1
|
Sedky NK, Arafa KK, Abdelhady MMM, Issa MY, Abdel-Kader NM, Mahdy NK, Mokhtar FA, Alfaifi MY, Fahmy SA. Nedaplatin/ Peganum harmala Alkaloids Co-Loaded Electrospun, Implantable Nanofibers: A Chemopreventive Nano-Delivery System for Treating and Preventing Breast Cancer Recurrence after Tumorectomy. Pharmaceutics 2023; 15:2367. [PMID: 37896127 PMCID: PMC10609766 DOI: 10.3390/pharmaceutics15102367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Currently, the main pillars in treating breast cancer involve tumorectomy pursued by hormonal, radio, or chemotherapies. Nonetheless, these approaches exhibit severe adverse effects and might suffer from tumor recurrence. Therefore, there is a considerable demand to fabricate an innovative controlled-release nano-delivery system to be implanted after tumor surgical removal to guard against cancer recurrence. In addition, combining platinum-based drugs with phytochemicals is a promising approach to improving the anticancer activity of the chemotherapeutics against tumor cells while minimizing their systemic effects. This study designed polycaprolactone (PCL)-based electrospun nanofiber mats encapsulating nedaplatin (N) and Peganum harmala alkaloid-rich fraction (L). In addition to physicochemical characterization, including average diameters, morphological features, degradation study, thermal stability, and release kinetics study, the formulated nanofibers were assessed in terms of cytotoxicity, where they demonstrated potentiated effects and higher selectivity towards breast cancer cells. The dual-loaded nanofiber mats (N + L@PCL) demonstrated the highest antiproliferative effects against MCF-7 cells with a recorded IC50 of 3.21 µg/mL, as well as the topmost achieved selectivity index (20.45) towards cancer cells amongst all the tested agents (N, L, N@PCL, and L@PCL). This indicates that the dual-loaded nanofiber excelled at conserving the normal breast epithelial cells (MCF-10A). The combined therapy, N + L@PCL treatment, resulted in a significantly higher percent cell population in the late apoptosis and necrosis quartiles as compared to all other treatment groups (p-value of ≤0.001). Moreover, this study of cell cycle kinetics revealed potentiated effects of the dual-loaded nanofiber (N + L@PCL) at trapping more than 90% of cells in the sub-G1 phase and reducing the number of cells undergoing DNA synthesis in the S-phase by 15-fold as compared to nontreated cells; hence, causing cessation of the cell cycle and confirming the apoptosis assay results. As such, our findings suggest the potential use of the designed nanofiber mats as perfect implants to prevent tumor recurrence after tumorectomy.
Collapse
Affiliation(s)
- Nada K. Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt
| | - Kholoud K. Arafa
- Drug Design and Discovery Lab, Zewail City for Science, Technology and Innovation, Cairo 12578, Egypt
| | - Manal M. M. Abdelhady
- Clinical Pharmacy Department, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| | - Marwa Y. Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Nour M. Abdel-Kader
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Fatma A. Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Egypt
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| |
Collapse
|
2
|
Tang J, Yang Z, Zhang Y, Huang R, Yu C, Yu C. Preparation of PEGylated nedaplatin liposomes with sustained release behavior for enhancing the antitumor efficacy of non-small cell lung cancer. Int J Pharm 2023; 635:122708. [PMID: 36764415 DOI: 10.1016/j.ijpharm.2023.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Nedaplatin (NDP) plays an important role in the chemotherapies of non-small cell lung cancer (NSCLC). However, dose-limiting toxicities such as myelosuppression and drug resistance restrict its clinical application. Herein, we intended to overcome these defects by developing a PEGylated liposomal formulation encapsulated NDP (NDP-LPs). For the first time, we found the incompatibility between NDP and natural phospholipids such as egg phosphatidylcholine (EPC) using the high-performance liquid chromatography (HPLC) method. The orthogonal experimental design was applied to optimize the conditions for preparing NDP-LPs, with encapsulation efficiency (EE) as the evaluation indicator. The physicochemical properties of optimized NDP-LPs were further characterized, including particle size, zeta potential, EE, drug release profiles, and so on. Results showed that a significantly sustained-release profile of NDP-LPs was observed and the releasing time of NDP could reach as long as 8 days. At the cellular level, NDP encapsulated in the PEGylated liposomes enhanced its cellular uptake and possessed potent cytotoxic activity. After intravenous injection, NDP-LPs could accumulate at tumor sites and effectivelyinhibit tumor growth of mice without obvious adverse effects. In conclusion, our results demonstrated that PEGylated liposomes could serve as a promising carrier to enhance the therapeutic effects of NDP.
