1
|
Sinha B, Choudhury Y. Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy. Front Pharmacol 2024; 15:1345281. [PMID: 38370484 PMCID: PMC10869617 DOI: 10.3389/fphar.2024.1345281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer has been medicine's most formidable foe for long, and the rising incidence of the disease globally has made effective cancer therapy a significant challenge. Drug discovery is targeted at identifying efficacious compounds with minimal side effects and developments in nanotechnology and immunotherapy have shown promise in the fight against this complicated illness. Since ancient times, insects and insect-derived products have played a significant role in traditional medicine across several communities worldwide. The aim of this study was to inspect the traditional use of edible insects in various cultures and to explore their modern use in cancer therapy. Edible insects are sources of nutrients and a variety of beneficial substances with anticancer and immunomodulatory potential. Recently, insect derived bioactive-components have also been used as nanoparticles either in combination with chemotherapeutics or as a nano-cargo for the enhanced delivery of chemotherapeutic drugs due to their high biocompatibility, low bio-toxicity, and their antioxidant and anticancer effects. The crude extracts of different edible insects and their active components such as sericin, cecropin, solenopsin, melittin, antimicrobial peptides and fibroin produce anti-cancer and immunomodulatory effects by various mechanisms which have been discussed in this review.
Collapse
|
2
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Liu S, Aweya JJ, Zheng L, Zheng Z, Huang H, Wang F, Yao D, Ou T, Zhang Y. LvHemB1, a novel cationic antimicrobial peptide derived from the hemocyanin of Litopenaeus vannamei, induces cancer cell death by targeting mitochondrial voltage-dependent anion channel 1. Cell Biol Toxicol 2022; 38:87-110. [PMID: 33630204 DOI: 10.1007/s10565-021-09588-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/09/2021] [Indexed: 02/05/2023]
Abstract
Current cancer treatment regimens such as chemotherapy and traditional chemical drugs have adverse side effects including the appearance of drug-resistant tumor cells. For these reasons, it is imperative to find novel therapeutic agents that overcome these factors. To this end, we explored a cationic antimicrobial peptide derived from Litopenaeus vannamei hemocyanin (designated LvHemB1) that induces cancer cell death, but sparing normal cells. LvHemB1 inhibits the proliferation of human cervical (HeLa), esophageal (EC109), hepatocellular (HepG2), and bladder (EJ) cancer cell lines, but had no significant effect on normal liver cell lines (T-antigen-immortalized human liver epithelial (THLE-3) cells). In addition to its antiproliferative effects, LvHemB1 induced apoptosis, by permeating cells and targeting mitochondrial voltage-dependent anion channel 1 (VDAC1). Colocalization studies revealed the localization of LvHemB1 in mitochondria, while molecular docking and pull-down analyses confirmed LvHemB1-VDAC1 interaction. Moreover, LvHemB1 causes loss in mitochondrial membrane potential and increases levels of reactive oxygen species (ROS) and apoptotic proteins (caspase-9, caspase-3, and Bax (Bcl-2-associated X)), which results in mitochondrial-mediated apoptosis. Thus, peptide LvHemB1 has the potential of being used as an anticancer agent due to its antiproliferation effect and targeting to VDAC1 to cause mitochondrial dysfunction in cancer cells, as well as its ability to induce apoptosis by increasing ROS levels, and the expression of proapoptotic proteins.
Collapse
Affiliation(s)
- Shangjie Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- Institute of Urology, The Affiliated Shenzhen Luohu Hospital of Shantou University Medical College, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Liyuan Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhou Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - He Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Tong Ou
- Institute of Urology, The Affiliated Shenzhen Luohu Hospital of Shantou University Medical College, Shantou University, Shantou, 515063, China.
