1
|
Stevens AM, Terrell M, Rashid R, Fisher KE, Marcogliese AN, Gaikwad A, Rao P, Vrana C, Krueger M, Loken M, Menssen AJ, Cook JA, Keogh N, Alozie M, Oviedo H, Gonzalez AK, Ilangovan T, Kim J, Sandhu S, Redell MS. Addressing a Pre-Clinical Pipeline Gap: Development of the Pediatric Acute Myeloid Leukemia Patient-Derived Xenograft Program at Texas Children's Hospital at Baylor College of Medicine. Biomedicines 2024; 12:394. [PMID: 38397996 PMCID: PMC10886789 DOI: 10.3390/biomedicines12020394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The survival rate of pediatric acute myeloid leukemia (pAML) is currently around 60%. While survival has slowly increased over the past few decades, the development of novel agents likely to further improve survival for this heterogeneous patient population has been limited by gaps in the pAML pre-clinical pipeline. One of the major hurdles in evaluating new agents for pAML is the lack of pAML patient-derived xenograft (PDX) models. Unlike solid tumors and other types of leukemias, AML is notoriously hard to establish in mouse models, likely due in part to the need for specific human microenvironment elements. Our laboratory at TCH/BCM addressed this gap by establishing a systematic PDX workflow, leveraging advanced immunodeficient hosts and capitalizing on our high volume of pAML patients and close coordination between labs and clinical sections. Patients treated at TCH are offered the chance to participate in specimen banking protocols that allow blood and bone marrow collection as well as the collection of relevant clinical data. All patients who consent and have samples available are trialed for PDX development. In addition, samples from the Children's Oncology Group (COG) are also trialed for PDX generation. Serially transplanting PDX models are validated using short tandem repeat (STR) and characterized using both targeted DNA/RNA next generation sequencing and RNAseq. As of March 2023, this systematic approach has resulted in 26 serially transplanting models. Models have been shared with requesting labs to facilitate external pAML pre-clinical studies. Available PDX models can be located through the BCM PDX Portal. We expect our growing PDX resource to make a significant contribution to expediting the testing of promising novel therapeutics for pAML.
Collapse
Affiliation(s)
- Alexandra M. Stevens
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Maci Terrell
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Raushan Rashid
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Kevin E. Fisher
- Department of Pathology & Immunology, Baylor College of Medicine, Genomic Medicine Division, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Andrea N. Marcogliese
- Department of Pathology & Immunology, Baylor College of Medicine, Laboratory Medicine Division, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Amos Gaikwad
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Pulivarthi Rao
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Chelsea Vrana
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Michael Krueger
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | | | | | | | - Noah Keogh
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Michelle Alozie
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Hailey Oviedo
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Alan K. Gonzalez
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Tamilini Ilangovan
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Julia Kim
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Sohani Sandhu
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| | - Michele S. Redell
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, 1102 Bates St, Suite 750, Houston, TX 77030, USA (M.S.R.)
