1
|
Astrain-Redin N, Sanmartin C, Sharma AK, Plano D. From Natural Sources to Synthetic Derivatives: The Allyl Motif as a Powerful Tool for Fragment-Based Design in Cancer Treatment. J Med Chem 2023; 66:3703-3731. [PMID: 36858050 PMCID: PMC10041541 DOI: 10.1021/acs.jmedchem.2c01406] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Since the beginning of history, natural products have been an abundant source of bioactive molecules for the treatment of different diseases, including cancer. Many allyl derivatives, which have shown anticancer activity both in vitro and in vivo in a large number of cancers, are bioactive molecules found in garlic, cinnamon, nutmeg, or mustard. In addition, synthetic products containing allyl fragments have been developed showing potent anticancer properties. Of particular note is the allyl derivative 17-AAG, which has been evaluated in Phase I and Phase II/III clinical trials for the treatment of multiple myeloma, metastatic melanoma, renal cancer, and breast cancer. In this Perspective, we compile extensive literature evidence with descriptions and discussions of the most recent advances in different natural and synthetic allyl derivatives that could generate cancer drug candidates in the near future.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Carmen Sanmartin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
2
|
Cheng XF, He ST, Zhong GQ, Meng JJ, Wang M, Bi Q, Tu RH. Exosomal HSP90 induced by remote ischemic preconditioning alleviates myocardial ischemia/reperfusion injury by inhibiting complement activation and inflammation. BMC Cardiovasc Disord 2023; 23:58. [PMID: 36726083 PMCID: PMC9890892 DOI: 10.1186/s12872-023-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND/AIMS The activation of the complement system and subsequent inflammatory responses are important features of myocardial ischemia/reperfusion (I/R) injury. Exosomes are nanoscale extracellular vesicles that play a significant role in remote ischemic preconditioning (RIPC) cardioprotection. The present study aimed to test whether RIPC-induced plasma exosomes (RIPC-Exo) exert protective effects on myocardial I/R injury by inhibiting complement activation and inflammation and whether exosomal heat shock protein 90 (HSP90) mediates these effects. METHODS Rat hearts underwent 30 min of coronary ligation followed by 2 h of reperfusion. Plasma exosomes were isolated from RIPC rats and injected into the infarcted myocardium immediately after ligation. Sixty rats were randomly divided into Sham, I/R, I/R + RIPC-Exo (50 µg/µl), and RIPC-Exo + GA (geldanamycin, 1 mg/kg, administration 30 min before ligation) groups. Cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB), infarct size, the expression of HSP90, complement component (C)3, C5a, c-Jun N-terminal kinase (JNK), interleukin (IL)-1β, tumor necrosis factor (TNF)-alpha and intercellular adhesion molecule -1 (ICAM-1) were assessed. RESULTS RIPC-Exo treatment significantly reduced I/R-induced cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB) and infarct size. These beneficial effects were accompanied by decreased C3 and C5a expression, decreased inflammatory factor levels (IL-1β, TNF-α, and ICAM-1), decreased JNK and Bax, and increased Bcl-2 expression. Meanwhile, the expression of HSP90 in the exosomes from rat plasma increased significantly after RIPC. However, treatment with HSP90 inhibitor GA significantly reversed the cardioprotection of RIPC-Exo, as well as activated complement component, JNK signalling and inflammation, indicating that HSP90 in exosomes isolated from the RIPC was important in mediating the cardioprotective effects during I/R. CONCLUSION Exosomal HSP90 induced by RIPC played a significant role in cardioprotection against I/R injury, and its function was in part linked to the inhibition of the complement system, JNK signalling and local and systemic inflammation, ultimately alleviating I/R-induced myocardial injury and apoptosis by the upregulation of Bcl-2 expression and the downregulation of proapoptotic Bax.