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
4
|
Xu P, Lv D, Wang X, Wang Y, Hou C, Gao K, Guo X. Inhibitory effects of Bombyx mori antimicrobial peptide cecropins on esophageal cancer cells. Eur J Pharmacol 2020; 887:173434. [PMID: 32763299 DOI: 10.1016/j.ejphar.2020.173434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022]
Abstract
Bombyx mori antimicrobial peptides (BmAMPs) are important effectors in silkworm immune system. They can inhibit and kill a variety of bacteria and fungi. Recent studies have shown that some kinds of BmAMPs exert strong inhibitory effects on a variety of tumor cells. In the present study, the antitumor activity of BmAMP Cecropin A (BmCecA) and BmAMP Cecropin D (BmCecD) was investigated against human esophageal cancer cells and their antitumor mechanism preliminary explored. Cell Counting Kit-8 and colony formation assays indicated that BmCecA and BmCecD suppressed cell proliferation and reduced colony formation of both Eca109 and TE13 cells in a dose-dependent manner, but exhibited no inhibitory effect on normal human embryonic kidney 293T cells. Wound healing and invasion experiments indicated that both BmCecA and BmCecD inhibited migration and invasion of Eca109 and TE13 cells in vitro. Annexin V/propidium iodide staining and flow cytometry detection suggested that BmCecA induced the apoptosis of Eca109 cells in a dose-dependent manner. RT-qPCR and western blot analysis showed that BmCecA induced apoptosis of Eca109 cells through the activation of a mitochondria-mediated caspase pathway, the upregulation of B-cell lymphoma 2 (Bcl-2)-associated X protein and the downregulation of Bcl-2. In addition, BmCecA significantly inhibited the growth of xenograft tumors in Eca109-bearing mice. These results suggested that BmCecA and BmCecD might serve as potential therapeutic agents for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Ping Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Dingding Lv
- Nursing School, Zhenjiang College, Zhenjiang, 21200, Jiangsu, China
| | - Xihui Wang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yongsheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Chengxiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Kun Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
| |
Collapse
|
5
|
Xia LJ, Wu YL, Ma J, Zhang FC. Therapeutic effects of antimicrobial peptide on malignant ascites in a mouse model. Mol Med Rep 2018; 17:6245-6252. [PMID: 29512744 PMCID: PMC5928604 DOI: 10.3892/mmr.2018.8691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/13/2017] [Indexed: 12/27/2022] Open
Abstract
The primary objective of the treatment of malignant ascites in advanced stages is to alleviate symptoms using procedures such as diuresis, paracentesis of subretinal fluid and vena cava anastomosis. The effectiveness of systemic or intraperitoneal chemotherapy treatment is limited, and more efficacious therapies are required. The authors of the present study demonstrated that an antimicrobial peptide, cecropinXJ, isolated from the larvae of Bombyx mori, selectively inhibits the proliferation of gastric cancer cells. However, the effects of antibacterial peptides on gastric ascites tumor remains unclear. In the present study, the therapeutic effects of cecropinXJ were investigated in mice bearing malignant ascites. Compared with bovine serum albumin treatment, cecropinXJ and doxorubicin (Dox) significantly inhibited the formation and growth of malignant ascites, and prolonged the survival time of ascites tumor‑bearing mice. In addition, cecropinXJ treatment normalized the hematological and biochemical phenotypes, induced tumor cell apoptosis in ascites and improved the survival of mice bearing malignant ascites when compared with Dox treatment. These results suggested that cecropinXJ might be a promising therapeutic candidate for the treatment of gastric cancer‑associated ascites.