Collapse
Affiliation(s)
- Jinsong Tang
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Zhangyou Yang
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ruixue Huang
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chaoqun Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Chao Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Simultaneous regulation of ferroptosis suppressor protein 1 and glutathione peroxidase 4 as a new therapeutic strategy of ferroptosis for esophageal squamous cell carcinoma. Esophagus 2022:10.1007/s10388-022-00982-x. [PMID: 36576648 DOI: 10.1007/s10388-022-00982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ferroptosis suppressor protein 1 and glutathione peroxidase 4 have been identified as key molecules in two independent pathways associated with ferroptosis inhibition. This study investigated the prognostic significance and clinical associations of FSP1 and GPX4 expression in esophageal squamous cell carcinoma (ESCC) and assessed the therapeutic potential of regulating these molecules in ESCC cells. METHODS Immunohistochemical analysis was performed on surgical specimens of 97 patients with ESCC for FSP1 and GPX4 expression. To identify the change in ESCC cell viability, FSP1 and GPX4 inhibitors were administered to three cell lines. In addition, ferroptosis as the cause of reduced cell viability by FSP1 and GPX4 inhibition was confirmed. RESULTS Prognosis was significantly worse for patients in the group positive for both FSP1 and GPX4 compared with the other groups (p < 0.001). In multivariate analysis, positivity for both FSP1 and GPX4 was an independent poor prognostic factor (p = 0.002). The combination of FSP1 and GPX4 inhibitors induced cell death more potently than each inhibitor did alone. Furthermore, the ferroptosis inhibitor markedly canceled this cell death. CONCLUSIONS Overexpression of FSP1 and GPX4 is a poor prognostic factor for patients with ESCC. Simultaneous suppression of both FSP1 and GPX4 caused potent cell death, which was markedly abrogated by ferroptosis inhibitors. These findings indicate that simultaneous regulation of FSP1 and GPX4 may be a new therapeutic target in ESCC.
Collapse
|
4
|
El-Shafie S, Fahmy SA, Ziko L, Elzahed N, Shoeib T, Kakarougkas A. Encapsulation of Nedaplatin in Novel PEGylated Liposomes Increases Its Cytotoxicity and Genotoxicity against A549 and U2OS Human Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12090863. [PMID: 32927897 PMCID: PMC7559812 DOI: 10.3390/pharmaceutics12090863] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Following the discovery of cisplatin over 50 years ago, platinum-based drugs have been a widely used and effective form of cancer therapy, primarily causing cell death by inducing DNA damage and triggering apoptosis. However, the dose-limiting toxicity of these drugs has led to the development of second and third generation platinum-based drugs that maintain the cytotoxicity of cisplatin but have a more acceptable side-effect profile. In addition to the creation of new analogs, tumor delivery systems such as liposome encapsulated platinum drugs have been developed and are currently in clinical trials. In this study, we have created the first PEGylated liposomal form of nedaplatin using thin film hydration. Nedaplatin, the main focus of this study, has been exclusively used in Japan for the treatment of non-small cell lung cancer, head and neck, esophageal, bladder, ovarian and cervical cancer. Here, we investigate the cytotoxic and genotoxic effects of free and liposomal nedaplatin on the human non-small cell lung cancer cell line A549 and human osteosarcoma cell line U2OS. We use a variety of assays including ICP MS and the highly sensitive histone H2AX assay to assess drug internalization and to quantify DNA damage induction. Strikingly, we show that by encapsulating nedaplatin in PEGylated liposomes, the platinum uptake cytotoxicity and genotoxicity of nedaplatin was significantly enhanced in both cancer cell lines. Moreover, the enhanced platinum uptake as well as the cytotoxic/antiproliferative effect of liposomal nedaplatin appears to be selective to cancer cells as it was not observed on two noncancer cell lines. This is the first study to develop PEGylated liposomal nedaplatin and to demonstrate the superior cell delivery potential of this product.
Collapse
Affiliation(s)
- Salma El-Shafie
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt; (S.E.-S.); (L.Z.); (N.E.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo 11835 Egypt;
| | - Laila Ziko
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt; (S.E.-S.); (L.Z.); (N.E.)
| | - Nada Elzahed
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt; (S.E.-S.); (L.Z.); (N.E.)
| | - Tamer Shoeib
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo 11835 Egypt;
- Correspondence: (T.S.); (A.K.)
| | - Andreas Kakarougkas
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt; (S.E.-S.); (L.Z.); (N.E.)