Collapse
Affiliation(s)
- Xiao-Fang Cheng
- grid.256607.00000 0004 1798 2653Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Shi-Tao He
- grid.256607.00000 0004 1798 2653Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Guo-Qiang Zhong
- grid.256607.00000 0004 1798 2653Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China ,Guang Xi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, 530021 Guangxi China ,Guang Xi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021 Guangxi China
| | - Jian-Jun Meng
- grid.256607.00000 0004 1798 2653Geriatric Healthcare Center, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Min Wang
- grid.256607.00000 0004 1798 2653Department of Geriatric Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi China
| | - Qi Bi
- grid.256607.00000 0004 1798 2653Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Rong-Hui Tu
- Guang Xi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, 530021, Guangxi, China. .,Guang Xi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, China. .,Department of Geriatric Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Samant RS, Batista S, Larance M, Ozer B, Milton CI, Bludau I, Wu E, Biggins L, Andrews S, Hervieu A, Johnston HE, Al-Lazikhani B, Lamond AI, Clarke PA, Workman P. Native Size-Exclusion Chromatography-Based Mass Spectrometry Reveals New Components of the Early Heat Shock Protein 90 Inhibition Response Among Limited Global Changes. Mol Cell Proteomics 2023; 22:100485. [PMID: 36549590 PMCID: PMC9898794 DOI: 10.1016/j.mcpro.2022.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery-suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these-the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex-as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.
Collapse
Affiliation(s)
- Rahul S Samant
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom; Signalling Programme, The Babraham Institute, Cambridge, United Kingdom.
| | - Silvia Batista
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Mark Larance
- Centre for Gene Regulation & Expression, University of Dundee, Dundee, United Kingdom
| | - Bugra Ozer
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Christopher I Milton
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Estelle Wu
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Laura Biggins
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Alexia Hervieu
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Harvey E Johnston
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Bissan Al-Lazikhani
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, University of Dundee, Dundee, United Kingdom
| | - Paul A Clarke
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Paul Workman
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
4
|
Ko JC, Chen JC, Hsieh JM, Tseng PY, Chiang CS, Liu LL, Chien CC, Huang IH, Chang QZ, Mu BC, Lin YW. Heat shock protein 90 inhibitor 17-AAG down-regulates thymidine phosphorylase expression and potentiates the cytotoxic effect of tamoxifen and erlotinib in human lung squamous carcinoma cells. Biochem Pharmacol 2022; 204:115207. [PMID: 35961402 DOI: 10.1016/j.bcp.2022.115207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
Elevated thymidine phosphorylase (TP) levels, a key enzyme in the pyrimidine nucleoside salvage pathway, in cancer cells, are related to a poor prognosis in a variety of cancers. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is involved in the stabilization and maturation of many oncogenic proteins. The aim of this study is to elucidate whether Hsp90 inhibitor 17-AAG could enhance tamoxifen- and erlotinib-induced cytotoxicity in nonsmall cell lung cancer (NSCLC) cells via modulating TP expression in two squamous NSCLC cell lines, H520 and H1703. We found that 17-AAG reduced TP expression via inactivating the MKK1/2-ERK1/2-mitogen-activated protein kinase (MAPK) pathway. TP knockdown with siRNA or ERK1/2 MAPK inactivation with the pharmacological inhibitor U0126 could enhance the cytotoxic and growth inhibitory effects of 17-AAG. In contrast, MKK1-CA or MKK2-CA (a constitutively active form of MKK1/2) vector-enforced expression could reduce the cytotoxic and cell growth inhibitory effects of 17-AAG. Furthermore, 17-AAG enhanced the cytotoxic and cell growth inhibitory effects of tamoxifen and erlotinib in NSCLC cells, which were associated with TP expression downregulation and MKK1/2-ERK1/2 signal inactivation. Taken together, Hsp90 inhibition downregulates TP, enhancing the tamoxifen- and erlotinib-induced cytotoxicity in H520 and H1703 cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Jou-Min Hsieh
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Pei-Yu Tseng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chen-Shan Chiang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Li-Ling Liu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chin-Cheng Chien
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - I-Hsiang Huang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Qiao-Zhen Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Bo-Cheng Mu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
5
|
