1
|
Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal 2024; 122:111345. [PMID: 39134249 DOI: 10.1016/j.cellsig.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.
Collapse
Affiliation(s)
- Zhongjun Shen
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Na Yu
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yanfeng Zhang
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Mingbo Jia
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Ying Sun
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China.
| |
Collapse
|
2
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
3
|
Chen H, Sun Y, Li Y, Zhao J, Cao Y. Determination of hypoxia-inducible factor-1 by using a ratiometric colorimetric test based on click-mediated growth of gold nanoparticles. Mikrochim Acta 2018; 185:451. [PMID: 30209641 DOI: 10.1007/s00604-018-2992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/01/2018] [Indexed: 11/24/2022]
Abstract
The authors describe a significantly improved colorimetric nanoprobe for the determination of transcription factors (TFs). It is making use of click-mediated growth of gold nanoparticles (AuNPs) to amplify the signal-to-noise ratio. Hypoxia-inducible factor-1 (HIF-1) is an important TF that acts as a mediator of cell response to hypoxia. So, the detection of HIF-1 was chosen as the model analyte. Specifically, target HIF-1 is designed to bind to the hypoxia response element within DNA duplex. The click chemistry between the DNA duplex and alkynyl-functionalized AuNPs (AF-AuNPs) is then inhibited because of significant steric hindrance. As a result, the AF-AuNPs grow into larger-sized highly-aggregated irregular nanostructures, which in turn enable colorimetric determination. The ratio of absorbances at 620 and 560 nm increases in the 0.5 to 10 nM HIF-1 concentration range, and the detection limit is 0.27 nM. This is better by a factor of 100 than that of aggregation-based colorimetric assays. The nanoprobe is selective and can be used in complex samples. Conceivably, it may also be extended to the determination of other TFs by simply changing the used DNA duplex. Graphical abstract Schematic of a nanoprobe for detecting hypoxia-inducible factor-1 (HIF-1). Three concepts are involved: the binding of HIF-1 and hypoxia response element, the Cu+-catalyzed click chemistry between P1/P2 duplex and alkynyl-functionalized AuNPs (AF-AuNPs), and the AuNPs growth with hydroxylamine and HAuCl4.
Collapse
Affiliation(s)
- Hong Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yan Sun
- Department of Endocrinology, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Yifei Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China. .,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Ao L, Song X, Li X, Tong M, Guo Y, Li J, Li H, Cai H, Li M, Guan Q, Yan H, Guo Z. An individualized prognostic signature and multi‑omics distinction for early stage hepatocellular carcinoma patients with surgical resection. Oncotarget 2018; 7:24097-110. [PMID: 27006471 PMCID: PMC5029687 DOI: 10.18632/oncotarget.8212] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/02/2016] [Indexed: 12/31/2022] Open
Abstract
Previously reported prognostic signatures for predicting the prognoses of postsurgical hepatocellular carcinoma (HCC) patients are commonly based on predefined risk scores, which are hardly applicable to samples measured by different laboratories. To solve this problem, using gene expression profiles of 170 stage I/II HCC samples, we identified a prognostic signature consisting of 20 gene pairs whose within-sample relative expression orderings (REOs) could robustly predict the disease-free survival and overall survival of HCC patients. This REOs-based prognostic signature was validated in two independent datasets. Functional enrichment analysis showed that the patients with high-risk of recurrence were characterized by the activations of pathways related to cell proliferation and tumor microenvironment, whereas the low-risk patients were characterized by the activations of various metabolism pathways. We further investigated the distinct epigenomic and genomic characteristics of the two prognostic groups using The Cancer Genome Atlas samples with multi-omics data. Epigenetic analysis showed that the transcriptional differences between the two prognostic groups were significantly concordant with DNA methylation alternations. The signaling network analysis identified several key genes (e.g. TP53, MYC) with epigenomic or genomic alternations driving poor prognoses of HCC patients. These results help us understand the multi-omics mechanisms determining the outcomes of HCC patients.