- Correspondence: (T.S.); (A.K.)
| |
Collapse
|
5
|
Dzobo K, Hassen N, Senthebane DA, Thomford NE, Rowe A, Shipanga H, Wonkam A, Parker MI, Mowla S, Dandara C. Chemoresistance to Cancer Treatment: Benzo-α-Pyrene as Friend or Foe? Molecules 2018; 23:E930. [PMID: 29673198 PMCID: PMC6017867 DOI: 10.3390/molecules23040930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Environmental pollution such as exposure to pro-carcinogens including benzo-α-pyrene is becoming a major problem globally. Moreover, the effects of benzo-α-pyrene (BaP) on drug pharmacokinetics, pharmacodynamics, and drug resistance warrant further investigation, especially in cancer outpatient chemotherapy where exposure to environmental pollutants might occur. Method: We report here on the effects of benzo-α-pyrene on esophageal cancer cells in vitro, alone, or in combination with chemotherapeutic drugs cisplatin, 5-flurouracil, or paclitaxel. As the study endpoints, we employed expression of proteins involved in cell proliferation, drug metabolism, apoptosis, cell cycle analysis, colony formation, migration, and signaling cascades in the WHCO1 esophageal cancer cell line after 24 h of treatment. Results: Benzo-α-pyrene had no significant effect on WHCO1 cancer cell proliferation but reversed the effect of chemotherapeutic drugs by reducing drug-induced cell death and apoptosis by 30−40% compared to drug-treated cells. The three drugs significantly reduced WHCO1 cell migration by 40−50% compared to control and BaP-treated cells. Combined exposure to drugs was associated with significantly increased apoptosis and reduced colony formation. Evaluation of survival signaling cascades showed that although the MEK-ERK and Akt pathways were activated in the presence of drugs, BaP was a stronger activator of the MEK-ERK and Akt pathways than the drugs. Conclusion: The present study suggest that BaP can reverse the effects of drugs on cancer cells via the activation of survival signaling pathways and upregulation of anti-apoptotic proteins such as Bcl-2 and Bcl-xL. Our data show that BaP contribute to the development of chemoresistant cancer cells.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Naseeha Hassen
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Hendrina Shipanga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Ambroise Wonkam
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - M Iqbal Parker
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Shaheen Mowla
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
6
|
Özdemir F, Apaydın E, Önder Nİ, Şen M, Ayrım A, Öğünç Y, İncesu Z. Apoptotic effects of ε-viniferin in combination with cis-platin in C6 cells. Cytotechnology 2018; 70:1061-1073. [PMID: 29476302 DOI: 10.1007/s10616-018-0197-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is one of the most common and lethal forms of primary brain tumors in human adults. Treatment options are limited, and in most cases ineffective. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases like cancer. ε-viniferin is a resveratrol dimer and well known for having antiproliferative and apoptotic effects on cancer cells. Cisplatin is a platinum containing anti-cancer drug. In this study, we aimed to investigate antiproliferative and apoptotic effects of using cis-platin and ε-viniferin alone or in combined treatment of C6 cells. Cell proliferation was detected by WST-1. Mitochondrial membrane potential changes in the cells (ΔΨm) were evaluated using cationic dye JC1. Apoptotic index which is a hallmark of late apoptosis was detected by using Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method and apoptotic alterations were observed by transmission electron microscope (TEM). Activation of caspase-8, -9, -3 in C6 cells at various incubation periods was measured by flow cytometer. Apoptotic index increased at highest level in only combined treatment cells (91.6%) after 48 h incubation. These results were supported by TEM images. Caspase-8 activation in C6 cells increased to a maximum (12.5%) after 6 h by using combined cis-platin/ε-viniferin treatment (13.25/95 μM). Caspase-9 was activated at 44.5% after combined treatment for 24 h. This rate is higher than using cis-platin (14.2%) or ε-viniferin (43.3%) alone. The combined 13.25 μM/cisplatin and 95 μM ε-viniferin treatment caused maximum caspase-3 activation in C6 cells (15.5%) at the end of the 72 h incubation. In conclusion, it was observed that caspase-8, -9, -3 activation which was determined in vitro, trigerred apoptotic mechanism in C6 cells by using low concentrations of combined cis-platin and ε-viniferin.
Collapse
Affiliation(s)
- Filiz Özdemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey.
