1
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
2
|
Deng W, Li J, Dorrah K, Jimenez-Tapia D, Arriaga B, Hao Q, Cao W, Gao Z, Vadgama J, Wu Y. The role of PPM1D in cancer and advances in studies of its inhibitors. Biomed Pharmacother 2020; 125:109956. [PMID: 32006900 PMCID: PMC7080581 DOI: 10.1016/j.biopha.2020.109956] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
A greater understanding of factors causing cancer initiation, progression and evolution is of paramount importance. Among them, the serine/threonine phosphatase PPM1D, also referred to as wild-type p53-induced phosphatase 1 (Wip1) or protein phosphatase 2C delta (PP2Cδ), is emerging as an important oncoprotein due to its negative regulation on a number of crucial cancer suppressor pathways. Initially identified as a p53-regulated gene, PPM1D has been afterwards found amplified and more recently mutated in many human cancers such as breast cancer. The latest progress in this field further reveals that selective inhibition of PPM1D to delay tumor onset or reduce tumor burden represents a promising anti-cancer strategy. Here, we review the advances in the studies of the PPM1D activity and its relevance to various cancers, and recent progress in development of PPM1D inhibitors and discuss their potential application in cancer therapy. Consecutive research on PPM1D and its relationship with cancer is essential, as it ultimately contributes to the etiology and treatment of cancer.
Collapse
Affiliation(s)
- Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Jieqing Li
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kimberly Dorrah
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Denise Jimenez-Tapia
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Brando Arriaga
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Zhaoxia Gao
- Department of General Surgery, 5th Hospital of Wuhan, Wuhan, 430050, China; Department of Surgery, Johns Hopkins Hospital Bayview Campus, Baltimore, MD, USA
| | - Jay Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Puetkasichonpasutha J, Namwat N, Sa-Ngiamwibool P, Titapun A, Suthiphongchai T. Evaluation of p53 and Its Target Gene Expression as Potential Biomarkers of Cholangiocarcinoma in Thai Patients. Asian Pac J Cancer Prev 2020; 21:791-798. [PMID: 32212809 PMCID: PMC7437311 DOI: 10.31557/apjcp.2020.21.3.791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), a common cancer in northeastern Thailand, is a severe disease with poor prognosis and short survival time following diagnosis. DNA damage in CCA is believed to be caused by liver fluke infection in combination with exposure to carcinogens. p53, a tumor suppressor, is the most mutated gene in human cancers including liver fluke-associated CCA. Hence, expression patterns of p53 and its target genes may be useful for diagnosis and/or prognosis of CCA patients. METHODS Differential mRNA expression of p53 and its target genes, namely, FUCA1, ICAM2 MDM2, p21, PAI-1, S100A9, and WIP1 in CCA tissue samples (n = 30) relative to matched adjacent non-tumor tissues was determined by quantitative RT-PCR and compared to clinicopathological features. Level of p53 protein was determined by immunohistochemistry and correlated with the expression of its target genes. RESULTS Immunohistochemistry showed elevation of p53 protein level in 77% of the cases, while RT-PCR showed downregulation of p53 mRNA and its seven target genes in 23% and 47-97% of the samples. PAI-1 was down-regulated in almost all CCA samples, thus highlighting it as a potential diagnostic marker for CCA. However, no significant clinical associations were found except for down-regulation of WIP1 that was significantly correlated with non-papillary type tissue (p-value = 0.001) and with high p53 protein level (p-value = 0.007). CONCLUSION Our results demonstrated statistically significant association between down-regulation of WIP1 with non-papillary type and with high p53 protein level, and PAI-1 was down-regulated in almost all CCA. Therefore, expression level of WIP1 and PAI-1 may be useful for predicting p53 functional status and as a potential diagnostic marker of CCA, respectively.
