1
|
Shi L, Sheng M, Wei Z, Liu L, Zhao J. CT-Based Radiomics Predicts the Malignancy of Pulmonary Nodules: A Systematic Review and Meta-Analysis. Acad Radiol 2023; 30:3064-3075. [PMID: 37385850 DOI: 10.1016/j.acra.2023.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
RATIONALE AND OBJECTIVES More pulmonary nodules (PNs) have been detected with the wide application of computed tomography (CT) in lung cancer screening. Radiomics is a noninvasive approach to predict the malignancy of PNs. We aimed to systematically evaluate the methodological quality of the eligible studies regarding CT-based radiomics models in predicting the malignancy of PNs and evaluate the model performance of the available studies. MATERIALS AND METHODS PubMed, Embase, and Web of Science were searched to retrieve relevant studies. The methodological quality of the included studies was assessed using the Radiomics Quality Score (RQS) and Prediction model Risk of Bias Assessment Tool. A meta-analysis was conducted to evaluate the performance of CT-based radiomics model. Meta-regression and subgroup analyses were employed to investigate the source of heterogeneity. RESULTS In total, 49 studies were eligible for qualitative analysis and 27 studies were included in quantitative synthesis. The median RQS of 49 studies was 13 (range -2 to 20). The overall risk of bias was found to be high, and the overall applicability was of low concern in all included studies. The pooled sensitivity, specificity, and diagnostic odds ratio were 0.86 95% confidence interval (CI): 0.79-0.91, 0.84 95% CI: 0.78-0.88, and 31.55 95% CI: 21.31-46.70, respectively. The overall area under the curve was 0.91 95% CI: 0.89-0.94. Meta-regression showed the type of PNs on heterogeneity. CT-based radiomics models performed better in studies including only solid PNs. CONCLUSION CT-based radiomics models exhibited excellent diagnostic performance in predicting the malignancy of PNs. Prospective, large sample size, and well-devised studies are desired to verify the prediction capabilities of CT-based radiomics model.
Collapse
Affiliation(s)
- Lili Shi
- Medical School, Nantong University, Nantong, China (L.S., Z.W.)
| | - Meihong Sheng
- Department of Radiology, The Second Affiliated Hospital of Nantong University and Nantong First People's Hospital, Nantong, China (M.S.)
| | - Zhichao Wei
- Medical School, Nantong University, Nantong, China (L.S., Z.W.)
| | - Lei Liu
- Institutes of Intelligence Medicine, Fudan University, Shanghai, China (L.L.)
| | - Jinli Zhao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China (J.Z.).
| |
Collapse
|
2
|
Naik A, Edla DR, Dharavath R. Prediction of Malignancy in Lung Nodules Using Combination of Deep, Fractal, and Gray-Level Co-Occurrence Matrix Features. BIG DATA 2021; 9:480-498. [PMID: 34191590 DOI: 10.1089/big.2020.0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate detection of malignant tumor on lung computed tomography scans is crucial for early diagnosis of lung cancer and hence the faster recovery of patients. Several deep learning methodologies have been proposed for lung tumor detection, especially the convolution neural network (CNN). However, as CNN may lose some of the spatial relationships between features, we plan to combine texture features such as fractal features and gray-level co-occurrence matrix (GLCM) features along with the CNN features to improve the accuracy of tumor detection. Our framework has two advantages. First it fuses the advantage of CNN features with hand-crafted features such as fractal and GLCM features to gather the spatial information. Second, we reduce the overfitting effect by replacing the softmax layer with the support vector machine classifier. Experiments have shown that texture features such as fractal and GLCM when concatenated with deep features extracted from DenseNet architecture have a better accuracy of 95.42%, sensitivity of 97.49%, and specificity of 93.97%, and a positive predictive value of 95.96% with area under curve score of 0.95.