Collapse
Affiliation(s)
- Li-Jie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Yan-Ling Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Ji Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Fu-Chun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| |
Collapse
|
6
|
Li X, Xie H, Chen Y, Lang M, Chen Y, Shi L. Silkworm Pupa Protein Hydrolysate Induces Mitochondria-Dependent Apoptosis and S Phase Cell Cycle Arrest in Human Gastric Cancer SGC-7901 Cells. Int J Mol Sci 2018; 19:ijms19041013. [PMID: 29597296 PMCID: PMC5979490 DOI: 10.3390/ijms19041013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022] Open
Abstract
Silkworm pupae (Bombyx mori) are a high-protein nutrition source consumed in China since more than 2 thousand years ago. Recent studies revealed that silkworm pupae have therapeutic benefits to treat many diseases. However, the ability of the compounds of silkworm pupae to inhibit tumourigenesis remains to be elucidated. Here, we separated the protein of silkworm pupae and performed alcalase hydrolysis. Silkworm pupa protein hydrolysate (SPPH) can specifically inhibit the proliferation and provoke abnormal morphologic features of human gastric cancer cells SGC-7901 in a dose- and time-dependent manner. Moreover, flow cytometry indicated that SPPH can induce apoptosis and arrest the cell-cycle in S phase. Furthermore, SPPH was shown to provoke accumulation of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential. Western blotting analysis indicated that SPPH inhibited Bcl-2 expression and promoted Bax expression, and subsequently induced apoptosis-inducing factor and cytochrome C release, which led to the activation of initiator caspase-9 and executioner caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), eventually caused cell apoptosis. Moreover, SPPH-induced S-phase arrest was mediated by up-regulating the expression of E2F1 and down-regulating those of cyclin E, CDK2 and cyclin A2. Transcriptome sequencing and gene set enrichment analysis (GSEA) also revealed that SPPH treatment could affect gene expression and pathway regulation related to tumourigenesis, apoptosis and cell cycle. In summary, our results suggest that SPPH could specifically suppress cell growth of SGC-7901 through an intrinsic apoptotic pathway, ROS accumulation and cell cycle arrest, and silkworm pupae have a potential to become a source of anticancer agents in the future.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hongqing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yajie Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Mingzi Lang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 2017; 74:3809-3825. [PMID: 28770291 PMCID: PMC11107634 DOI: 10.1007/s00018-017-2604-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022]
Abstract
There is an ongoing need for effective and targeted cancer treatments that can overcome the detrimental side effects presented by current treatment options. One class of novel anticancer molecules with therapeutic potential currently under investigation are cationic antimicrobial peptides (CAPs). CAPs are small innate immunity peptides found ubiquitously throughout nature that are typically membrane-active against a wide range of pathogenic microbes. A number of CAPs can also target mammalian cells and often display selective activity towards tumor cells, making them attractive candidates as novel anticancer agents warranting further investigation. This current and comprehensive review describes key examples of naturally occurring membrane-targeting CAPs and their modified derivatives that have demonstrated anticancer activity, across multiple species of origin and structural subfamilies. In addition, we address recent advances made in the field and the ongoing challenges faced in translating experimental findings into clinically relevant treatments.
Collapse
Affiliation(s)
- Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| |
Collapse
|
8
|
XIA LIJIE, WU YANLING, MA JI, YANG JIANHUA, ZHANG FUCHUN. The antibacterial peptide from Bombyx mori cecropinXJ induced growth arrest and apoptosis in human hepatocellular carcinoma cells. Oncol Lett 2016; 12:57-62. [PMID: 27347099 PMCID: PMC4906808 DOI: 10.3892/ol.2016.4601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
CecropinXJ is a cationic antimicrobial peptide originally isolated from the larvae of Bombyx mori. The anticancer effect of cecropinXJ has been reported in various tumor cells, including leukemia, gastric and esophageal cancer cells. However, the activity of cecropinXJ on hepatocellular carcinoma (HCC) and its underlying mechanism have not been investigated to date. Therefore, the present study investigated the efficacy and associated mechanism of cecropinXJ in Huh-7 cells. Flow cytometric analysis was performed to determine the presence of cell cycle arrested and apoptotic cells. CecropinXJ significantly inhibited the growth of Huh-7 cells in a dose- and time-dependent manner. CecropinXJ treatment for 24 h induced S cell cycle arrest and apoptosis, in addition to loss of the mitochondrial membrane potential, in hepatoma cells. CecropinXJ induced HCC cell apoptosis by activating caspase-3 and poly(ADP-ribose) polymerase. Furthermore, cecropinXJ downregulated the expression of B-cell lymphoma 2 (Bcl-2), while upregulated the expression of Bcl-2-associated death promoter and Bcl-2-associated X protein. In conclusion, the results of the present study suggest that cecropinXJ may be an active anti-HCC agent and provide novel insights into the mechanism of cecropinXJ.