Collapse
Affiliation(s)
| | - Nisana Namwat
- Department of Biochemistry,
- Department of Pathology,
| | | | - Attapol Titapun
- Department of Pathology,
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| | | |
Collapse
|
4
|
Yu M, Hu J, He D, Chen Q, Liu S, Zhu X, Li B. Potentiality of Protein phosphatase Mg 2+ /Mn 2+ dependent 1D as a biomarker for predicting prognosis in acute myeloid leukemia patients. J Clin Lab Anal 2020; 34:e23171. [PMID: 31901183 PMCID: PMC7246369 DOI: 10.1002/jcla.23171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Objective The present study aimed to investigate the correlation of protein phosphatase Mg2+/Mn2+ dependent 1D (PPM1D) with the risk stratification, treatment response, and survival profile in acute myeloid leukemia (AML) patients. Methods Totally 221 de novo AML patients and 50 healthy donors were enrolled. The bone marrow samples were collected before treatment from AML patients and acquired after enrollment from healthy donors. And bone marrow mononuclear cells were separated for detecting the mRNA/protein expressions of PPM1D by reverse transcription‐quantitative polymerase chain reaction and Western blot. Complete remission (CR) was assessed after induction treatment, and event‐free survival (EFS) and overall survival (OS) were calculated in AML patients. Results PPM1D mRNA (P < .001)/protein (P < .001) relative expressions were increased in AML patients compared with healthy donors, and receiver operating characteristic curve presented that PPM1D mRNA (AUC: 0.728, 95% CI: 0.651‐0.806)/protein (AUC: 0.782, 95% CI: 0.707‐0.857) relative expressions could differentiate AML patients from healthy donors. In AML patients, PPM1D mRNA (P < .001)/protein (P < .001) high relative expressions were correlated with poor‐risk stratification. As for its association with prognosis, PPM1D mRNA (P < .001)/protein (P = .010) relative expressions were elevated in CR patients compared with non‐CR patients. Patients with PPM1D mRNA (P < .001 for EFS; P = .004 for OS)/protein (P < .001 for EFS; P = .006 for OS) high relative expressions exhibited reduced EFS and OS compared with those with low expressions. Conclusion PPM1D high expression correlates with poor‐risk stratification and might serve as a potential biomarker for worse prognosis in AML patients, suggesting its potential to guide AML management.
Collapse
Affiliation(s)
- Meijia Yu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Jie Hu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Di He
- Department of Hematology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Qi Chen
- Department of Hematology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Suna Liu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoling Zhu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Bin Li
- Department of Hematology, The Second People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Wang P, Zhao Y, Liu K, Liu X, Liang J, Zhou H, Wang Z, Zhou Z, Xu N. Wip1 cooperates with KPNA2 to modulate the cell proliferation and migration of colorectal cancer via a p53-dependent manner. J Cell Biochem 2019; 120:15709-15718. [PMID: 31127650 DOI: 10.1002/jcb.28840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
Due to the increasing incidence and mortality, the early diagnosis, specific targeted therapies, and prognosis for colorectal cancer (CRC) attract more and more attention. Wild-type p53-induced phosphatase 1 (Wip1) and karyopherin α2 (KPNA2) have been regarded as oncogenes in many cancers, including CRC. Wip1 dephosphorylates p53 to inactivate it. TP53 activator and Wip1 inhibitor downregulate KPNA2 expression. Therefore, we speculate that Wip1 may co-operate with KPNA2 to modulate CRC progression in a p53-dependent manner. Here, Wip1 and KPNA2 messenger RNA expression and protein levels are significantly increased in CRC tissues and cell lines and are positively correlated with each other. Wip1 silence increases p53 phosphorylation while decreases KPNA2 protein. Wip1 knockdown remarkably suppresses CRC cell proliferation and migration while KPNA2 overexpression exerts an opposing effect. KPNA2 overexpression could partially rescue Wip1 silence-inhibited CRC cell proliferation and migration. Finally, Wip1 interacts with KPNA2 to modulate the activation of AKT/GSK-3β signaling and metastasis-related factors. In summary, Wip1 could co-operate with KPNA2 to modulate CRC cell proliferation and migration, possibly via a p53-dependent manner, through downstream AKT/GSK-3β pathway. We provided a novel mechanism of Wip1 interacting with KPNA2, therefore modulating CRC cell proliferation and migration.