Zaib S, Areeba BS, Nehal Rana BS, Wattoo JI, Alsaab HO, Alzhrani RM, Awwad NS, Ibrahium HA, Khan I. Nanomedicines Targeting Heat Shock Protein 90 Gene Expression in the Therapy of Breast Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - B. S. Areeba
- Department of Biochemistry Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - B. S. Nehal Rana
- Department of Biochemistry Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - Javed Iqbal Wattoo
- Department of Biotechnology Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology Taif University, P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Rami M. Alzhrani
- Department of Pharmaceutics and Industrial Pharmacy College of Pharmacy Taif University, P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Semi Pilot Plant Nuclear Materials Authority P.O. Box 530 El Maadi Egypt
| | - Imtiaz Khan
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
6
|
Juliana H, Tarek S. Comparative study of the effect of Bluem active oxygen gel and coe-pack dressing on postoperative surgical depigmentation healing. Saudi Dent J 2022; 34:328-334. [PMID: 35692245 PMCID: PMC9177883 DOI: 10.1016/j.sdentj.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Black colored gingiva is an esthetic concern, especially when accompanied by a high lip line or gummy smile. Surgical depigmentation with a scalpel is still considered the golden standard in gingival pigmentation management although it causes an area of open wound, which needs a special management with dressing. This study aimed to comparatively evaluate the effectiveness of reactive oxygen gel species (BlueM gel) and the traditional Coe-Pack dressing on gingival healing and pain after surgical depigmentation. Materials and Methods This split-mouth randomized clinical trial was conducted on 20 nonsmoking individuals aged 20–38 years with maxillary physiologic gingival pigmentation classes (III) and (IV) according to the Dummett–Gupta Oral Pigmentation Index (40 treated sites) who had requested an esthetic treatment for gingival hyperpigmentation of the maxillary gingiva. The maxilla was randomly divided into two symmetrical parts—from the right second premolar to the midline and from the midline to the left second premolar—to receive either BlueM gel or Coe-Pack as a dressing after surgical depigmentation with a scalpel. Various indices were assessed, such as pain and reepithelization index with toluidine blue, and the follow-up period was 1 month. Results A total of 20 patients were included in this study. There were statistically significant differences in the pain index after 1, 2, 3, 4, and 5 days. The BlueM gel group showed a higher significant difference after 1, 2, and 3 weeks in the reepithelization index. Conclusion Hence, BlueM gel can be considered as a good alternative for the Coe-Pack dressing after gingival depigmentation owing to its pain reduction properties, acceleration of wound healing, and postoperative reepithelization.
Collapse
Affiliation(s)
- Habib Juliana
- Corresponding author at: Department of Periodontology, Faculty of Dentistry, Damascus University, Number 5, Abasyeen Street, Damascus, Syria.
| | | |
Collapse
|
7
|
Zhang XY, Huang Z, Li QJ, Zhong GQ, Meng JJ, Wang DX, Tu RH. Role of HSP90 in suppressing TLR4-mediated inflammation in ischemic postconditioning. Clin Hemorheol Microcirc 2020; 76:51-62. [PMID: 32651307 DOI: 10.3233/ch-200840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Myocardial inflammation mediated by toll-like receptor 4 (TLR4) plays an active role in myocardial ischemia/reperfusion (I/R) injury. Studies show that heat shock protein 90 (HSP90) is involved in ischemic postconditioning (IPostC) cardioprotection. This study investigates the roles of TLR4 and HSP90 in IPostC. METHODS Rats were subjected to 30 min ischemia, then 2 h reperfusion. IPostC was applied by three cycles of 30 s reperfusion, then 30 s reocclusion at reperfusion onset. Sixty rats were randomly divided into four groups: sham, I/R, IPostC, and geldanamycin (GA, HSP90 inhibitor, 1 mg/kg) plus IPostC (IPostC + GA). RESULTS IPostC significantly reduced I/R-induced infarct size (40.2±2.1% versus 28.4±2.4%; P < 0.05); the release of cardiac Troponin T, creatine kinase-MB, and lactate dehydrogenase (191.5±3.1 versus 140.6±3.3 pg/ml, 3394.6±132.7 versus 2880.7±125.5 pg/ml, 2686.2±98.6 versus 1848.8±90.1 pg/ml, respectively; P < 0.05); and cardiomyocyte apoptosis (40.3±2.2% versus 27.0±1.6%; P < 0.05). Further, local and circulating IL-1β, IL-6, TNF-α, and ICAM-1 levels decreased; TLR4 expression and nuclear factor-KB (NF-κB) signaling decreased; and cardiac HSP90 expression increased. Blocking HSP90 function with GA inhibited IPostC protection and anti-inflammation, suggesting that IPostC has a HSP90-dependent anti-inflammatory effect. CONCLUSION HSP90 may play a role in IPostC-mediated cardioprotection by inhibiting TLR4 activation, local and systemic inflammation, and NF-kB signaling.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Zheng Huang
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Qing-Jie Li
- Department of Cardiology, Second Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Guo-Qiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China.,Guang Xi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, China.,Guang Xi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China