| |
Collapse
|
2
|
Sudha T, Godugu K, Darwish NHE, Nazeer T, Mousa SA. Novel Polyethylene Glycol-Conjugated Triazole Derivative with High Thyrointegrin αvβ3 Affinity in Acute Myeloid Leukemia Management. Cancers (Basel) 2021; 13:cancers13164070. [PMID: 34439224 PMCID: PMC8392871 DOI: 10.3390/cancers13164070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
(1) Background: Acute myeloid leukemia (AML) accounts for up to one-third of more than 60,000 leukemia cases diagnosed annually in the U.S. Primary AML cells express membrane αvβ3 integrin, which is associated with adverse prognosis and resistance to chemotherapies. A novel anticancer compound Polyethylene glycol-conjugated bi-TriAzole Tetraiodothyroacetic acid (P-bi-TAT) interacts with high affinity (Ki 0.3 nM) and specificity with the thyrointegrin αvβ3. We evaluated P-bi-TAT activities in two different AML models representing monocytic and myelocytic forms of acute leukemia. (2) Methods and Results: The in vivo AML models were established prior to initiation of treatment protocols by grafting human leukemia cells in immunocompromised mice. IVIS imaging scans revealed that leukemic colonies were extensively established throughout the bone marrow, liver, and lung of the untreated animals. In animals treated with P-bi-TAT at daily doses ranging from 1-10 mg/kg, subcutaneously for 2-3 weeks, IVIS imaging scans revealed 95% reduction in bone marrow colonies and leukemic colonies in liver and lung. Also, the leukemic cells were not detected in bone marrow samples of P-bi-TAT-treated animals. The anti-neoplastic effect of P-bi-TAT administration on leukemic cells was associated with marked inhibition of NF-κB activity. We conclude that experimental P-bi-TAT therapy in vivo appears extraordinarily effective against the two forms of human AML models in mice. Because the P-bi-TAT molecular target, thyrointegrin αvβ3, is consistently expressed in many, if not all, clinical AML samples, P-bi-TAT-based therapy seems to have significant clinical potential in treating most AML sub-types. Hence, P-bi-TAT represents a promising targeted therapeutic agent for AML patients.
Collapse
Affiliation(s)
- Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
| | - Noureldien H. E. Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
- Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Tipu Nazeer
- Albany Medical Center, Pathology Department, AMC Hospital, Albany, NY 12208, USA;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
- Correspondence:
| |
Collapse
|
3
|
Yu K, Yin Y, Ma D, Lu T, Wei D, Xiong J, Zhou Z, Zhang T, Zhang S, Fang Q, Wang J. Shp2 activation in bone marrow microenvironment mediates the drug resistance of B-cell acute lymphoblastic leukemia through enhancing the role of VCAM-1/VLA-4. Int Immunopharmacol 2020; 80:106008. [PMID: 31978797 DOI: 10.1016/j.intimp.2019.106008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 02/03/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is immune to the chemotherapy-induced apoptosis as a result of the protection of bone marrow mesenchymal stromal cells (BMSCs). However, the precise underlying mechanism of such protection remains unclear so far. In this experiment, protein tyrosine phosphatase 2 (Shp2), which was encoded by the PTPN11 gene, was highly expressed in BMSCs of the newly diagnosed and the recurrent B-ALL patients. The plasmid-induced (including Shp2 E76K) Shp2 activation in BMSCs (Shp2-activated BMSCs) markedly increased the BMSCs-mediated resistance of leukemia cells both in vitro and in vivo. Additionally, studies in vitro suggested that, the expression of vascular cell adhesion molecule 1 (VCAM-1) was markedly up-regulated in Shp2-activated BMSCs, and VCAM-1 expression in BMSCs of B-ALL patients was negatively correlated with Shp2 expression. Down-regulation of VCAM-1 in BMSCs using siRNA reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs. As for the molecular mechanism, the PI3K/AKT pathway mediated the regulation of VCAM-1 by Shp2. Blocking the very late antigen-4 (VLA-4) by antibodies in CCRF-SB cells dramatically reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs, and decreased the adhesion effects of both CCRF-SB cells and BMSCs. In conclusion, Shp2 activation in BMSCs up-regulates VCAM-1 expression through increasing the PI3K/AKT phosphorylation level, and targeting the VCAM-1/VLA-4 signaling may serve as a clinically relevant mechanism to overcome the BMSCs-mediated chemoresistance of B-ALL cells.
