1
|
Kaveh Zenjanab M, Hashemzadeh N, Alimohammadvand S, Sharifi-Azad M, Dalir Abdolahinia E, Jahanban-Esfahlan R. Notch Signaling Suppression by Golden Phytochemicals: Potential for Cancer Therapy. Adv Pharm Bull 2024; 14:302-313. [PMID: 39206407 PMCID: PMC11347744 DOI: 10.34172/apb.2024.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is one of the main causes of mortality worldwide. Cancer cells are characterized by unregulated cellular processes, including proliferation, progression, and angiogenesis. The occurrence of these processes is due to the dysregulation of various signaling pathways such as NF-κB (nuclear factor-κB), Wnt/beta-catenin, Notch signaling and MAPK (mitogen-activated protein kinases). Notch signaling pathways cause the progression of various types of malignant tumors. Among the phytochemicals for cancer therapy, several have attracted great interest, including curcumin, genistein, quercetin, silibinin, resveratrol, cucurbitacin and glycyrrhizin. Given the great cellular and molecular heterogeneity within tumors and the high toxicity and side effects of synthetic chemotherapeutics, natural products with pleiotropic effects that simultaneously target numerous signaling pathways appear to be ideal substitutes for cancer therapy. With this in mind, we take a look at the current status, impact and potential of known compounds as golden phytochemicals on key signaling pathways in tumors, focusing on the Notch pathway. This review may be useful for discovering new molecular targets for safe and efficient cancer therapy with natural chemotherapeutics.
Collapse
Affiliation(s)
| | - Nastaran Hashemzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, US
| | - Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Nayerpour Dizaj T, Doustmihan A, Sadeghzadeh Oskouei B, Akbari M, Jaymand M, Mazloomi M, Jahanban-Esfahlan R. Significance of PSCA as a novel prognostic marker and therapeutic target for cancer. Cancer Cell Int 2024; 24:135. [PMID: 38627732 PMCID: PMC11020972 DOI: 10.1186/s12935-024-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
One of the contributing factors in the diagnosis and treatment of most cancers is the identification of their surface antigens. Cancer tissues or cells have their specific antigens. Some antigens that are present in many cancers elicit different functions. One of these antigens is the prostate stem cell antigen (PSCA) antigen, which was first identified in the prostate. PSCA is a cell surface protein that has different functions in different tissues. It can play an inhibitory role in cell proliferation as well as a tumor-inducing role. PSCA has several genetic variants involved in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship with clinical features can provide more information on diagnosis and treatment of patients with cancers. Most studies on the PSCA have focused on prostate cancer. While it is also expressed in other cancers, little attention has been paid to its role as a valuable diagnostic, prognostic, and therapeutic tool in other cancers. PSCA has several genetic variants that seem to play a significant role in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship and variants with clinical features can be beneficial in concomitant cancer therapy and diagnosis, as theranostic tools. In this study, we will review the alteration of the PSCA expression and its polymorphisms and evaluate its clinical and theranostics significance in various cancers.
Collapse
Affiliation(s)
- Tina Nayerpour Dizaj
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Sadeghzadeh Oskouei
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Neto JNC, Sorbo JM, Filho CAA, Sabino TFM, Ribeiro DA, Brunetti IL, de Andrade CR. Negative terpinen-4-ol modulate potentially malignant and malignant lingual lesions induced by 4-nitroquinoline-1-oxide in rat model. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1387-1403. [PMID: 35943514 DOI: 10.1007/s00210-022-02275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
Our aim was to verify the modulative TP-4-ol capacity in 4-nitroquinoline-1-oxide induced oral rat cancer. The stereoisomers of TP-4-ol were used against the human tongue squamous cell line and the negative stereoisomer showed lower IC50. Thirty-one Holtzman rats (120-130 g) were cancer-induced by 4-nitroquinoline-1-oxide (4-NQO/8 weeks/25 ppm) and 32 Holtzman rats (120-130 g) were used to healthy and TP-4-ol toxicity experiments. Six groups were used, healthy, 0.1nL/g of TP-4-ol, 8nL/g of TP-4-ol, 4-NQO, 4-NQO + 0.1nL/g of TP-4-ol, and 4-NQO + 8nL/g of TP-4-ol. We performed the toxicity analysis by biochemical and histopathological analysis. The biochemistry analysis includes alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate transaminase (AST), urea, and creatinine and the histopathology analysis includes the liver, kidney, lung, and spleen. Specifically, for malign modulation, we performed a macroscopic and microscopic analysis. The group exposed to 0.1nL/g of TP-4-ol demonstrated a reduced risk of malignancy in dysplasia considering the criteria of architecture and cytology. Similarly, a drop of percentual rats with SCC diagnosis was observed in 4-NQO + 0.1nL/g (41.6%) when compared to 4-NQO (87.5%). Moreover, the 4-NQO group presented