| | - Jian-Jun Meng
- Geriatric Healthcare Center, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Dong-Xiao Wang
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Rong-Hui Tu
- Guang Xi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, China.,Guang Xi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China.,Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| |
Collapse
|
8
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Mahzari A, Alsahli MA, Rahmani AH. Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules 2020; 25:E5336. [PMID: 33207628 PMCID: PMC7697255 DOI: 10.3390/molecules25225336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
A proper execution of basic cellular functions requires well-controlled homeostasis including correct protein folding. Endoplasmic reticulum (ER) implements such functions by protein reshaping and post-translational modifications. Different insults imposed on cells could lead to ER stress-mediated signaling pathways, collectively called the unfolded protein response (UPR). ER stress is also closely linked with oxidative stress, which is a common feature of diseases such as stroke, neurodegeneration, inflammation, metabolic diseases, and cancer. The level of ER stress is higher in cancer cells, indicating that such cells are already struggling to survive. Prolonged ER stress in cancer cells is like an Achilles' heel, if aggravated by different agents including nanoparticles (NPs) may be exhausted off the pro-survival features and can be easily subjected to proapoptotic mode. Different types of NPs including silver, gold, silica, graphene, etc. have been used to augment the cytotoxicity by promoting ER stress-mediated cell death. The diverse physico-chemical properties of NPs play a great role in their biomedical applications. Some special NPs have been effectively used to address different types of cancers as these particles can be used as both toxicological or therapeutic agents. Several types of NPs, and anticancer drug nano-formulations have been engineered to target tumor cells to enhance their ER stress to promote their death. Therefore, mitigating ER stress in cancer cells in favor of cell death by ER-specific NPs is extremely important in future therapeutics and understanding the underlying mechanism of how cancer cells can respond to NP induced ER stress is a good choice for the development of novel therapeutics. Thus, in depth focus on NP-mediated ER stress will be helpful to boost up developing novel pro-drug candidates for triggering pro-death pathways in different cancers.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| |
Collapse
|
9
|
Wang C, Zhang R, Tan J, Meng Z, Zhang Y, Li N, Wang H, Chang J, Wang R. Effect of mesoporous silica nanoparticles co‑loading with 17‑AAG and Torin2 on anaplastic thyroid carcinoma by targeting VEGFR2. Oncol Rep 2020; 43:1491-1502. [PMID: 32323855 PMCID: PMC7108023 DOI: 10.3892/or.2020.7537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/19/2020] [Indexed: 01/11/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive tumor with a poor prognosis and a low median survival rate because of insufficient effective therapeutic modalities. Recently, mesoporous silica nanoparticles (MSNs) as a green non-toxic and safe nanomaterial have shown advantages to be a drug carrier and to modify the targeting group to the targeted therapy. To aim of the study was to explore the effects of MSNs co-loading with 17-allylamino-17-demethoxy-geldanamycin (17-AAG; HSP90 inhibitor) and 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2; mTOR inhibitor) by targeting vascular endothelial growth factor receptor 2 (VEGFR2) on the viability of human anaplastic thyroid carcinoma FRO cells. The cytotoxicity of 17-AAG and Torin2 were analyzed by MTT assay. The possible synergistic antitumor effects between 17-AAG and Torin2 were evaluated by CompuSyn software. Flow cytometry was performed to assess the VEGFR2 targeting of (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab and uptake by FRO cells. An ATC xenograft mouse model was established to assess the antitumor effect of (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab in vivo. The results revealed that the combination of 17-AAG and Torin2 inhibited the growth of FRO cells more effectively compared with single use of these agents. Additionally, the synergistic antitumor effect appeared when concentration ratio of the two drugs was 1:1 along with total drug concentration greater than 0.52 µM. Furthermore, in an ATC animal model, it was revealed that the (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab therapy modality could most effectively prolong the median survival time [39.5 days vs. 33.0 days (non-targeted) or 27.5 days (control)]. Compared to (17-AAG+Torin2)@MSNs, the (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab could not only inhibit ATC cell growth but also prolong the median survival time of tumor-bearing mice in vivo and vitro more effectively, which may provide a new promising therapy for ATC.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ruiguo Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yueqian Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hanjie Wang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, P.R. China