Collapse
Affiliation(s)
- Amrita Naik
- Department of Computer Science and Engineering, National Institute of Technology, Ponda, Goa, India
| | - Damodar Reddy Edla
- Department of Computer Science and Engineering, National Institute of Technology, Ponda, Goa, India
| | - Ramesh Dharavath
- Department of Computer Science and Engineering, Indian Institute of Technology Dhanbad, Dhanbad, Jharkhand, India
| |
Collapse
|
3
|
Naik A, Edla DR. Lung nodule classification using combination of CNN, second and higher order texture features. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-189847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lung cancer is the most common cancer throughout the world and identification of malignant tumors at an early stage is needed for diagnosis and treatment of patient thus avoiding the progression to a later stage. In recent times, deep learning architectures such as CNN have shown promising results in effectively identifying malignant tumors in CT scans. In this paper, we combine the CNN features with texture features such as Haralick and Gray level run length matrix features to gather benefits of high level and spatial features extracted from the lung nodules to improve the accuracy of classification. These features are further classified using SVM classifier instead of softmax classifier in order to reduce the overfitting problem. Our model was validated on LUNA dataset and achieved an accuracy of 93.53%, sensitivity of 86.62%, the specificity of 96.55%, and positive predictive value of 94.02%.
Collapse
Affiliation(s)
- Amrita Naik
- Computer Science and Engineering, National Institute of Technology, Ponda, Goa, India
| | - Damodar Reddy Edla
- Computer Science and Engineering, National Institute of Technology, Ponda, Goa, India
| |
Collapse
|
4
|
Solid Indeterminate Nodules with a Radiological Stability Suggesting Benignity: A Texture Analysis of Computed Tomography Images Based on the Kurtosis and Skewness of the Nodule Volume Density Histogram. Pulm Med 2019; 2019:4071762. [PMID: 31687208 PMCID: PMC6800929 DOI: 10.1155/2019/4071762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background The number of incidental findings of pulmonary nodules using imaging methods to diagnose other thoracic or extrathoracic conditions has increased, suggesting the need for in-depth radiological image analyses to identify nodule type and avoid unnecessary invasive procedures. Objectives The present study evaluated solid indeterminate nodules with a radiological stability suggesting benignity (SINRSBs) through a texture analysis of computed tomography (CT) images. Methods A total of 100 chest CT scans were evaluated, including 50 cases of SINRSBs and 50 cases of malignant nodules. SINRSB CT scans were performed using the same noncontrast enhanced CT protocol and equipment; the malignant nodule data were acquired from several databases. The kurtosis (KUR) and skewness (SKW) values of these tests were determined for the whole volume of each nodule, and the histograms were classified into two basic patterns: peaks or plateaus. Results The mean (MEN) KUR values of the SINRSBs and malignant nodules were 3.37 ± 3.88 and 5.88 ± 5.11, respectively. The receiver operating characteristic (ROC) curve showed that the sensitivity and specificity for distinguishing SINRSBs from malignant nodules were 65% and 66% for KUR values >6, respectively, with an area under the curve (AUC) of 0.709 (p < 0.0001). The MEN SKW values of the SINRSBs and malignant nodules were 1.73 ± 0.94 and 2.07 ± 1.01, respectively. The ROC curve showed that the sensitivity and specificity for distinguishing malignant nodules from SINRSBs were 65% and 66% for SKW values >3.1, respectively, with an AUC of 0.709 (p < 0.0001). An analysis of the peak and plateau histograms revealed sensitivity, specificity, and accuracy values of 84%, 74%, and 79%, respectively. Conclusions KUR, SKW, and histogram shape can help to noninvasively diagnose SINRSBs but should not be used alone or without considering clinical data.