Collapse
Affiliation(s)
- Kunlin Yu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Yin
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Danna Wei
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Jie Xiong
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Zheng Zhou
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Siyu Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Yu K, Wang J, Lu T, Ma D, Wei D, Guo Y, Cheng B, Wang W, Fang Q. Overexpression of heme oxygenase-1 in microenvironment mediates vincristine resistance of B-cell acute lymphoblastic leukemia by promoting vascular endothelial growth factor secretion. J Cell Biochem 2019; 120:17791-17810. [PMID: 31264739 DOI: 10.1002/jcb.29046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022]
Abstract
Chemoresistance often causes treatment failure of B-cell acute lymphoblastic leukemia (B-ALL). However, the mechanism remains unclear at present. Herein, overexpression of heme oxygenase-1 (HO-1) was found in the bone marrow stromal cells (BMSCs) from B-ALL patients developing resistance to vincristine (VCR), a chemotherapeutic agent. Two B-ALL cell lines Super B15 and CCRF-SB were cocultured with BMSCs transfected with lentivirus to regulate the expression of HO-1. Silencing HO-1 expression in BMSCs increased the apoptotic rates of B-ALL cell lines induced by VCR, whereas upregulating HO-1 expression reduced the rate. Cell cycle can be arrested in the G2/M phase by VCR. In contrast, B-ALL cells were arrested in the G0/G1 phase due to HO-1 overexpression in BMSCs, which avoided damage from the G2/M phase. Vascular endothelial growth factor (VEGF) in BMSCs, as a key factor in the microenvironment-associated chemoresistance, was also positively coexpressed with HO-1. VEGF secretion was markedly increased in BMSCs with HO-1 upregulation but decreased in BMSCs with HO-1 silencing. B-ALL cell lines became resistant to VCR when cultured with VEGF recombinant protein, so VEGF secretion induced by HO-1 expression may promote the VCR resistance of B-ALL cells. As to the molecular mechanism, the PI3K/AKT pathway mediated regulation of VEGF by HO-1. In conclusion, this study clarifies a mechanism by which B-ALL is induced to resist VCR through HO-1 overexpression in BMSCs, and provides a novel strategy for overcoming VCR resistance in clinical practice.
Collapse
Affiliation(s)
- Kunlin Yu
- Department of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China.,Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jishi Wang
- Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Tingting Lu
- Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Ma
- Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Danna Wei
- Department of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China.,Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yongling Guo
- Department of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China.,Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bingqin Cheng
- Department of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China.,Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weili Wang
- Department of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China.,Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Khan N, Mahajan NK, Sinha P, Jayandharan GR. An efficient method to generate xenograft tumor models of acute myeloid leukemia and hepatocellular carcinoma in adult zebrafish. Blood Cells Mol Dis 2018; 75:48-55. [PMID: 30616104 DOI: 10.1016/j.bcmd.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022]
Abstract
Zebrafish is emerging as a promising model for the study of human cancers. Several xenograft models of zebrafish have been developed, particularly in larval stages (<48 h post fertilization) when the immune system of fish is not developed. However, xenografting in adult zebrafish requires laborious and transient methods of immune suppression (γ- irradiation or dexamethasone) that limits engraftment and survival of the tumor or fail to recapitulate specific characteristics of malignancies. Thus, the availability of a simple protocol to successfully engraft adult zebrafish, remains a challenge. The current study addresses this limitation and describes a robust method of xenografting in adult zebrafish. We describe a protocol that involves pre-conditioning of Casper, a pigmentation mutant of zebrafish with busulfan that led to a higher rate of engraftment of hepatocellular carcinoma and acute myeloid leukemia cells. To further ascertain the homing characteristics of the injected cancer cells, we transplanted adult zebrafish by two routes of administration and then studied their compartmentalization. This model presents a valuable alternative to rodents to study the biology of these cancers and also a cost-effective platform for evaluation of potential anti-cancer agents.