a median of 2.62 SCC/rat and the 4-NQO + 0.1nL/g demonstrated a median of 0.75 SCC/rat. For toxicity analysis, 4-NQO + 0.1nL/g showed focal necrosis in the kidney and 4-NQO showed lung hemorrhagic areas. The concentration of 0.1nL/g was more effective in reducing the tongue induction of potentially malignant and malignant lesions by 4-NQO. A kidney toxicity was observed in healthy animals exposed to 0.1nL/g of TP-4-ol. The negative isoform of terpinen-4-ol negatively modulates the development of potentially malignant and malignant lesions in rats (Rattus nonverdicts albinos, Holtzman) exposed to 4-NQO. (-)-Terpinen-4-ol reduced the mice percentual with squamous cell carcinoma, 87.5 to 41.6%, and decreased the cancer/rat ratio of 2.62 in 4-NQO to 0.75 in 4-NQO + 0.1nL/g. This represents 52.4% by group and 71.3% in the cancer/rat ratio.
Collapse
Affiliation(s)
- José Nunes Carneiro Neto
- Bucco-Maxillo-Facial Surgery and Traumatology Service, Walter Cantídio University Hospital, UFC - Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Juliana Maria Sorbo
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, UNESP-UNESP-Paulista State University, Araraquara São Paulo, Brazil
| | - Carlos Alberto Arcaro Filho
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, UNESP-UNESP-Paulista State University, Araraquara São Paulo, Brazil
| | - Thaís Fernanda Moreira Sabino
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, UNESP-UNESP-Paulista State University, Araraquara São Paulo, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, UNIFESP - Federal University of São Paulo da Baixada Santista, Santos São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, UNESP-UNESP-Paulista State University, Araraquara São Paulo, Brazil
| | - Cleverton Roberto de Andrade
- Department of Physiology and Pathology, Araraquara Dental School, UNESP-UNESP-Paulista State University, Araraquara São Paulo, Brazil.
| |
Collapse
|
4
|
Sabit H, Tombuloglu H, Cevik E, Abdel-Ghany S, El-Zawahri E, El-Sawy A, Isik S, Al-Suhaimi E. Knockdown of c-MYC Controls the Proliferation of Oral Squamous Cell Carcinoma Cells in vitro via Dynamic Regulation of Key Apoptotic Marker Genes. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:45-55. [PMID: 34268253 PMCID: PMC8256829 DOI: 10.22088/ijmcm.bums.10.1.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/09/2021] [Indexed: 01/09/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of c-MYC in controlling the proliferation of OSCC cells is not well known. In this study, c-MYC gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of c-MYC has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis via the intrinsic pathway. In response to c-MYC knockdown, eight cell proliferation-associated genes showed variable expression profiles: c-MYC (-21.2), p21 (-2.5), CCNA1(1.8), BCL2 (-1.4), p53(-3.7), BAX(1.1), and CYCS (19.3). p27 expression was dramatically decreased in c-MYC-silenced cells in comparison with control, and this might indicate that the relative absence of c-MYC triggered intrinsic apoptosis in OSCC cells via p27 and CYCS.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shaimaa Abdel-Ghany
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Engy El-Zawahri
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Amr El-Sawy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey.,SANKARA Brain & Biotechnology Research Center, Istanbul Biotechnology Inc, Technocity, Avcilar, Istanbul, Turkey
| | - Ebtesam Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Qiao B, He B, Cai J, Lam AKY, He W. Induction of oxidative stress and cell apoptosis by selenium: the cure against oral carcinoma. Oncotarget 2017; 8:113614-113621. [PMID: 29371933 PMCID: PMC5768350 DOI: 10.18632/oncotarget.22752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023] Open
Abstract
Oral carcinoma (OC) remains one of the most difficult malignancies to cure. selenium (Se) is an essential trace mineral for human and animals, but high concentrations of Se induce apoptosis and oxidative effects. Although cell apoptosis has been evidenced as a critical mechanism mediating the anticancer activity of Se, the underlying molecular mechanisms remain elusive. To explore the role of Se in rat OC, we examined the weather the oxidative stress-mediated apoptotic pathway induced by Se was involved in the development of OC. In this study, we successfully constructed the OC rat model by 4-Nitroquinoline-1-oxide (4-NQO) exposure which reflected from histopathological observations. Se-induced the productions of methane dicarboxylic aldehyde (MDA) and reactive oxygen species (ROS), which was accompanied by the inhibition of superoxide dismutase (SOD) both in vivo and vitro. The anti-apoptotic gene (Bcl-2) was down-regulated and pro-apoptosis members (Bax, Bak, Cyt-c, caspase9 and caspase3) were up-regulated by Se in OC cells. Meanwhile, we also found that Se could strongly inhibited the cell proliferation of OC lines in vitro. These results suggested that excessive Se could effectively cause oxidative stress and induce apoptosis in OC cells, as a result the OC was also inhibited to some extent. Therefore, the information presented in this study is believed to be helpful in supplementing data for further therapy of OC.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Baoxia He