Collapse
Affiliation(s)
- Peng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Liang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixiang Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Xia ZS, Wu D, Zhong W, Lu XJ, Yu T, Chen QK. Wip1 gene silencing enhances the chemosensitivity of human colon cancer cells. Oncol Lett 2017; 14:1875-1883. [PMID: 28781635 DOI: 10.3892/ol.2017.6361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Colon cancer is one of the most common cancers in the world. Multidrug resistance is one of the main reasons for failure of therapy in patients with advanced colon cancer. In previous studies, multiple methods were investigated to reverse the multidrug resistance of colon cancer cells. However, to date, no clinical method has been identified to be satisfactory. Therefore, successful reversal of drug resistance in colon cancer cells still requires new therapeutic strategies or pharmaceuticals. Wild-type p53-induced phosphatase (Wip1), a member of the 2C type serine/threonine protein phosphatase family, is closely associated with the p53 gene, which is the most important tumor-suppressor gene. Wip1 was reported to be associated with the chemosensitivity of breast cancer cells. However, the correlation between the expression of Wip1 gene and the chemosensitivity of colon cancer cells has not been reported yet. In the present study, Wip1-811 small interfering RNA (siRNA) targeting Wip1 was investigated to reverse the multidrug resistance of colon cancer cells. The siRNA duplexes were transfected into RKO colon cancer cells. The messenger RNA (mRNA) expression of Wip1 was measured by reverse transcription-quantitative polymerase chain reaction. The protein level of Wip1 was detected by western blotting. The cell viability was measured by MTS assay. The cell apoptosis and cell cycle were analyzed by flow cytometry. Intracellular adriamycin cumulative concentration was determined using flow cytometry. Wip1-811 siRNA efficiently inhibited the expression of Wip1 at the mRNA and protein levels, and enhanced the sensitivity of RKO colon cancer cells towards chemotherapy, which was accompanied by increased cell apoptosis, following the inhibition of Wip1 gene expression. These results indicate that Wip1 gene silencing could enhance the chemosensitivity of colon cancer cells, which may provide a new potential approach for the reversal of multidrug resistance in colon cancer cells.
Collapse
Affiliation(s)
- Zhong-Sheng Xia
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Di Wu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wa Zhong
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xi-Ji Lu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Tao Yu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qi-Kui Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
7
|
Yang S, Dong S, Qu X, Zhong X, Zhang Q. Clinical significance of Wip1 overexpression and its association with the p38MAPK/p53/p16 pathway in NSCLC. Mol Med Rep 2016; 15:719-723. [PMID: 27959454 PMCID: PMC5364870 DOI: 10.3892/mmr.2016.6032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/30/2016] [Indexed: 01/07/2023] Open
Abstract
Wip1 is deregulated in numerous human malignancies. However, its roles in non-small cell lung cancer (NSCLC) remain unclear. In the current study, the expression of Wip1 was investigated in NSCLC and its clinical significance was detected. Immunohistochemical staining was used to measure the expression of (wild-type p53 induced phosphatase 1) Wip1, p38 mitogen-activated protein kinase (MAPK), p53, p16 protein in a group of 60 NSCLC and 20 normal lung tissues. In addition, western blotting was performed to detect the Wip1 protein in fresh tissues. The correlations between clinical characteristics and Wip1 expression were analyzed using SPSS, version 16.0 software. The expression of Wip1 was positive in 63.3% (38/60) of NSCLC tissues, and in none of the normal lung tissues (0/20; P<0.01). In addition, Wip1 overexpression was significantly associated with tumor length and differentiation (P=0.008 and 0.03, respectively). The expression of Wip1 was negatively correlated with that of p38MAPK, p53 and p16 (r=−0.284, −0.352 and −0.348, respectively). The results of the current study demonstrated that Wip1 was frequently overexpressed in NSCLC, which may serve an essential role in the p38MAPK/p53/p16 signaling pathway.