Collapse
Affiliation(s)
- Nusrat Khan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Nilesh Kumar Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Pradip Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India.
| |
Collapse
|
6
|
Farhat A, Ali-Deeb E, Sulaiman A, Aljamali M. Reinforcing the utility of chick embryo model to in vivo evaluate engraftment of human leukemic stem cells. J Egypt Natl Canc Inst 2018; 30:1-5. [PMID: 29428370 DOI: 10.1016/j.jnci.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/15/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Development of appropriate translational in vivo models is a prerequisite for personalized management of leukemic patients. Indeed, several immunodeficient mice models were developed for leukemias with main limitations due to their high cost, demanding management, and elongated assessment intervals. In this report, we aimed at evaluating the engraftment of CD34+ cells, isolated from an acute myeloid leukemia (AML) patient, in naturally immunodeficient chick embryo model. METHODS AND RESULTS Mononuclear cells or immunomagnetic sorted CD34+ cells were injected into chick embryo chorioallantoic membrane (CAM) veins. Seven days post-injection, human CD34 transcript was detected by reverse transcription polymerase chain reaction (RT-PCR) in blood, bone marrow (BM), spleen and liver from embryos injected with human leukemic cells. Interestingly, an amplicon of the same length has been detected in both BM and spleen from PBS injected embryos, although analysis via bioinformatics tools revealed no matches in chicken; neither in transcriptome nor in genome databases. Importantly, splenomegaly and hepatic lesions were observed in some CD34+ cells injected embryos. CONCLUSION Collectively, our data confirm the engraftment of primary human CD34+ leukemic cells in chick embryo liver, but other experiments are required to verify engraftment in BM and spleen, and to confirm the identity of a putative CD34 orthologous transcript in these two organs.
Collapse
Affiliation(s)
- Arwa Farhat
- Department of Biochemistry and Microbiology, School of Pharmacy, Damascus University, Damascus, Syria.
| | - Eiad Ali-Deeb
- Department of Animal Production, School of Agriculture, Damascus University, Damascus, Syria
| | - Amin Sulaiman
- Department of Internal Medicine, School of Medicine, Damascus University, Damascus, Syria
| | - Majd Aljamali
- Department of Biochemistry and Microbiology, School of Pharmacy, Damascus University, Damascus, Syria; Department of Pharmaceutical Biotechnology, National Commission for Biotechnology (NCBT), Damascus, Syria.
| |
Collapse
|
7
|
Zhang XZ, Su AL, Hu MQ, Zhang XQ, Xu YL. Elevated serum ferritin levels in patients with hematologic malignancies. Asian Pac J Cancer Prev 2017; 15:6099-101. [PMID: 25124580 DOI: 10.7314/apjcp.2014.15.15.6099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To retrospectively analyze variability and clinical significance of serum ferritin levels in Chinese patients with hematologic malignancies. MATERIALS AND METHODS Serum ferritin were measured by radioimmunoassay, using a kit produced by the Beijing Institute of Atomic Energy. Patients with hematologic malignancies, and treated in the Department of Hematology in Nanjing First Hospital and fulfilled study criteria were recruited. RESULTS Of 473 patients with hematologic malignancies, 262 patients were diagnosed with acute leukemia, 131 with lymphoma and 80 with multiple myeloma. Serum ferritin levels of newly diagnosed and recurrent patients were significantly higher than those entering complete remission stage or in the control group (p<0.001). CONCLUSIONS Serum ferritin lever in patients with hematologic malignancies at early stage and recurrent stage are significantly increased, so that detection and surveillance of changes of serum ferritin could be helpful in assessing conditions and prognosis of this patient cohort.
Collapse
Affiliation(s)
- Xue-Zhong Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China E-mail :
| | | | | | | | | |
Collapse
|
8
|
Lin X, Fang Q, Chen S, Zhe N, Chai Q, Yu M, Zhang Y, Wang Z, Wang J. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway. Leuk Res 2015; 39:544-52. [PMID: 25828744 DOI: 10.1016/j.leukres.2015.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/26/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
Abstract
There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.
Collapse
Affiliation(s)
- Xiaojing Lin
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Qin Fang
- Department of Pharmacy, the Affiliated Baiyun Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Shuya Chen
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Nana Zhe
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Qixiang Chai
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Meisheng Yu
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Yaming Zhang
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Ziming Wang
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Jishi Wang
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China.
| |
Collapse
|