Collapse
Affiliation(s)
- LIJIE XIA
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - YANLING WU
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - JI MA
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - JIANHUA YANG
- Department of Pediatrics, Texas Children's Cancer Center, Dan L. Duncan Cancer Center, Baylor College of Medicine, Texas, TX 77030, USA
| | - FUCHUN ZHANG
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| |
Collapse
|
9
|
Wu C, Geng X, Wan S, Hou H, Yu F, Jia B, Wang L. Cecropin-P17, an analog of Cecropin B, inhibits human hepatocellular carcinoma cell HepG-2 proliferation via regulation of ROS, Caspase, Bax, and Bcl-2. J Pept Sci 2015; 21:661-8. [PMID: 26010398 DOI: 10.1002/psc.2786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
Cecropin-P17 is a peptide derived from Cecropin B. In this study, we investigated the effects and relative mechanisms of Cecropin-P17 in a human liver cancer cell line (HepG-2) in vitro and in vivo. A cell viability assay, Annexin V/propidium iodide assay, western blot, flow cytometry, quantitative real-time polymerase chain reaction, and a tumor-xenograft model were applied to elucidate the mechanism exerted by Cecropin-P17 on HepG-2 cells. Cecropin-P17 significantly inhibited the proliferation of HepG-2 cells and demonstrated low cytotoxicity to normal liver cells in vitro. The apoptotic rate of HepG-2 cells was increased after Cecropin-P17 treatment together with increased production of reactive oxygen species. Moreover, Cecropin-P17 stimulated caspase-3, caspase-9, and Bax and inhibited Bcl-2 on both the transcriptional and translational levels. Finally, Cecropin-P17 significantly suppressed tumor growth in a HepG-2-bearing nude mouse model. All of these results indicated that Cecropin-P17 could be a potential agent for the treatment of liver cancer.
Collapse
Affiliation(s)
- Chunli Wu
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Xiaoping Geng
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Shengyun Wan
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Hui Hou
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Fanzong Yu
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Benli Jia
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Lei Wang
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| |
Collapse
|
10
|
CecropinXJ inhibits the proliferation of human gastric cancer BGC823 cells and induces cell death in vitro and in vivo. Int J Oncol 2015; 46:2181-93. [PMID: 25826779 DOI: 10.3892/ijo.2015.2933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/05/2015] [Indexed: 11/05/2022] Open
Abstract
We have shown that an antimicrobial peptide (AMP) cecropinXJ isolated from the larvae of Bombyx mori selectively inhibits the proliferation of cancer cells. However, the mechanism remains to be determined. In the present study, we examined the antitumor activity of cecropinXJ against human gastric cancer BGC823 cells and explored the mechanism. The results showed that cecropinXJ inhibited the growth of gastric cancer BGC823 cells in vitro and in vivo. MTT and colony formation assays indicated that cecropinXJ suppressed cell proliferation and reduced colony formation of BGC823 cells in a dose- and time-dependent manner, but without inhibitory effect on normal gastric epithelia GES-1 cells. S-phase arrest in BGC823 cells was observed after treatment with cecropinXJ. Annexin V/PI staining suggested that cecropinXJ induced both early and late phases of apoptosis through activation of mitochondrial-mediated caspase pathway, upregulation of Bax expression and downregulation of Bcl-2 expression. Additionally, cecropinXJ treatment increased reactive oxygen species (ROS) production, disrupted the mitochondrial membrane potential (Δψm) and led to release of cytochrome c. Importantly, in vivo study showed that cecropinXJ significantly prevented the growth of xenograft tumor in the BGC823-bearing mice, possibly mediated by the induction of apoptosis and inhibition of angiogenesis. These results suggest that cecropinXJ may be a promising therapeutic candidate for the treatment of gastric cancer.
Collapse
|