Collapse
|
5
|
Zhang G, Yang Z, Gong L, Jiang S, Wang L, Cao X, Wei L, Zhang H, Liu Z. An Appraisal of Nodule Diagnosis for Lung Cancer in CT Images. J Med Syst 2019; 43:181. [PMID: 31093830 DOI: 10.1007/s10916-019-1327-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
As "the second eyes" of radiologists, computer-aided diagnosis systems play a significant role in nodule detection and diagnosis for lung cancer. In this paper, we aim to provide a systematic survey of state-of-the-art techniques (both traditional techniques and deep learning techniques) for nodule diagnosis from computed tomography images. This review first introduces the current progress and the popular structure used for nodule diagnosis. In particular, we provide a detailed overview of the five major stages in the computer-aided diagnosis systems: data acquisition, nodule segmentation, feature extraction, feature selection and nodule classification. Second, we provide a detailed report of the selected works and make a comprehensive comparison between selected works. The selected papers are from the IEEE Xplore, Science Direct, PubMed, and Web of Science databases up to December 2018. Third, we discuss and summarize the better techniques used in nodule diagnosis and indicate the existing future challenges in this field, such as improving the area under the receiver operating characteristic curve and accuracy, developing new deep learning-based diagnosis techniques, building efficient feature sets (fusing traditional features and deep features), developing high-quality labeled databases with malignant and benign nodules and promoting the cooperation between medical organizations and academic institutions.
Collapse
Affiliation(s)
- Guobin Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Li Gong
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Shan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China. .,Centre for advanced Mechanisms and Robotics, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Lu Wang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Xi Cao
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Lin Wei
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Hongyun Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Ziqi Liu
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
6
|
Podolsky MD, Barchuk AA, Kuznetcov VI, Gusarova NF, Gaidukov VS, Tarakanov SA. Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels. Asian Pac J Cancer Prev 2017; 17:835-8. [PMID: 26925688 DOI: 10.7314/apjcp.2016.17.2.835] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. MATERIALS AND METHODS We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. RESULTS The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. CONCLUSIONS Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.
Collapse
|
7
|
Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep 2016; 6:34921. [PMID: 27721474 PMCID: PMC5056507 DOI: 10.1038/srep34921] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/22/2016] [Indexed: 01/22/2023] Open
Abstract
The Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule (SPN) remains unclear. 240 patients with SPNs (malignant, n = 180; benign, n = 60) underwent non-contrast CT (NECT) and contrast-enhanced CT (CECT) which were reconstructed with different slice thickness and convolution kernel. 150 radiomics features were extracted separately from each set of CT and diagnostic performance of each feature were assessed. After feature selection and radiomics signature construction, diagnostic performance of radiomics signature for discriminating benign and malignant SPN was also assessed with respect to the discrimination and classification and compared with net reclassification improvement (NRI). Our results showed NECT-based radiomics signature demonstrated better discrimination and classification capability than CECT in both primary (AUC: 0.862 vs. 0.829, p = 0.032; NRI = 0.578) and validation cohort (AUC: 0.750 vs. 0.735, p = 0.014; NRI = 0.023). Thin-slice (1.25 mm) CT-based radiomics signature had better diagnostic performance than thick-slice CT (5 mm) in both primary (AUC: 0.862 vs. 0.785, p = 0.015; NRI = 0.867) and validation cohort (AUC: 0.750 vs. 0.725, p = 0.025; NRI = 0.467). Standard convolution kernel-based radiomics signature had better diagnostic performance than lung convolution kernel-based CT in both primary (AUC: 0.785 vs. 0.770, p = 0.015; NRI = 0.156) and validation cohort (AUC: 0.725 vs.0.686, p = 0.039; NRI = 0.467). Therefore, this study indicates that the contrast-enhancement, reconstruction slice thickness and convolution kernel can affect the diagnostic performance of radiomics signature in SPN, of which non-contrast, thin-slice and standard convolution kernel-based CT is more informative.
