1
|
Huang KCY, Chen WTL, Chen JY, Lee CY, Wu CH, Lai CY, Yang PC, Liang JA, Shiau AC, Chao KSC, Ke TW. Neoantigen-augmented iPSC cancer vaccine combined with radiotherapy promotes antitumor immunity in poorly immunogenic cancers. NPJ Vaccines 2024; 9:95. [PMID: 38821980 PMCID: PMC11143272 DOI: 10.1038/s41541-024-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
Although irradiated induced-pluripotent stem cells (iPSCs) as a prophylactic cancer vaccine elicit an antitumor immune response, the therapeutic efficacy of iPSC-based cancer vaccines is not promising due to their insufficient antigenicity and the immunosuppressive tumor microenvironment. Here, we found that neoantigen-engineered iPSC cancer vaccines can trigger neoantigen-specific T cell responses to eradicate cancer cells and increase the therapeutic efficacy of RT in poorly immunogenic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). We generated neoantigen-augmented iPSCs (NA-iPSCs) by engineering AAV2 vector carrying murine neoantigens and evaluated their therapeutic efficacy in combination with radiotherapy. After administration of NA-iPSC cancer vaccine and radiotherapy, we found that ~60% of tumor-bearing mice achieved a complete response in microsatellite-stable CRC model. Furthermore, splenocytes from mice treated with NA-iPSC plus RT produced high levels of IFNγ secretion in response to neoantigens and had a greater cytotoxicity to cancer cells, suggesting that the NA-iPSC vaccine combined with radiotherapy elicited a superior neoantigen-specific T-cell response to eradicate cancer cells. The superior therapeutic efficacy of NA-iPSCs engineered by mouse TNBC neoantigens was also observed in the syngeneic immunocompetent TNBC mouse model. We found that the risk of spontaneous lung and liver metastasis was dramatically decreased by NA-iPSCs plus RT in the TNBC animal model. Altogether, these results indicated that autologous iPSC cancer vaccines engineered by neoantigens can elicit a high neoantigen-specific T-cell response, promote tumor regression, and reduce the risk of distant metastasis in combination with local radiotherapy.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - William Tzu-Liang Chen
- Department of Surgery, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Jia-Yi Chen
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Chien-Yueh Lee
- Innovation Frontier Institute of Research for Science and Technology, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan, ROC
| | - Chia-Hsin Wu
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan, ROC
| | - Chia-Ying Lai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
| | - An-Cheng Shiau
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- School of Chinese Medicine and Graduate Institute of Chinese Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| |
Collapse
|
2
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
3
|
Yu F, Zhang Z, Chang X, Ye X, Cheng H, Li Y, Cui H. Immunization with Embryonic Stem Cells/Induced Pluripotent Stem Cells Induces Effective Immunity against Ovarian Tumor-Initiating Cells in Mice. Stem Cells Int 2023; 2023:8188324. [PMID: 38058983 PMCID: PMC10696476 DOI: 10.1155/2023/8188324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 12/08/2023] Open
Abstract
Cancer stem cells (CSCs) express pluripotent markers and share many features with normal pluripotent stem cells. It is possible that immunity induced by embryonic stem cells (ESCs) and induced pluripotent stem cells- (IPSCs-) based vaccines may selectively target CSCs. In our study, cells expressing the pluripotent marker CD133 in the murine ovarian cancer cell-line ID8 were isolated and identified as CSCs. We investigated the preventive efficacy of ESCs and IPSCs-based vaccines against the development of ovarian cancer in vivo and evaluated the humoral and cellular immunities targeting CSCs in vitro. Our study showed that preimmunization with both mouse-derived embryonic stem cells (mESCs) and mouse-induced pluripotent stem cells (mIPSCs) lysates, combined with an immunostimulatory adjuvant CpG, elicited strong humoral and cellular responses. These responses effectively suppressed the development of CSC-derived tumors. Immune sera collected from mESCs and mIPSCs-vaccinated mice contained antibodies that were capable of selectively targeting CSCs, resulting in the lysis of CSCs in the presence of complement. Cytotoxic T-lymphocytes generated from splenocytes of mESCs and mIPSCs-vaccinated hosts could secrete interferon- (IFN-) γ in response to CSCs and kill CSCs in vitro. These findings indicate that vaccines based on mESCs and mIPSCs can elicit effective antitumor immunities. These immunities are related to the conferring of humoral and cellular responses that directly target CSCs.