Collapse
Affiliation(s)
- Lu Ao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Xuekun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Xiangyu Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Mengsha Tong
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - You Guo
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Jing Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Hongdong Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Hao Cai
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Mengyao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Qingzhou Guan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Haidan Yan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Zheng Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
5
|
Xiong XX, Qiu XY, Hu DX, Chen XQ. Advances in Hypoxia-Mediated Mechanisms in Hepatocellular Carcinoma. Mol Pharmacol 2017; 92:246-255. [PMID: 28242743 DOI: 10.1124/mol.116.107706] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common and the third most deadly malignant tumor worldwide. Hypoxia and related oxidative stress are heavily involved in the process of HCC development and its therapies. However, direct and accurate measurement of oxygen concentration and evaluation of hypoxic effects in HCC prove difficult. Moreover, the hypoxia-mediated mechanisms in HCC remain elusive. Here, we summarize recent major evidence of hypoxia in HCC lesions shown by measuring partial pressure of oxygen (pO2), the clinical importance of hypoxic markers in HCC, and recent advances in hypoxia-related mechanisms and therapies in HCC. For the mechanisms, we focus mainly on the roles of oxygen-sensing proteins (i.e., hypoxia-inducible factor and neuroglobin) and hypoxia-induced signaling proteins (e.g., matrix metalloproteinases, high mobility group box 1, Beclin 1, glucose metabolism enzymes, and vascular endothelial growth factor). With respect to therapies, we discuss mainly YQ23, sorafenib, 2-methoxyestradiol, and celastrol. This review focuses primarily on the results of clinical and animal studies.
Collapse
Affiliation(s)
- Xin Xin Xiong
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yao Qiu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dian Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wang LH, Jiang XR, Yang JY, Bao XF, Chen JL, Liu X, Chen GL, Wu CF. SYP-5, a novel HIF-1 inhibitor, suppresses tumor cells invasion and angiogenesis. Eur J Pharmacol 2016; 791:560-568. [PMID: 27664769 DOI: 10.1016/j.ejphar.2016.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 01/12/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays an essential role in carcinogenesis. The overexpression of HIF-1 induced by hypoxia is closely associated with metastasis, poor prognosis and high mortality. In this study, a novel HIF-1 inhibitor SYP-5 was first observed by the luciferase reporter assay. Western blots results showed SYP-5 inhibited hypoxia-induced upregulation of HIF-1. Moreover, the proteins of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 that are targets of HIF-1, were down-regulated by SYP-5. Furthermore, in the tube formation assay, SYP-5 suppressed angiogenesis induced by hypoxia and VEGF in vitro. Additionally, using Transwell and RTCA assays, we found that SYP-5 also retarded the Hep3B and Bcap37 cells migration and invasion induced by hypoxia and FBS. Last, we also detected the upstream pathways related to HIF-1 and found both PI3K/AKT and MAPK/ERK were involved in the SYP-5 mediated invasive inhibition of Bcap37 cells. These results indicates that SYP-5 inhibits tumor cell migration and invasion, as well as tumor angiogenesis, which are mediated by suppressing PI3K/AKT- and MAPK/ERK-dependent HIF-1 pathway. It suggests that SYP-5 might be a potential HIF-1 inhibitor as an anticancer agent.
Collapse
Affiliation(s)
- Li-Hui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Xiao-Rui Jiang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Xue-Fei Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Jun-Li Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Xing Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Guo-Liang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China.