Collapse
|
8
|
Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed Eng Online 2015; 14:9. [PMID: 25888834 PMCID: PMC4329222 DOI: 10.1186/s12938-015-0003-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lung cancer is a leading cause of death worldwide; it refers to the uncontrolled growth of abnormal cells in the lung. A computed tomography (CT) scan of the thorax is the most sensitive method for detecting cancerous lung nodules. A lung nodule is a round lesion which can be either non-cancerous or cancerous. In the CT, the lung cancer is observed as round white shadow nodules. The possibility to obtain a manually accurate interpretation from CT scans demands a big effort by the radiologist and might be a fatiguing process. Therefore, the design of a computer-aided diagnosis (CADx) system would be helpful as a second opinion tool. Methods The stages of the proposed CADx are: a supervised extraction of the region of interest to eliminate the shape differences among CT images. The Daubechies db1, db2, and db4 wavelet transforms are computed with one and two levels of decomposition. After that, 19 features are computed from each wavelet sub-band. Then, the sub-band and attribute selection is performed. As a result, 11 features are selected and combined in pairs as inputs to the support vector machine (SVM), which is used to distinguish CT images containing cancerous nodules from those not containing nodules. Results The clinical data set used for experiments consists of 45 CT scans from ELCAP and LIDC. For the training stage 61 CT images were used (36 with cancerous lung nodules and 25 without lung nodules). The system performance was tested with 45 CT scans (23 CT scans with lung nodules and 22 without nodules), different from that used for training. The results obtained show that the methodology successfully classifies cancerous nodules with a diameter from 2 mm to 30 mm. The total preciseness obtained was 82%; the sensitivity was 90.90%, whereas the specificity was 73.91%. Conclusions The CADx system presented is competitive with other literature systems in terms of sensitivity. The system reduces the complexity of classification by not performing the typical segmentation stage of most CADx systems. Additionally, the novelty of the algorithm is the use of a wavelet feature descriptor.
Collapse
|
9
|
Wang J, Sun T, Gao N, Menon DD, Luo Y, Gao Q, Li X, Wang W, Zhu H, Lv P, Liang Z, Tao L, Liu X, Guo X. Contourlet textual features: improving the diagnosis of solitary pulmonary nodules in two dimensional CT images. PLoS One 2014; 9:e108465. [PMID: 25250576 PMCID: PMC4177406 DOI: 10.1371/journal.pone.0108465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 08/29/2014] [Indexed: 01/04/2023] Open
Abstract
Objective To determine the value of contourlet textural features obtained from solitary pulmonary nodules in two dimensional CT images used in diagnoses of lung cancer. Materials and Methods A total of 6,299 CT images were acquired from 336 patients, with 1,454 benign pulmonary nodule images from 84 patients (50 male, 34 female) and 4,845 malignant from 252 patients (150 male, 102 female). Further to this, nineteen patient information categories, which included seven demographic parameters and twelve morphological features, were also collected. A contourlet was used to extract fourteen types of textural features. These were then used to establish three support vector machine models. One comprised a database constructed of nineteen collected patient information categories, another included contourlet textural features and the third one contained both sets of information. Ten-fold cross-validation was used to evaluate the diagnosis results for the three databases, with sensitivity, specificity, accuracy, the area under the curve (AUC), precision, Youden index, and F-measure were used as the assessment criteria. In addition, the synthetic minority over-sampling technique (SMOTE) was used to preprocess the unbalanced data. Results Using a database containing textural features and patient information, sensitivity, specificity, accuracy, AUC, precision, Youden index, and F-measure were: 0.95, 0.71, 0.89, 0.89, 0.92, 0.66, and 0.93 respectively. These results were higher than results derived using the database without textural features (0.82, 0.47, 0.74, 0.67, 0.84, 0.29, and 0.83 respectively) as well as the database comprising only textural features (0.81, 0.64, 0.67, 0.72, 0.88, 0.44, and 0.85 respectively). Using the SMOTE as a pre-processing procedure, new balanced database generated, including observations of 5,816 benign ROIs and 5,815 malignant ROIs, and accuracy was 0.93. Conclusion Our results indicate that the combined contourlet textural features of solitary pulmonary nodules in CT images with patient profile information could potentially improve the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Tao Sun
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ni Gao
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Desmond Dev Menon
- School of Medical Sciences, Edith Cowan University, Perth, Australia
- School of Exercise and Health Sciences, Edith Cowan University, Perth, Australia
| | - Yanxia Luo
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Qi Gao
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xia Li
- School of Public Health, Capital Medical University, Beijing, China
- Department of Epidemiology & Public Health, University College Cork, Cork, Ireland
| | - Wei Wang
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Huiping Zhu
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Pingxin Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhigang Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lixin Tao
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiangtong Liu
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
- * E-mail:
| |
Collapse
|