| | - Jin Chang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, P.R. China
| | - Renfei Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
10
|
Novel Heat Shock Protein 90 Inhibitors Suppress P-Glycoprotein Activity and Overcome Multidrug Resistance in Cancer Cells. Int J Mol Sci 2019; 20:ijms20184575. [PMID: 31527404 PMCID: PMC6770006 DOI: 10.3390/ijms20184575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
Heat Shock Protein 90 (Hsp90) chaperone interacts with a broad range of client proteins involved in cancerogenesis and cancer progression. However, Hsp90 inhibitors were unsuccessful as anticancer agents due to their high toxicity, lack of selectivity against cancer cells and extrusion by membrane transporters responsible for multidrug resistance (MDR) such as P-glycoprotein (P-gp). Recognizing the potential of new compounds to inhibit P-gp function and/or expression is essential in the search for effective anticancer drugs. Eleven Hsp90 inhibitors containing an isoxazolonaphtoquinone core were synthesized and evaluated in two MDR models comprised of sensitive and corresponding resistant cancer cells with P-gp overexpression (human non-small cell lung carcinoma and colorectal adenocarcinoma). We investigated the effect of Hsp90 inhibitors on cell growth inhibition, P-gp activity and P-gp expression. Structure-activity relationship analysis was performed in respect to cell growth and P-gp inhibition. Compounds 5, 7, and 9 directly interacted with P-gp and inhibited its ATPase activity. Their potential P-gp binding site was identified by molecular docking studies. In addition, these compounds downregulated P-gp expression in MDR colorectal carcinoma cells, showed good relative selectivity towards cancer cells, while compound 5 reversed resistance to doxorubicin and paclitaxel in concentration-dependent manner. Therefore, compounds 5, 7 and 9 could be promising candidates for treating cancers with P-gp overexpression.
Collapse
|
11
|
Ghosh C, Nandi A, Basu S. Lipid Nanoparticle-Mediated Induction of Endoplasmic Reticulum Stress in Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:3992-4001. [DOI: 10.1021/acsabm.9b00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Aditi Nandi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
12
|
Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des 2019; 93:760-786. [PMID: 30697932 DOI: 10.1111/cbdd.13486] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Hsp90 is a ubiquitous chaperone with important roles in the organization and maturation of client proteins that are involved in the progression and survival of cancer cells. Multiple oncogenic pathways can be affected by inhibition of Hsp90 function through degradation of its client proteins. That makes Hsp90 a therapeutic target for cancer treatment. 17-allylamino-17-demethoxy-geldanamycin (17-AAG) is a potent Hsp90 inhibitor that binds to Hsp90 and inhibits its chaperoning function, which results in the degradation of Hsp90's client proteins. There have been several preclinical studies of 17-AAG as a single agent or in combination with other anticancer agents for a wide range of human cancers. Data from various phases of clinical trials show that 17-AAG can be given safely at biologically active dosages with mild toxicity. Even though 17-AAG has suitable pharmacological potency, its low water solubility and high hepatotoxicity could significantly restrict its clinical use. Nanomaterials-based drug delivery carriers may overcome these drawbacks. In this paper, we review preclinical and clinical research on 17-AAG as a single agent and in combination with other anticancer agents. In addition, we highlight the potential of using nanocarriers and nanocombination therapy to improve therapeutic effects of 17-AAG.
Collapse
Affiliation(s)
- Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Talaei S, Mellatyar H, Pilehvar-Soltanahmadi Y, Asadi A, Akbarzadeh A, Zarghami N. 17-Allylamino-17-demethoxygeldanamycin loaded PCL/PEG nanofibrous scaffold for effective growth inhibition of T47D breast cancer cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Dadashpour M, Barzegar A, Akbarzadeh A, Zarghami N. 17-DMAG-loaded nanofibrous scaffold for effective growth inhibition of lung cancer cells through targeting HSP90 gene expression. Biomed Pharmacother 2018; 105:1026-1032. [DOI: 10.1016/j.biopha.2018.06.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022] Open
|
15
|
Petersen ALDOA, Campos TA, Dantas DADS, Rebouças JDS, da Silva JC, de Menezes JPB, Formiga FR, de Melo JV, Machado G, Veras PST. Encapsulation of the HSP-90 Chaperone Inhibitor 17-AAG in Stable Liposome Allow Increasing the Therapeutic Index as Assessed, in vitro, on Leishmania (L) amazonensis Amastigotes-Hosted in Mouse CBA Macrophages. Front Cell Infect Microbiol 2018; 8:303. [PMID: 30214897 PMCID: PMC6126448 DOI: 10.3389/fcimb.2018.00303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