Collapse
Affiliation(s)
- Fengsheng Yu
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zujuan Zhang
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xiaohong Chang
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Xue Ye
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Hongyan Cheng
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Yi Li
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Heng Cui
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
4
|
He R, Weng Z, Liu Y, Li B, Wang W, Meng W, Li B, Li L. Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors. Stem Cell Rev Rep 2023; 19:2557-2575. [PMID: 37755647 PMCID: PMC10661832 DOI: 10.1007/s12015-023-10633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In the past decade, induced pluripotent stem cells (iPSCs) technology has significantly progressed in studying malignant solid tumors. This technically feasible reprogramming techniques can reawaken sequestered dormant regions that regulate the fate of differentiated cells. Despite the evolving therapeutic modalities for malignant solid tumors, treatment outcomes have not been satisfactory. Recently, scientists attempted to apply induced pluripotent stem cell technology to cancer research, from modeling to treatment. Induced pluripotent stem cells derived from somatic cells, cancer cell lines, primary tumors, and individuals with an inherited propensity to develop cancer have shown great potential in cancer modeling, cell therapy, immunotherapy, and understanding tumor progression. This review summarizes the evolution of induced pluripotent stem cells technology and its applications in malignant solid tumor. Additionally, we discuss potential obstacles to induced pluripotent stem cell technology.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Nakazawa T, Maeoka R, Morimoto T, Matsuda R, Nakamura M, Nishimura F, Yamada S, Nakagawa I, Park YS, Nakase H, Tsujimura T. Capability of Human Dendritic Cells Pulsed with Autologous Induced Pluripotent Stem Cell Lysate to Induce Cytotoxic T Lymphocytes against HLA-A33-Matched Cancer Cells. Int J Mol Sci 2022; 23:12992. [PMID: 36361783 PMCID: PMC9654950 DOI: 10.3390/ijms232112992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2023] Open
Abstract
Irradiated murine induced-pluripotent stem cells (iPSCs) elicit the antitumor response in vivo. However, it is unclear whether human iPSCs would elicit antitumor effects. In the present study, we investigated the capability of human iPSC lysate (iPSL)-pulsed dendritic cells (DCs) (iPSL/DCs) to induce cancer-responsive cytotoxic T lymphocytes (CTLs) in vitro. iPSCs and DCs were induced from peripheral blood mononuclear cells isolated from a human leukocyte antigen (HLA)-A33 homozygous donor. The iPSL was pulsed with immature DCs, which were then stimulated to allow full maturation. The activated DCs were co-cultured with autologous CTLs and their responses to SW48 colorectal carcinoma cells (HLA-A32/A33), T47D breast cancer cells (HLA-A33/A33), and T98G glioblastoma cells (HLA-A02/A02) were tested with enzyme-linked immunospot (ELISPOT) assays. Comprehensive gene expression analysis revealed that the established iPSCs shared numerous tumor-associated antigens with the SW48 and T47D cells. Immunofluorescent analysis demonstrated that the fluorescent-labeled iPSL was captured by the immature DCs within 2 h. iPSL/DCs induced sufficient CTL numbers in 3 weeks for ELISPOT assays, which revealed that the induced CTLs responded to SW48 and T47D cells. Human iPSL/DCs induced cancer-responsive CTLs on HLA-A33-matched cancer cells in vitro and could be a promising universal cancer vaccine for treating and preventing cancer.
