTHFR polymorphisms and lung cancer in Asia, using odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of any association. RESULTS Meta-analysis results suggested that the MTHFR C677T polymorphism contributed to an increased lung cancer risk in Asian populations (for T vs C: OR=1.11, 95%CI=1.0-1.23; for CT vs CC: OR= 1.1, 95%CI= 0.95-1.2 ; for TT+CT vs CC: OR=1.13, 95%CI=1.0-1.30; for TT vs CC: OR=1.25, 95%CI=1.01-1.30; for TT vs CT+CC: OR=1.16, 95%CI=1.0-1.36). CONCLUSIONS MTHFR C677T polymorphism is significantly associated with lung cancer in Asians.
Collapse
Affiliation(s)
- Vandana Rai
- Department of Biotechnology, Human Molecular Laboratory, VBS Purvanchal University, Jaunpur, India E-mail :
| |
Collapse
|
8
|
Abstract
Cytosolic SULT1A1 participates in the bioconversion of a plethora of endogenous and xenobiotic substances. Genetic variation in this important enzyme such as SNPs can vary by ethnicity and have functional consequences on its activity. Most SULT1A1 genetic variability studies have been centered on the SULT1A1*1/2 SNP. Highlighted here are not only this SNP, but other genetic variants associated with SULT1A1 that could modify drug efficacy and xenobiotic metabolism. Some studies have investigated how differential metabolism of xenobiotic substances influences susceptibility to or protection from cancer in multiple sites. This review will focus primarily on the impact of SULT1A1 genetic variation on the response to anticancer therapeutic agents and subsequently how it relates to environmental and dietary exposure to both cancer-causing and cancer-preventative compounds.
Collapse
Affiliation(s)
- Jaclyn Daniels
- University of Arkansas for Medical Sciences, COM Department of Medical Genetics, 4301 W. Markham, #580 Little Rock, AR 72205, USA
| | | |
Collapse
|
9
|
Daniels J, Kadlubar S. Sulfotransferase genetic variation: from cancer risk to treatment response. Drug Metab Rev 2013; 45:415-22. [PMID: 24010997 DOI: 10.3109/03602532.2013.835621] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytosolic sulfotransferases (SULTs) are phase II detoxification enzymes that are involved in the biotransformation of a wide variety of structurally diverse endo- and xenobiotics. Single-nucleotide polymorphisms (SNPs) in SULTs can alter the phenotype of the translated proteins. SNPs in some SULTs are fairly uncommon in the population, but some, most notably for SULT isoform 1A1, are commonly found and have been associated with cancer risk for a variety of tumor sites and also with response to therapeutic agents. SNPs in many SULTs vary by ethnicity, another factor that could influence SULT-associated disease risk and pharmacogenetics. This review surveys the current knowledge of SULT genetic variability in relation to cancer risk and response to therapy, focusing primarily on SULT1A1.
Collapse
Affiliation(s)
- Jaclyn Daniels
- Department of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences , Little Rock, AR , USA
| | | |
Collapse
|
10
|
Hou XH, Huang YM, Mi YY. Methylenetetrahydrofolate reductase gene C677T polymorphism and lung cancer: an updated meta-analysis. Asian Pac J Cancer Prev 2013; 13:2025-9. [PMID: 22901166 DOI: 10.7314/apjcp.2012.13.5.2025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Methylenetetrahydrofolate reductase (MTHFR) catalyzes the metabolism of folate and nucleotides needed for DNA synthesis and repair. Variations in MTHFR functions likely play roles in the etiology of lung cancer (LC). So far, several studies between MTHFR C677T polymorphism and LC provide controversial or inconclusive results. METHODS To better assess the purported relationship, we performed a meta-analysis of 14 publications. Eligible studies were identified by searching the Pubmed, Embase, Web of Science and Google Scholar databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. RESULTS Overall, no significant association was detected between the MTHFR C677T polymorphism and LC risk, the same as in race subgroup. However, in the stratified analysis by histological type, significantly increased non-small-cell lung cancer (NSCLC) risk was indicated (T-allele vs. C-allele: OR=1.11, 95%CI=1.03-1.19; TT vs. CC: OR=1.24, 95%CI=1.09-1.41; TC vs. CC: OR=1.11, 95%CI=1.03-1.20 and TT+TC vs. CC: OR=1.09, 95%CI=1.03-1.15). At the same time, ever-smokers who carried T-allele (TT+TC) had a 10% decreased LC risk compared with CC genotype carriers. CONCLUSIONS Our study provided evidence that the MTHFR 677T null genotype may increase NSCLC risk, however, it may protect ever-smokers against LC risk. Future studies with large sample sizes are warranted to further evaluate this association in more detail.
Collapse
Affiliation(s)
- Xin-Heng Hou
- Department of Respiratory Medicine, the Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin, China.
| | | | | |
Collapse
|
11
|
Santos SS, Koifman RJ, Ferreira RM, Diniz LF, Brennan P, Boffetta P, Koifman S. SULT1A1 genetic polymorphisms and the association between smoking and oral cancer in a case-control study in Brazil. Front Oncol 2012; 2:183. [PMID: 23264952 PMCID: PMC3524504 DOI: 10.3389/fonc.2012.00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/14/2012] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Oral cancer is a public health problem worldwide, being tobacco and alcohol consumption their main risk factors. Sulfotransferase (SULT) 1A1 (encoded by SULT1A1) is involved in procarcinogens metabolism, such as polycyclic aromatic hydrocarbons (PAHs) present in tobacco smoke. OBJECTIVE The aim of this study was to explore the magnitude of association between SULT1A1 gene Arg(213)His polymorphism and oral cancer, and to explore the interaction between such polymorphism and smoking. METHODS A hospital-based case-control study was carried out in Rio de Janeiro, Brazil, during 1999-2002. Epidemiological data and biological samples were obtained from 202 oral cancer patients and 196 sex and age-frequency matched controls without cancer antecedents. RESULTS No association was observed between Arg(213)His SULT1A1 polymorphism and oral cancer risk in overall analysis (OR = 1.06, 95% CI = 0.71-1.57). The magnitude of association between cigarette smoking and oral cancer was higher in individuals with a SULT1A1(*)1 isoform (wild type, genotype Arg/Arg) (OR = 10.19, 95% CI = 3.90-26.61) than in those with at least one SULT1A1(*)2 allele (genotypes Arg/His + His/His) (OR = 4.50, 95% CI =2.09-9.69). CONCLUSION Our results suggest that Arg(213)His SULT1A1 polymorphism may modulate the association between smoking and oral cancer. However, this association needs to be replicated in other studies: due to modest number of cases and controls, the role of chance in the observed association cannot be ruled out.
Collapse
|