The current long-term treatment for leishmaniasis causes severe side effects and resistance in some cases. An evaluation of the anti-leishmanial potential of an HSP90-inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), demonstrated its potent effect against Leishmania spp. in vitro and in vivo. We have previously shown that 17-AAG can kill L. (L) amazonensis promastigotes with an IC50 of 65 nM and intracellular amastigote at concentrations as low as 125 nM. As this compound presents low solubility and high toxicity in human clinical trials, we prepared an inclusion complex containing hydroxypropyl-β-cyclodextrin and 17-AAG (17-AAG:HPβCD) to improve its solubility. This complex was characterized by scanning electron microscopy, and X-ray diffraction. Liposomes-containing 17-AAG:HPβCD was prepared and evaluated for encapsulation efficiency (EE%), particle size, polydispersity index (PDI), pH, and zeta potential, before and after accelerated and long-term stability testing. An evaluation of leishmanicidal activity against promastigotes and intracellular amastigotes of L. (L) amazonensis was also performed. The characterization techniques utilized confirmed the formation of the inclusion complex, HPβCD:17-AAG, with a resulting 33-fold-enhancement in compound water solubility. Stability studies revealed that 17-AAG:HPβCD-loaded liposomes were smaller than 200 nm, with 99% EE. Stability testing detected no alterations in PDI that was 0.295, pH 7.63, and zeta potential +22.6, suggesting liposome stability, and suitability for evaluating leishmanicidal activity. Treatment of infected macrophages with 0.006 nM of 17-AAG:HPβCD or 17-AAG:HPβCD-loaded liposomes resulted in almost complete amastigote clearance inside macrophages after 48 h. This reduction is similar to the one observed in infected macrophages treated with 2 μM amphotericin B. Our results showed that nanotechnology and drug delivery systems could be used to increase the antileishmanial efficacy and potency of 17-AAG in vitro, while also resulting in reduced toxicity that indicates these formulations may represent a potential therapeutic strategy against leishmaniasis.
Collapse
Affiliation(s)
| | - Thiers A Campos
- Graduate Program in Biological Sciences, Center of Biological Sciences, Federal University of Pernambuco, Recife, Brazil.,Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | | | - Juliana de Souza Rebouças
- Laboratory of Parasite-Host Interaction and Epidemiology (LAIPHE), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil.,Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil
| | - Juliana Cruz da Silva
- Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | - Juliana P B de Menezes
- Laboratory of Parasite-Host Interaction and Epidemiology (LAIPHE), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil
| | - Fábio R Formiga
- Postgraduate Program in Applied Cellular and Molecular Biology, Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil.,Laboratory of Vector-Borne Infectious Diseases (LEITV), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil
| | - Janaina V de Melo
- Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | - Giovanna Machado
- Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | - Patrícia S T Veras
- Laboratory of Parasite-Host Interaction and Epidemiology (LAIPHE), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil.,National Institute of Technology in Tropical Diseases-National Council for Scientific and Technological Development, Brasilia, Brazil
| |
Collapse
|
16
|
Sarhadi S, Sadeghi S, Nikmanesh F, Pilehvar Soltanahmadi Y, Shahabi A, Fekri Aval S, Zarghami N. A Systems Biology Approach Provides Deeper Insights into Differentially Expressed Genes in Taxane-Anthracycline Chemoresistant and Non-Resistant Breast Cancers. Asian Pac J Cancer Prev 2017; 18:2629-2636. [PMID: 29072056 PMCID: PMC5747381 DOI: 10.22034/apjcp.2017.18.10.2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To date, numerous studies have been conducted to search for reasons for chemoresistance and
differences in survival rates of patients receiving chemotherapy. We have sought to identify differentially expressed
genes (DEGs) between predicted chemotherapy resistance and sensitive phenotypes by a network as well as gene
enrichment approach. Methods: Functional modules were explored with network analysis of DEGs in predicted
neoadjuvant taxane-anthracycline resistance versus sensitive cases in the GSE25066 dataset, including 508 samples. A
linear model was created by limma package in R to establish DEGs. Results: A gene set related to phagocytic vesicle
membrane was found to be up-regulated in chemoresistance samples. Also, we found GO_CYTOKINE_ACTIVITY
and GO_GROWTH_FACTOR BINDING to be up-regulated gene sets with the chemoresistance phenotype. Growth
factors and cytokines are two groups of agents that induce the immune system to recruit APCs and promote tolerogenic
phagocytosis. Some hub nodes like S100A8 were found to be important in the chemoresistant tumor cell network with
associated high rank genes in GSEA. Conclusions: Functional gene sets and hub nodes could be considered as potential
treatment targets. Moreover, by screening and enrichment analysis of a chemoresistance network, ligands and chemical
agents have been found that could modify significant gene sets like the phagocytic vesicle membrane functional gene
set as a key to chemoresistance. They could also impact on down- or up-regulated hub nodes.