Collapse
Affiliation(s)
- Tsutomu Nakazawa
- Department of Research and Development, Grandsoul Research Institute for Immunology, Matsui 8-1, Utano, Uda 633-2221, Nara, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Utano, Uda 633-2221, Nara, Japan
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Mitsutoshi Nakamura
- Clinic Grandsoul Nara, Matsui 8-1, Utano, Uda 633-2221, Nara, Japan
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Takahiro Tsujimura
- Department of Research and Development, Grandsoul Research Institute for Immunology, Matsui 8-1, Utano, Uda 633-2221, Nara, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Utano, Uda 633-2221, Nara, Japan
| |
Collapse
|
6
|
Ouyang X, Liu Y, Zhou Y, Guo J, Wei TT, Liu C, Lee B, Chen B, Zhang A, Casey KM, Wang L, Kooreman NG, Habtezion A, Engleman EG, Wu JC. Antitumor effects of iPSC-based cancer vaccine in pancreatic cancer. Stem Cell Reports 2021; 16:1468-1477. [PMID: 33961792 PMCID: PMC8190592 DOI: 10.1016/j.stemcr.2021.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) and cancer cells share cellular similarities and transcriptomic profiles. Here, we show that an iPSC-based cancer vaccine, comprised of autologous iPSCs and CpG, stimulated cytotoxic antitumor CD8+ T cell effector and memory responses, induced cancer-specific humoral immune responses, reduced immunosuppressive CD4+ T regulatory cells, and prevented tumor formation in 75% of pancreatic ductal adenocarcinoma (PDAC) mice. We demonstrate that shared gene expression profiles of “iPSC-cancer signature genes” and others are overexpressed in mouse and human iPSC lines, PDAC cells, and multiple human solid tumor types compared with normal tissues. These results support further studies of iPSC vaccination in PDAC in preclinical and clinical models and in other cancer types that have low mutational burdens. The iPSC-based cancer vaccine prevents tumor growth in pancreatic cancer The iPSC-based cancer vaccine induces cytotoxic antitumor T cell and B cell responses The iPSC-based cancer vaccine reduces immune-suppressive Treg cells iPSC-cancer signature genes are upregulated in mouse PDAC and human tumors
Collapse
Affiliation(s)
- Xiaoming Ouyang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Yu Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Yang Zhou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Tzu-Tang Wei
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Bomi Lee
- Department of Medicine, Division of Gastroenterology & Hepatology, Stanford University, Stanford, CA 94305, USA
| | - Binbin Chen
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lin Wang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Nigel G Kooreman
- Department of Surgery, Leiden University Medical Center, Leiden, ZA 2333, the Netherlands
| | - Aida Habtezion
- Department of Medicine, Division of Gastroenterology & Hepatology, Stanford University, Stanford, CA 94305, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Barati M, Akhondi M, Mousavi NS, Haghparast N, Ghodsi A, Baharvand H, Ebrahimi M, Hassani SN. Pluripotent Stem Cells: Cancer Study, Therapy, and Vaccination. Stem Cell Rev Rep 2021; 17:1975-1992. [PMID: 34115316 PMCID: PMC8193020 DOI: 10.1007/s12015-021-10199-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Pluripotent stem cells (PSCs) are promising tools for modern regenerative medicine applications because of their stemness properties, which include unlimited self-renewal and the ability to differentiate into all cell types in the body. Evidence suggests that a rare population of cells within a tumor, termed cancer stem cells (CSCs), exhibit stemness and phenotypic plasticity properties that are primarily responsible for resistance to chemotherapy, radiotherapy, metastasis, cancer development, and tumor relapse. Different therapeutic approaches that target CSCs have been developed for tumor eradication. RESULTS AND DISCUSSION In this review, we first provide an overview of different viewpoints about the origin of CSCs. Particular attention has been paid to views believe that CSCs are probably appeared through dysregulation of very small embryonic-like stem cells (VSELs) which reside in various tissues as the main candidate for tissue-specific stem cells. The expression of pluripotency markers in these two types of cells can strengthen the validity of this theory. In this regard, we discuss the common properties of CSCs and PSCs, and highlight the potential of PSCs in cancer studies, therapeutic applications, as well as educating the immune system against CSCs. CONCLUSION In conclusion, the resemblance of CSCs to PSCs can provide an appropriate source of CSC-specific antigens through cultivation of PSCs which brings to light promising ideas for prophylactic and therapeutic cancer vaccine development.