Collapse
Affiliation(s)
- Shize Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Siyuan Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xiaohan Qu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xinwen Zhong
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Qigang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
8
|
Wang HY, Liu ZS, Qiu L, Guo J, Li YF, Zhang J, Wang TJ, Liu XD. Knockdown of Wip1 Enhances Sensitivity to Radiation in HeLa Cells Through Activation of p38 MAPK. Oncol Res 2016; 22:225-233. [PMID: 26351212 PMCID: PMC7838432 DOI: 10.3727/096504015x14386062091479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The objectives of the study were to investigate the functional role and potential mechanism of wild-type p53-induced phosphatase (Wip1) in cervical cancer cell line HeLa cells, along with the effect of knockdown of Wip1 in combination with γ-irradiation on the HeLa cells. Expression of Wip1 was silenced or overexpressed. After transfection, cell viability was determined. Moreover, γ-irradiation and SB203580 were performed to explore the effect of colony formation and cell apoptosis. Likewise, protein expression levels of p38, p-p38, p53, and p-p53 were assessed in the presence or not of SB203580 and overexpression of Wip1. Both the mRNA and protein levels of Wip1 were significantly decreased by transfection with Wip1-specific small interfering RNA (siRNA) but were significantly increased by transfection with pcDNA3.1-Wip1. Knockdown of Wip1 significantly decreased cell growth and colony formation ability and increased apoptotic rate. Additionally, better results were obtained by knockdown of Wip1 in combination with γ-irradiation. The protein expression levels of p-p38 (p < 0.05), p53 (p < 0.01), and p-p53 (p < 0.05) were all significantly increased by knockdown of Wip1. However, application of SB203580 reversed the effects. Our study confirms the important roles of Wip1 in cervical cancer. Knockdown of Wip1 enhances sensitivity to radiation in HeLa cells by inhibiting cell proliferation and inducing apoptosis through activation of p38 MAPK.
Collapse
Affiliation(s)
- Hong-Yong Wang
- Department of Radiotherapy, 2nd Hospital Affiliated to Jilin University, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cochrane CR, Szczepny A, Watkins DN, Cain JE. Hedgehog Signaling in the Maintenance of Cancer Stem Cells. Cancers (Basel) 2015; 7:1554-85. [PMID: 26270676 PMCID: PMC4586784 DOI: 10.3390/cancers7030851] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) represent a rare population of cells with the capacity to self-renew and give rise to heterogeneous cell lineages within a tumour. Whilst the mechanisms underlying the regulation of CSCs are poorly defined, key developmental signaling pathways required for normal stem and progenitor functions have been strongly implicated. Hedgehog (Hh) signaling is an evolutionarily-conserved pathway essential for self-renewal and cell fate determination. Aberrant Hh signaling is associated with the development and progression of various types of cancer and is implicated in multiple aspects of tumourigenesis, including the maintenance of CSCs. Here, we discuss the mounting evidence suggestive of Hh-driven CSCs in the context of haematological malignancies and solid tumours and the novel strategies that hold the potential to block many aspects of the transformation attributed to the CSC phenotype, including chemotherapeutic resistance, relapse and metastasis.
Collapse
Affiliation(s)
- Catherine R Cochrane
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| | - Anette Szczepny
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| | - D Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
- UNSW Faculty of Medicine, Randwick, New South Wales 2031, Australia.
- Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia.