Collapse
Affiliation(s)
- Shamim Sarhadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | | | |
Collapse
|
17
|
Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H, Shafiei-Irannejad V, Zarghami N. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:917-925. [PMID: 28678551 DOI: 10.1080/21691401.2017.1347879] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The study was aimed at investigating the synergistic inhibitory effect of unique combinational regimen of nanocapsulated Metformin (Met) and Curcumin (Cur) against T47D breast cancer cells. For this purpose, Met and Cur were co-encapsulated in PEGylated PLGA nanoparticles (NPs) and evaluated for their therapeutic efficacy. The morphology and dynamic light scattering (DLS) analyses were carried out to optimize the nanoformulations. Drug release study was performed using dialysis method and then the cytotoxic and inhibitory effect of individual and combined drugs on expression level of hTERT in T47D breast cell line were evaluated using MTT assay and qPCR, respectively. The results showed that free drugs and formulations exhibited a dose-dependent cytotoxicity against T47D cells and especially, Met-Cur-PLGA/PEG NPs had more synergistic antiproliferative effect and significantly arrested the growth of cancer cells than the other groups (p < .05). Real-time PCR results revealed that Cur, Met and combination of Met-Cur in free and encapsulated forms inhibited hTERT gene expression. It was found that Met-Cur-PLGA/PEG NPs in relative to free combination could further decline hTERT expression in all concentration (p < .05). Taken together, our study demonstrated that Met-Cur-PLGA/PEG NPs based combinational therapy holds promising potential towards the treatment of breast cancer.
Collapse
Affiliation(s)
- Raana Farajzadeh
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Younes Pilehvar-Soltanahmadi
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Dadashpour
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Shahrzad Javidfar
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Javid Lotfi-Attari
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hadi Sadeghzadeh
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Shafiei-Irannejad
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- a Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
18
|
Mohammadian F, Abhari A, Dariushnejad H, Nikanfar A, Pilehvar-Soltanahmadi Y, Zarghami N. Effects of Chrysin-PLGA-PEG Nanoparticles on Proliferation and Gene Expression of miRNAs in Gastric Cancer Cell Line. IRANIAN JOURNAL OF CANCER PREVENTION 2016; 9:e4190. [PMID: 27761206 PMCID: PMC5056017 DOI: 10.17795/ijcp-4190] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/26/2015] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recently, Chrysin, as a flavone, has revealed cancer chemo-preventive activity. The present experiment utilized the PLGA-PEG-chrysin complex, and free chrysin, to evaluation of the expression of miR-22, miR-34a and miR-126 in human gastric cell line. OBJECTIVES The purpose of this study was to examine whether nano encapsulating chrysin improves the anti-cancer effect of free chrysin on AGS human gastric cell line. METHODS Properties of the chrysin encapsulated in PLGA-PEG nanoparticles were investigated by SEM, H NMR, and FTIR. The assessment of cytotoxicity on the growth of the human gastric cell line was carried out through MTT assay. After treating the cells with a prearranged amount of pure and encapsulated chrysin, RNA was extracted and the expressions of miR-22, miR-34a and miR-126 were measured by using real-time PCR. RESULTS With regard to the amount of the chrysin loaded in PLGA-PEG nanoparticles, IC50 value was significantly decreased in nanocapsulatedchrysin, in comparison with free chrysin. This finding has been proved through the further increase of miR-22, miR-34a and miR-126 gene expression of nanocapsulatedchrysin, in comparison with free chrysin. CONCLUSIONS In this study, we revealed that the PLGA-PEG-chrysin is more effective than free chrysin in inhibiting the growth of human gastric cell line.