Collapse
Affiliation(s)
- Mojgan Barati
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Akhondi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Sabahi Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Asma Ghodsi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Qiao Y, Agboola OS, Hu X, Wu Y, Lei L. Tumorigenic and Immunogenic Properties of Induced Pluripotent Stem Cells: a Promising Cancer Vaccine. Stem Cell Rev Rep 2020; 16:1049-1061. [PMID: 32939647 PMCID: PMC7494249 DOI: 10.1007/s12015-020-10042-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are mainly characterized by their unlimited proliferation abilities and potential to develop into almost any cell type. The creation of this technology has been of great interest to many scientific fields, especially regenerative biology. However, concerns about the safety of iPSC application in transplantation have arisen due to the tumorigenic and immunogenic properties of iPSCs. This review will briefly introduce the developing history of somatic reprogramming and applications of iPSC technology in regenerative medicine. In addition, the review will highlight two challenges to the efficient usage of iPSCs and the underlying mechanisms of these challenges. Finally, the review will discuss the expanding application of iPSC technology in cancer immunotherapy as a potential cancer vaccine and its advantages in auxiliary treatment compared with oncofetal antigen-based and embryonic stem cell (ESC)-based vaccines.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Oluwafemi Solomon Agboola
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China.
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
9
|
Li L, Zheng Y, Zheng Q, Jiang J. Mechanism of inhibiting proliferation of hepatocellular carcinoma Hepa1-6 cells by embryonic stem cell-conditioned medium. Exp Ther Med 2020; 19:2406-2414. [PMID: 32226485 PMCID: PMC7092933 DOI: 10.3892/etm.2020.8527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/23/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate the antiproliferative effect of embryonic stem cell-conditioned medium (ESC-CM) on the mouse liver cancer Hepa1-6 cells in vitro. Furthermore, in order to elucidate the underlying molecular mechanism, the microRNAs (miRNAs) in ESC-CM associated with the inhibition of Hepa1-6 proliferation were identified. Following the co-culture of ESC-CM and Hepa1-6 in Transwell chambers, the proliferation, cell cycle, apoptosis and associated protein expression were determined in Hepal-6 cells. Moreover, miRNA array analysis was employed to identify differentially expressed miRNAs. Based on the differentially expressed miRNAs, the target genes and potential associated signaling pathways were determined. Finally, RT-qPCR was conducted to confirm the above results. The ESC-CM inhibited Hepal-6 cell proliferation and increased the percentage of cells at G1 phase and decreased the percentage of cells at the G2/M phase of the cell cycle. The expression of cyclin D1/cyclin-dependent kinase (CDK)4/CDK6 was decreased following co-culture, with no effect on cell apoptosis. Six significantly regulated miRNAs were identified and 423 putative target genes of these regulated miRNAs were predicted. Gene ontology analysis revealed the putative target genes to be associated with the ‘DNA replication (GO: 0006260)’ GO term, ‘apoptosis’ and ‘signal transduction’. The Kyoto Encyclopedia of Genes and Genomes analysis indicated that deregulated miRNAs were enriched in the Wnt signaling (KEGG entry: Map 04310) and Hippo signaling pathways (KEGG entry: Map 04390), pathways associated with cancer. Overall, the present study demonstrated the inhibition of Hepa1-6 cell line proliferation upon treatment with ESC-CM, by decreasing cell cycle-associated protein cyclin D1/CDK4/CDK6 expression and arresting cells in G1 phase of the cell cycle, with no effect on cell apoptosis. Furthermore, the inhibition of proliferation by ESC-CM may be mediated by miRNAs that affect cell cycle-associated mRNAs and the Wnt signaling pathway.
Collapse
Affiliation(s)
- Longqin Li
- Liver Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yichao Zheng
- Liver Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Qi Zheng
- Liver Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jiaji Jiang
- Liver Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
10
|
Chu DT, Nguyen TT, Tien NLB, Tran DK, Jeong JH, Anh PG, Thanh VV, Truong DT, Dinh TC. Recent Progress of Stem Cell Therapy in Cancer Treatment: Molecular Mechanisms and Potential Applications. Cells 2020; 9:cells9030563. [PMID: 32121074 PMCID: PMC7140431 DOI: 10.3390/cells9030563] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
The insufficient and unspecific target of traditional therapeutic approaches in cancer treatment often leads to therapy resistance and cancer recurrence. Over the past decades, accumulating discoveries about stem cell biology have provided new potential approaches to cure cancer patients. Stem cells possess unique biological actions, including self-renewal, directional migration, differentiation, and modulatory effects on other cells, which can be utilized as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. In this review, we emphasize the mechanisms underlying the use of various types of stem cells in cancer treatment. In addition, we summarize recent progress in the clinical applications of stem cells, as well as common risks of this therapy. We finally give general directions for future studies, aiming to improve overall outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Department of Human and Animal Physiology, Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
- Correspondence: (D.-T.C.); (T.C.D.); Tel.: +84966409783 (D.-T.C.)