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, P.R. China
| | - Jinghua Cai
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
6
|
Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol 2017; 233:2982-2992. [PMID: 28608554 DOI: 10.1002/jcp.26051] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
As a young science, nanotechnology promptly integrated into the current oncology practice. Accordingly, various nanostructure particles were developed to reduce drug toxicity and allow the targeted delivery of various diagnostic and therapeutic compounds to the cancer cells. New sophisticated nanosystems constantly emerge to improve the performance of current anticancer modalities. Targeting tumor vasculature is an attractive strategy to fight cancer. Though the idea was swiftly furthered from basic science to the clinic, targeting tumor vasculature had a limited potential in patients, where tumors relapse due to the development of multiple drug resistance and metastasis. The aim of this review is to discuss the advantages of nanosystem incorporation with various vascular targeting agents, including (i) endogen anti-angiogenic agents; (ii) inhibitors of angiogenesis-related growth factors; (iii) inhibitors of tyrosine kinase receptors; (iv) inhibitors of angiogenesis-related signaling pathways; (v) inhibitors of tumor endothelial cell-associated markers; and (vi) tumor vascular disrupting agents. We also review the efficacy of nanostructures as natural vascular targeting agents. The efficacy of each approach in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran.,Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Molecular Targeting Therapy Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol 2017; 233:2019-2031. [PMID: 28198007 DOI: 10.1002/jcp.25859] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Hypoxia, a characteristic feature of tumors, is indispensable to tumor angiogenesis, metastasis, and multi drug resistance. Hypoxic avascular regions, deeply embedded inside the tumors significantly hinder delivery of therapeutic agents. The low oxygen tension results in resistance to the current applied anti-cancer therapeutics including radiotherapy, chemotherapy, and photodynamic therapy, the efficacy of which is firmly tied to the level of tumor oxygen supply. However, emerging data indicate that nanocarriers/nanodrugs can offer substantial benefits to improve the efficacy of current therapeutics, through modulation of tumor hypoxia. This review aims to introduce the most recent advances made in nanocarrier mediated targeting of tumor hypoxia. The first part is dedicated to the approaches by which nanocarriers could be designed to target/leverage hypoxia. These approaches include i) inhibiting Hypoxia Inducer Factor (HIF-1α); ii) hypoxia activated prodrugs/linkers; and iii) obligate anaerobe mediated targeting of tumor hypoxia. The second part, details novel nanosystems proposed to modulate tumor hypoxia through tumor oxygenation. These methods seek to lessen tumor hypoxia through vascular normalization, or reoxygenation therapy. The reoxygenation of tumor could be accomplished by: i) generation of oxygen filled nanocarriers; ii) natural/artificial oxygen nanocarriers; and iii) oxygen generators. The efficacy of each approach and their potential in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Delshad Ahmadi
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Targeting Therapy Research Group, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Seidi K, Jahanban-Esfahlan R, Abasi M, Abbasi MM. Anti Tumoral Properties of Punica granatum (Pomegranate) Seed Extract in Different Human Cancer Cells. Asian Pac J Cancer Prev 2017; 17:1119-22. [PMID: 27039735 DOI: 10.7314/apjcp.2016.17.3.1119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Punica granatum (PG) has been demonstrated to possess antitumor effects on various types of cancer cells. In this study, we determined antiproliferative properties of a seed extract of PG (PSE) from Iran in different human cancer cells. MATERIALS AND METHODS A methanolic extract of pomegranate seeds was prepared. Total phenolic content (TPC) and total flavonoid content (TFC) were assessed by colorimetric assays. Antioxidant activity was determined with reference to DPPH radical scavenging activity. The cytotoxicity of different doses of PSE (0, 5, 20, 100, 250, 500, 1000 μg/ml) was evaluated by MTT assays with A549 (lung non small cell carcinoma), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. RESULTS Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses (5-1000 μg/ml). In all studied cancer cells, PSE reduced the cell viability to values below 23%, even at the lowest doses. In all cases, IC50 was determined at doses below 5 μg/ml. In this regard, SKOV3 ovarian cancer cells were the most responsive to antiproliferative effects of PSE with a maximum mean growth inhibition of 86.8% vs. 82.8%, 81.4% and 80.0% in MCF-7, PC-3 and A549 cells, respectively. CONCLUSIONS Low doses of PSE exert potent antiproliferative effects on different human cancer cells SKOV3 ovarian cancer cells as most and A549 cells ar least responsive regarding cytotoxic effects. However, the mechanisms of action need to be addressed.