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
10
|
Wang RJ, Wu P, Cai GX, Wang ZM, Xu Y, Peng JJ, Sheng WQ, Lu HF, Cai SJ. Down-regulated MYH11 expression correlates with poor prognosis in stage II and III colorectal cancer. Asian Pac J Cancer Prev 2015; 15:7223-8. [PMID: 25227818 DOI: 10.7314/apjcp.2014.15.17.7223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The MYH11 gene may be related to cell migration and adhesion, intracellular transport, and signal transduction. However, its relationship with prognosis is still uncertain. The aim of this study was to investigate correlations between MYH11 gene expression and prognosis in 58 patients with stage II and III colorectal cancer. Quantitative real-time polymerase chain reaction was performed in fresh CRC tissues to examine mRNA expression, and immunohistochemistry was performed with paraffin-embedded specimens for protein expression. On univariate analysis, MYH11 expression at both mRNA and protein levels, perineural invasion and lymphovascular invasion were related to disease-free survival (p<0.05; log-rank test). Cancers with lower MYH11 expression were more likely to have a poor prognosis. Otherwise, MYH11 expression was unrelated to patient clinicopathological features. On multivariate analysis, low MYH11 expression proved to be an independent adverse prognosticator (p<0.05). These findings show that MYH11 can contribute to predicting prognosis in stage II and III colorectal cancers.
Collapse
Affiliation(s)
- Ren-Jie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang H, Zhang X, Teng L, Legerski RJ. DNA damage checkpoint recovery and cancer development. Exp Cell Res 2015; 334:350-8. [PMID: 25842165 DOI: 10.1016/j.yexcr.2015.03.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
Abstract
Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients׳ poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Haiyong Wang
- First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003, China
| | - Xiaoshan Zhang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 USA
| | - Lisong Teng
- First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003, China.
| | - Randy J Legerski
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 USA.
| |
Collapse
|
12
|
Bozkurt O, Inanc M, Turkmen E, Karaca H, Berk V, Duran AO, Ozaslan E, Ucar M, Hacibekiroglu I, Eker B, Baspinar O, Ozkan M. Clinicopathological Characteristics and Prognosis of Patients According to Recurrence Time After Curative Resection for Colorectal Cancer. Asian Pac J Cancer Prev 2014; 15:9277-81. [DOI: 10.7314/apjcp.2014.15.21.9277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Lai EY, Chen ZG, Zhou X, Fan XR, Wang H, Lai PL, Su YC, Zhang BY, Bai XC, Li YF. DEPTOR Expression Negatively Correlates with mTORC1 Activity and Tumor Progression in Colorectal Cancer. Asian Pac J Cancer Prev 2014; 15:4589-94. [DOI: 10.7314/apjcp.2014.15.11.4589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
WIP1 regulates the proliferation and invasion of nasopharyngeal carcinoma in vitro. Tumour Biol 2014; 35:7651-7. [PMID: 24801909 DOI: 10.1007/s13277-014-2034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/28/2014] [Indexed: 01/07/2023] Open
Abstract
Wild-type p53-induced phosphatase (WIP1) is overexpressed and functionally altered in multiple human malignancies. The present study investigated its abnormal expression and dysfunctions in nasopharyngeal carcinoma (NPC) in vitro. Here, analysis of WIP1 mRNA and protein in human NPC tissues revealed that both WIP1 messenger RNA (mRNA) and protein were elevated and were correlated with NPC clinical stage and metastasis in patients. In vitro experiments further showed that WIP1 inhibition led to a decrease in the proliferative ability of NPC CNE-2 and 5-8F cells accompanied by cell cycle arrest and increased apoptosis. In addition, WIP1 knockdown inhibited the invasiveness of CNE-2 and 5-8F cells and was associated with the down-regulation of the expression of matrix metallopeptidase 9 (MMP-9) mRNA and protein. Taken together, our data demonstrate that WIP1 regulates the proliferation and invasiveness of NPC cells in vitro, and this may be correlated with its modulation of MMP-9 expression, cell cycle progression and apoptosis. WIP1 functioned as a potential therapeutic target in NPC management.
Collapse
|