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541, Korea; (T.T.N.); (J.-H.J.)
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
| | - Dang-Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam;
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541, Korea; (T.T.N.); (J.-H.J.)
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam;
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Dang Tien Truong
- Department of Anatomy, Vietnam Military Medical University, Hanoi 100000, Vietnam;
| | - Thien Chu Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam
- Correspondence: (D.-T.C.); (T.C.D.); Tel.: +84966409783 (D.-T.C.)
| |
Collapse
|
11
|
Ouyang X, Telli ML, Wu JC. Induced Pluripotent Stem Cell-Based Cancer Vaccines. Front Immunol 2019; 10:1510. [PMID: 31338094 PMCID: PMC6628907 DOI: 10.3389/fimmu.2019.01510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Over a century ago, it was reported that immunization with embryonic/fetal tissue could lead to the rejection of transplanted tumors in animals. Subsequent studies demonstrated that vaccination of embryonic materials in animals induced cellular and humoral immunity against transplantable tumors and carcinogen-induced tumors. Therefore, it has been hypothesized that the shared antigens between tumors and embryonic/fetal tissues (oncofetal antigens) are the key to anti-tumor immune responses in these studies. However, early oncofetal antigen-based cancer vaccines usually utilize xenogeneic or allogeneic embryonic stem cells or tissues, making it difficult to tease apart the anti-tumor immunity elicited by the oncofetal antigens vs. graft-vs.-host responses. Recently, one oncofetal antigen-based cancer vaccine using autologous induced pluripotent stem cells (iPSCs) demonstrated marked prophylactic and therapeutic potential, suggesting critical roles of oncofetal antigens in inducing anti-tumor immunity. In this review, we present an overview of recent studies in the field of oncofetal antigen-based cancer vaccines, including single peptide-based cancer vaccines, embryonic stem cell (ESC)- and iPSC-based whole-cell vaccines, and provide insights on future directions.
Collapse
Affiliation(s)
- Xiaoming Ouyang
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | - Melinda L Telli
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Joseph C Wu
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Tabatabaei M, Mosaffa N, Ghods R, Nikoo S, Kazemnejad S, Khanmohammadi M, Mirzadegan E, Mahmoudi AR, Bolouri MR, Falak R, Keshavarzi B, Ramezani M, Zarnani AH. Vaccination with human amniotic epithelial cells confer effective protection in a murine model of Colon adenocarcinoma. Int J Cancer 2017; 142:1453-1466. [PMID: 29139122 DOI: 10.1002/ijc.31159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022]
Abstract
As a prophylactic cancer vaccine, human amniotic membrane epithelial cells (hAECs) conferred effective protection in a murine model of colon cancer. The immunized mice mounted strong cross-protective CTL and antibody responses. Tumor burden was significantly reduced in tumor-bearing mice after immunization with hAECs. Placental cancer immunotherapy could be a promising approach for primary prevention of cancer. In spite of being the star of therapeutic strategies for cancer treatment, the results of immunotherapeutic approaches are still far from expectations. In this regard, primary prevention of cancer using prophylactic cancer vaccines has gained considerable attention. The immunologic similarities between cancer development and placentation have helped researchers to unravel molecular mechanisms responsible for carcinogenesis and to take advantage of stem cells from reproductive organs to elicit robust anti-cancer immune responses. Here, we showed that vaccination of mice with human amniotic membrane epithelial cells (hAECs) conferred effective protection against colon cancer and led to expansion of systemic and splenic cytotoxic T cell population and induction of cross-protective cytotoxic responses against tumor cells. Vaccinated mice mounted tumor-specific Th1 responses and produced cross-reactive antibodies against cell surface markers of cancer cells. Tumor burden was also significantly reduced in tumor-bearing mice immunized with hAECs. Our findings pave the way for potential future application of hAECs as an effective prophylactic cancer vaccine.