Collapse
Affiliation(s)
- Khaled Seidi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | |
Collapse
|
9
|
Abbasi MM, Mehdipour M, Monfaredan A, Jahanban-Esfahlan R. Hesa-A Down-Regulates erb/b2 Oncogene Expression and Improves Outcome of Oral Carcinoma in a Rat Model. Asian Pac J Cancer Prev 2016; 16:6947-51. [PMID: 26514473 DOI: 10.7314/apjcp.2015.16.16.6947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral carcinoma (OC) remains one of the most difficult malignancies to cure. Hesa-A is an Iranian herbal-marine compound that has shown promising anti-tumor properties against various human tumors. However, its mechanism of action remains to be addressed. The present study was conducted to evaluate the effect of two doses of Hesa-A on mRNA expression of erb\b2 as a main prognosticator tumor marker for OC in an animal model. MATERIALS AND METHODS A total of 60 rats were randomly divided into 5 groups of 12 animals each. Rats in carcinoma groups received 0, 250 and 500 mg/kg body weight doses of Hesa-A 3 times a day. The other two groups were considered as treated and untreated control groups. At the end of the experiment, animals were sacrificed and tongue tissues subjected to H and E staining and real time PCR. RESULTS Our results showed that compared to the control group, erb\ b2 was over-expressed ~ 30% in the carcinoma group. After treatment with 250 mg/kg and 500 mg/kg body weight of Hesa-A , erb\b2 levels dropped by 24.1% and 3.4 % respectively compared to the control carcinoma group (p<0.01, p<0.0001). Moreover, there was a significant relation between erb\ b2 mRNA content and observed pathological changes in studied groups (p<0.05). CONCLUSIONS These data provide insight into mechanism(s) by which Hesa-A may improve clinical outcome of oral carcinoma by affecting oncogene erb\b2 expression and suggest Hesa-A as an effective chemotherapeutic agent in treatment of HER+ tumors.
Collapse
Affiliation(s)
- Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | |
Collapse
|
10
|
Jahanban-Esfahlan A, Modaeinama S, Abasi M, Abbasi MM, Jahanban-Esfahlan R. Anti Proliferative Properties of Melissa officinalis in Different Human Cancer Cells. Asian Pac J Cancer Prev 2016; 16:5703-7. [PMID: 26320439 DOI: 10.7314/apjcp.2015.16.14.5703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of their antioxidative properties. Melissa officinalis L. (MO), an aromatic and medicinal plant, is well known in thios context. However, toxicity against cancer cells has not been fully studied. Here, we investigated the selective anticancer effects of an MO extract (MOE) in different human cancer cells. MATERIALS AND METHODS a hydro-alcoholic extract of MO was prepared and total phenolic content (TPC) and total flavonoid content (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. MTT assays were used to evaluate cytotoxicity of different doses of MOE (0, 5, 20, 100, 250, 500, 1000 μg/ml) towards A549 (lung non small cell cancer cells), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. RESULTS Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses (5-1000 μg/ml). In all cancer cells, MOE reduced the cell viability to values below 33%, even at the lowest doses. In all cases, IC50 values were below 5μg/ml. The mean growth inhibition was 73.1%, 86.7%, 79.9% and 77.8% in SKOV3, MCF-7 and PC-3 and A549 cells, respectively. CONCLUSIONS Our results indicate that a hydro-alcoholic extract of MO possess a high potency to inhibit proliferation of different tumor cells in a dose independent manner, suggesting that an optimal biological dose is more important than a maximally tolerated one. Moreover, the antiprolifreative effect of MO seems to be tumor type specific, as hormone dependant cancers were more sensitive to antitumoral effects of MOE.