Collapse
Affiliation(s)
- Farideh Mohammadian
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Alireza Abhari
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Hassan Dariushnejad
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Alireza Nikanfar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| |
Collapse
|
19
|
Mohammadian F, Pilehvar-Soltanahmadi Y, Zarghami F, Akbarzadeh A, Zarghami N. Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-6. [DOI: 10.1080/21691401.2016.1216854] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Farideh Mohammadian
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faraz Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Zeighamian V, Darabi M, Akbarzadeh A, Rahmati-Yamchi M, Zarghami N, Badrzadeh F, Salehi R, Mirakabad FST, Taheri-Anganeh M. PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:735-42. [PMID: 25819738 DOI: 10.3109/21691401.2014.982803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm-MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.
Collapse
Affiliation(s)
- Vahideh Zeighamian
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Masoud Darabi
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Clinical Biochemistry and Laboratory Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- d Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,e Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Rahmati-Yamchi
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Clinical Biochemistry and Laboratory Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Clinical Biochemistry and Laboratory Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Fariba Badrzadeh
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Roya Salehi
- d Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Mortaza Taheri-Anganeh
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
21
|
Majidi S, Zeinali Sehrig F, Samiei M, Milani M, Abbasi E, Dadashzadeh K, Akbarzadeh A. Magnetic nanoparticles: Applications in gene delivery and gene therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1186-93. [DOI: 10.3109/21691401.2015.1014093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Eatemadi A, Darabi M, Afraidooni L, Zarghami N, Daraee H, Eskandari L, Mellatyar H, Akbarzadeh A. Comparison, synthesis and evaluation of anticancer drug-loaded polymeric nanoparticles on breast cancer cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1008-17. [PMID: 25707442 DOI: 10.3109/21691401.2015.1008510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer is a major form of cancer, with a high mortality rate in women. It is crucial to achieve more efficient and safe anticancer drugs. Recent developments in medical nanotechnology have resulted in novel advances in cancer drug delivery. Cisplatin, doxorubicin, and 5-fluorouracil are three important anti-cancer drugs which have poor water-solubility. In this study, we used cisplatin, doxorubicin, and 5-fluorouracil-loaded polycaprolactone-polyethylene glycol (PCL-PEG) nanoparticles to improve the stability and solubility of molecules in drug delivery systems. The nanoparticles were prepared by a double emulsion method and characterized with Fourier Transform Infrared (FTIR) spectroscopy and Hydrogen-1 nuclear magnetic resonance ((1)HNMR). Cells were treated with equal concentrations of cisplatin, doxorubicin and 5-fluorouracil-loaded PCL-PEG nanoparticles, and free cisplatin, doxorubicin and 5-fluorouracil. The 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide (MTT) assay confirmed that cisplatin, doxorubicin, and 5-fluorouracil-loaded PCL-PEG nanoparticles enhanced cytotoxicity and drug delivery in T47D and MCF7 breast cancer cells. However, the IC50 value of doxorubicin was lower than the IC50 values of both cisplatin and 5-fluorouracil, where the difference was statistically considered significant (p˂0.05). However, the IC50 value of all drugs on T47D were lower than those on MCF7.
Collapse
Affiliation(s)
- Ali Eatemadi
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Clinical Biochemistry , Radiopharmacy Lab, Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Masoud Darabi
- c Department of Clinical Biochemistry , Radiopharmacy Lab, Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Loghman Afraidooni
- c Department of Clinical Biochemistry , Radiopharmacy Lab, Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,d Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, International Branch Aras , Tabriz , Iran
| | - Nosratollah Zarghami
- c Department of Clinical Biochemistry , Radiopharmacy Lab, Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,d Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, International Branch Aras , Tabriz , Iran
| | - Hadis Daraee
- c Department of Clinical Biochemistry , Radiopharmacy Lab, Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Leila Eskandari
- c Department of Clinical Biochemistry , Radiopharmacy Lab, Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hassan Mellatyar
- c Department of Clinical Biochemistry , Radiopharmacy Lab, Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran.,d Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, International Branch Aras , Tabriz , Iran
| |
Collapse
|
23
|
Majidi S, Zeinali Sehrig F, Farkhani SM, Soleymani Goloujeh M, Akbarzadeh A. Current methods for synthesis of magnetic nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:722-34. [DOI: 10.3109/21691401.2014.982802] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Kordi S, Zarghami N, Akbarzadeh A, Rahmati YM, Ghasemali S, Barkhordari A, Tozihi M. A comparison of the inhibitory effect of nano-encapsulated helenalin and free helenalin on telomerase gene expression in the breast cancer cell line, by real-time PCR. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:695-703. [DOI: 10.3109/21691401.2014.981270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|