Collapse
Affiliation(s)
- M Tabatabaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Nikoo
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - S Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - M Khanmohammadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - E Mirzadegan
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - A R Mahmoudi
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - M R Bolouri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - R Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - B Keshavarzi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Ramezani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - A H Zarnani
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Mooney B, Abdul-Raof N, Tian YI, Xie Y. Restriction of Cancer Metastatic Potential Using Embryonic Stem Cells Encapsulated in Alginate Hydrogel Microstrands. ACS Biomater Sci Eng 2017; 3:1769-1779. [DOI: 10.1021/acsbiomaterials.7b00237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bridget Mooney
- Nanobioscience, Colleges
of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Nurazhani Abdul-Raof
- Nanobioscience, Colleges
of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Yangzi Isabel Tian
- Nanobioscience, Colleges
of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Yubing Xie
- Nanobioscience, Colleges
of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
14
|
Zheng Q, Zheng Y, Chen J, You J, Zhu Y, Liu Y, Jiang JJ. A hepatic stem cell vaccine is superior to an embryonic stem cell vaccine in the prophylaxis and treatment of murine hepatocarcinoma. Oncol Rep 2017; 37:1716-1724. [PMID: 28098898 DOI: 10.3892/or.2017.5381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/31/2016] [Indexed: 11/05/2022] Open
Abstract
Stem cells and cancer cells express a common subset of antigens called oncofetal antigens. Theoretically, vaccination with stem cells is effective at boosting the preexisting anticancer immune response. Herein we describe the efficacy of two stem cell-based vaccines in the prophylaxis and treatment of subcutaneous hepatic tumors transplanted into mice. C57BL/6j mice were vaccinated weekly with either hepatic stem cells (HSCs) or embryonic stem cells (ESCs) for three weeks, followed by a subcutaneous challenge with Hepa 1-6 cells at one week (group 1) or four weeks (group 2) after vaccination. No tumor formation was observed in HSC-vaccinated mice when challenged within one week after vaccination (group 1), but tumors formed in 10% of mice in the ESC-vaccinated group and in 60% of mice in the unvaccinated group. When the long-term memory response was examined (group 2), only 10% of HSC-vaccinated mice and 20% of ESC-vaccinated mice developed macroscopic hepatocarcinomas compared to 60% of the unvaccinated mice. Besides their function as prophylactic vaccines, administration of either HSC or ESC could be a potential treatment for cancer. In mice with subcutaneous hepatocarcinomas, complete clearance of tumor burden was observed in 80% of mice receiving HSC vaccination, but 40% of ESC-vaccinated mice presented with tumors that did not increase in size over time. These data support that HSC is a superior vaccine candidate for durable antitumor protection in this hepatocarcinoma model.
Collapse
Affiliation(s)
- Qi Zheng
- Center for Liver Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Yichao Zheng
- Center for Liver Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Jing Chen
- Center for Liver Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Jia You
- Center for Liver Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Yueyong Zhu
- Center for Liver Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Yurui Liu
- Center for Liver Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Jia Ji Jiang
- Center for Liver Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
15
|
Abstract
Ovarian cancer is the most lethal malignancy of the female reproductive system and the fifth leading cause of cancer death in women. In the year 2012 alone, United States had 22,280 new ovarian cancer cases and 15,500 deaths were reported. About 7%-10% of ovarian cancers result from an inherited tendency to develop the disease. Ovarian cancer has the ability to escape the immune system because of its pathological interactions between cancer cells and host immune cells in the tumor microenvironment create an immunosuppressive network that promotes tumor growth, protects the tumor from immune system. The levels of immune suppressive elements like regulatory T cells, plasmacytoid dendritic cells and cytokines such as IL-10, IL-6, TNF-α, and TGF-β are elevated in the tumor microenvironment. Vascular endothelial growth factor is known to have an immune suppressing role besides its angiogenic role in the tumor microenvironment. Ovarian cancer is associated with high mortality partly due to difficulties in early diagnosis and development of metastases. These problems may overcome by developing accurate mouse models that should mimic the complexity of human ovarian cancer. Such animal models are better suited to understand pathophysiology, metastases, and also for preclinical testing of targeted molecular therapeutics. Immunotherapy is an area of active investigation and off late many clinical trials is ongoing to prevent disease progression. The main aim of dendritic cells vaccination is to stimulate tumor specific effector T cells that can reduce tumor size and induce immunological memory to prevent tumor relapse.
Collapse
Affiliation(s)
- T Sree Latha
- 1Department of Genetics & Genomics, Yogi Vemana University, Kadapa, India
| | | | | | | | | |
Collapse
|