| | - Elif Apaydın
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| | - Nur İpek Önder
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| | - Mesut Şen
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| | - Aysun Ayrım
- Department of Biotechnology and Biosafety, Eskişehir Osmangazi University, 26480, Eskisehir, Turkey
| | - Yüksel Öğünç
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| | - Zerrin İncesu
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| |
Collapse
|
7
|
Lu M, Song Y, Fu W, Liu Y, Huai S, Cui X, Pang L, Yang L, Wei Y. MicroRNA and target mRNA selection through invasion and cytotoxicity cell modeling and bioinformatics approaches in esophageal squamous cell carcinoma. Oncol Rep 2017; 38:1181-1189. [PMID: 28677800 DOI: 10.3892/or.2017.5776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/09/2017] [Indexed: 11/05/2022] Open
Abstract
This study analyzed microRNA (miRNA) and mRNA expression profiles and investigated the biological characteristics of ESCC by using invasion and cytotoxicity cell models. miRNA profiles were evaluated through miRNA microarray. Transwell chamber and nedaplatin (NDP) were used to construct invasion and cytotoxicity cell models. Invasion Transwell and cytotoxicity assays were performed to examine the invasiveness and proliferation in the cell models. Functional miRNAs were selected from dysregulated miRNAs through qRT-PCR. Biometric Research Program (BRB)-array tools, Cytoscape plugins, and DAVID were utilized to find potential mRNAs targeted by these two miRNAs between ESCC and paired normal adjacent tissues. Our microarray obtained 11 dysregulated miRNAs expressed in three paired ESCC samples from Kazakhs (ethnicity in Northwestern China). qRT-PCR demonstrated the miRNA expression in the invasion and cytotoxicity cell models. miR‑652-5p and miR‑21‑5p exhibited a consistent expression level in the microarray and cell models. Bioinformatics revealed that the potential targets of PLD1, MSH2, STC1, and DSG1 might be involved in ESCC invasion and proliferation. Cell models with bioinformatics approaches may help distinguish functional genes. miR‑652-5p, miR‑21‑5p, and their potential target genes may participate in ESCC development and metastasis.
Collapse
Affiliation(s)
- Mu Lu
- Medical College of Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yaqin Song
- Department of Nutrition, Jining No. 1 People's Hospital, Jining, Shandong, P.R. China
| | - Wenbo Fu
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Yang Liu
- Medical College of Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Shitao Huai
- Medical College of Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Xiaobin Cui
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Lijuan Pang
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Lan Yang
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yutao Wei
- Department of Thoracic and Cardiovascular Surgery, First Hospital Affiliated to Medical College of Shihezi University, Shihezi, Xinjiang, P.R. China
| |
Collapse
|
8
|
A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep 2016; 6:36670. [PMID: 27830712 PMCID: PMC5103210 DOI: 10.1038/srep36670] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.
Collapse
|
9
|
Yang JT, Tang LH, Liu YQ, Wang Y, Wang LJ, Zhang FJ, Yan M. Cisplatin combined with hyperthermia kills HepG2 cells in intraoperative blood salvage but preserves the function of erythrocytes. J Zhejiang Univ Sci B 2016; 16:395-403. [PMID: 25990057 DOI: 10.1631/jzus.b1400224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 μg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 μg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 μg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P<0.01). Erythrocytic Na(+)-K(+)-ATPase activity, 2,3-DPG level, phosphatidylserine externalization, and extra-erythrocytic free Hb were significantly altered by hyperthermia plus high concentrations of cisplatin (100 and 200 μg/ml) (P<0.05), but not by hyperthermia plus 50 μg/ml cisplatin (P>0.05). In conclusion, pretreatment with cisplatin (50 μg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro.
Collapse
Affiliation(s)
- Jin-ting Yang
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Song HY, Deng XH, Yuan GY, Hou XF, Zhu ZD, Zhou L, Ren MX. Expression of bcl-2 and p53 in induction of esophageal cancer cell apoptosis by ECRG2 in combination with cisplatin. Asian Pac J Cancer Prev 2014; 15:1397-401. [PMID: 24606472 DOI: 10.7314/apjcp.2014.15.3.1397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM To investigate the mechanisms of induction of apoptosis of esophageal cancer cells by esophageal cancer-related gene 2 (ECRG2) in combination with cisplatin (DDP). METHODS Hoechest staining was performed to analyze the effects of single ECRG2 and ECRG2 in combination with DDP on apoptosis of EC9706 cells. The expression levels of p53 and bcl-2 mRNA and protein were determined by RT-PCR and Western blotting, respectively. RESULTS The number of apoptotic cells after the treatment with ECRG2 in combination with DDP for 24 hours was more than that after the treatment with single ECRG2. RT-PCR and Western blotting showed that the expression levels of bcl-2 mRNA and protein were both down-regulated, while p53 mRNA and protein were both up-regulated in the cells treated with ECRG2 in combination with DDP compared with those given ECRG2 alone. CONCLUSION ECRG2 in combination with DDP can enhance the apoptosis of EC9706 cells, possibly by down-regulating bcl-2 expression and up-regulating p53.
Collapse
Affiliation(s)
- Hai-Yan Song
- College of Basic Medicine, Xinxiang Medical University; Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang, China E-mail :
| | | | | | | | | | | | | |
Collapse
|