| |
Collapse
|
7
|
Shafik NM, Mohamed DA, Bedder AE, El-Gendy AM. Significance of Tissue Expression and Serum Levels of Angiopoietin-like Protein 4 in Breast Cancer Progression: Link to NF-κB /P65 Activity and Pro-Inflammatory Cytokines. Asian Pac J Cancer Prev 2016; 16:8579-87. [DOI: 10.7314/apjcp.2015.16.18.8579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Ismail S, Mayah W, Battia HE, Gaballah H, Jiman-Fatani A, Hamouda H, Afifi MA, Elmashad N, Saadany SE. Plasma nuclear factor kappa B and serum peroxiredoxin 3 in early diagnosis of hepatocellular carcinoma. Asian Pac J Cancer Prev 2015; 16:1657-63. [PMID: 25743848 DOI: 10.7314/apjcp.2015.16.4.1657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early diagnosis of hepatocellular carcinoma (HCC) is the most important step in successful treatment. However, it is usually rare due to the lack of a highly sensitive specific biomarker so that the HCC is usually fatal within few months after diagnosis. The aim of this work was to study the role of plasma nuclear factor kappa B (NF-?B) and serum peroxiredoxin 3 (PRDX3) as diagnostic biomarkers for early detection of HCC in a high-risk population. MATERIALS AND METHODS Plasma nuclear factor kappa B level (NF-?B) and serum peroxiredoxin 3 (PRDX3) levels were measured using enzyme linked immunosorbent assay (ELISA), in addition to alpha-fetoprotein (AFP) in 72 cirrhotic patients, 64 patients with HCC and 29 healthy controls. RESULTS NF-?B and PRDX3 were significantly elevated in the HCC group in relation to the others. Higher area under curve (AUC) of 0.854 (for PRDX3) and 0.825 (for NF-?B) with sensitivity of 86.3% and 84.4% and specificity of 75.8% and 75.4% respectively, were found compared to AUC of alpha-fetoprotein (AFP) (0.65) with sensitivity of 72.4% and specificity of 64.3%. CONCLUSIONS NF-?B and PRDX3 may serve as early and sensitive biomarkers for early detection of HCC facilitating improved management. The role of nuclear factor kappa B (NF-?B) as a target for treatment of liver fibrosis and HCC must be widely evaluated.
Collapse
Affiliation(s)
- Saber Ismail
- Departments of Tropical Medicine and Infectious Diseases, Faculty of Medicine Tanta University, Tanta, Egypt E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Expression Quantitative Trait Loci for CARD8 Contributes to Risk of Two Infection-Related Cancers--Hepatocellular Carcinoma and Cervical Cancer. PLoS One 2015; 10:e0132352. [PMID: 26147888 PMCID: PMC4492972 DOI: 10.1371/journal.pone.0132352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/14/2015] [Indexed: 12/24/2022] Open
Abstract
Caspase recruitment domain family, member 8 (CARD8) can coordinate innate and adaptive immune responses and sensitize cells to apoptosis, which may participate in tumorigenesis of virus-induced hepatocellular carcinoma (HCC) and cervical cancer. By bioinformatics analyses, we identified several single nucleotide polymorphisms (SNPs) within a new identified long non-coding RNA (lncRNA) as expression quantitative trait loci (eQTLs) for CARD8. In this study, we therefore hypothesized that CARD8 eQTLs SNPs within lncRNA may influence the risk of HCC and cervical cancer. We performed two independent case-control studies of 1,300 cases with HBV-positive HCC and 1,344 normal controls, together with 1,486 cervical cancer patients and 1,536 control subjects to test the association between eQTLs SNP (rs7248320) for CARD8 and the risk of HCC and cervical cancer. The variant genotype of rs7248320 was significantly associated with increased risk of HCC and cervical cancer [GG vs. AA/GA: adjusted odds ratio (OR) = 1.28, 95% confidence interval (CI) = 1.03–1.61, P = 0.028 for HCC; adjusted OR = 1.34, 95% CI = 1.09–1.66, P = 0.006 for cervical cancer]. Moreover, the effect of rs7248320 on cervical cancer risk was more prominent in premenopausal women. Further interactive analysis detected a significantly multiplicative interaction between rs7248320 and menopausal status on cervical cancer risk (P = 0.018). These findings suggest that CARD8 eQTLs SNP may serve as a susceptibility marker for virus-related HCC and cervical cancer.
Collapse
|