Collapse
|
11
|
Modaeinama S, Abasi M, Abbasi MM, Jahanban-Esfahlan R. Anti Tumoral Properties of Punica Granatum (Pomegranate) Peel Extract on Different Human Cancer Cells. Asian Pac J Cancer Prev 2016; 16:5697-701. [PMID: 26320438 DOI: 10.7314/apjcp.2015.16.14.5697] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of antioxidative properties. Punica granatum (PG) (pomegranate) is a well known fruit in this context, but its cytotoxicity in cancer cells has not been extensively studied. Here, we investigated the antiproliferative properties of a peel extract of PG from Iran in different human cancer cells. MATERIALS AND METHODS A methanolic extract of pomegranate peel (PPE) was prepared. Total phenolic content(TPC) and total flavonoid conetnt (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. The cytotoxicity of different doses of PPE (0, 5, 20, 100, 250, 500, 1000 μg/ml) was evaluated by MTT assays with A549 (lung non small cell cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. RESULTS Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison with negative controls at all tested doses (5-1000 μg/ml). In all studied cancer cells, PPE reduced the cell viability to values below 40%, even at the lowest doses. In all cases, IC50 was determined at doses below 5μg/ml. In this regard, MCF-7 breast adenocarcinoma cells were the most responsive cells to antiprolifreative effects of PPE with a maximum mean growth inhibition of 81.0% vs. 69.4%, 79.3% and 77.5% in SKOV3, PC-3 and A549 cells, respectively. CONCLUSIONS Low doses of PPE exert potent anti-proliferative effects in different human cancer cells and it seems that MCF-7 breast adenocarcinoma cells are the most cells and SKOV3 ovarian cancer cells the least responsive in this regard. However, the mechanisms of action need to be addressed.
Collapse
Affiliation(s)
- Sina Modaeinama
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran E-mail :
| | | | | | | |
Collapse
|
12
|
Abbasi MM, Helli S, Monfaredan A, Jahanban-Esfahlan R. Hesa-A Improves Clinical Outcome of Oral Carcinoma by Affecting p53 Gene Expression in vivo. Asian Pac J Cancer Prev 2016; 16:4169-72. [PMID: 26028067 DOI: 10.7314/apjcp.2015.16.10.4169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral carcinoma (OC) remains as one of the most difficult malignancies to cure. Hesa-A is an Iranian herbal-marine compound that has shown promising anti-tumor properties on various human cancer cells, although the mechanisms of action remain to be addressed. This study was conducted to evaluate the effect of two doses of Hesa-A on mRNA expression of p53 as a main prognosticator of OC. MATERIALS AND METHODS 60 rats were randomly divided into 5 groups of 12 animals each. Rats in carcinoma groups received 0, 250 and 500 mg/kg body weight of Hesa-A three times a day. The two other groups considered as treated and untreated healthy groups. At the end of experiment, animals were sacrificed and tongue tissues subjected to H and E staining and real time PCR. RESULTS Our results indicated that compared to healthy group, p53 over expressed ~ 40% in untreated carcinoma group. After treatment with 250 mg/kg and 500 mg/kg body weights of Hesa-A , p53 level dropped by 53.4% and 13.6 %, respectively, compared to untreated carcinoma group (p<0.05, p<0.0001). Moreover, there was a significant relation between p53 mRNA content and observed pathological changes in studied groups (p<0.05). CONCLUSIONS These data provide insights into the mechanism(s) by which Hesa-A improves clinical outcome of oral carcinoma by modulation of p53 expression.
Collapse
|
13
|
Jahanban-Esfahlan R, Abasi M, Sani HM, Abbasi MM, Akbarzadeh A. Anti-Proliferative Effects of Hesa-A on Human Cancer Cells with Different Metastatic Potential. Asian Pac J Cancer Prev 2015; 16:6963-6. [PMID: 26514475 DOI: 10.7314/apjcp.2015.16.16.6963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the past few years, Hesa-A, a herbal-marine mixture, has been used to treat cancer as an alternative medicine in Iran. Based on a series of studies, it is speculated that Hesa-A possesses special cytotoxic effects on invasive tumors. To test this hypothesis, we investigated the selective anticancer effects of Hesa-A on several cancer cell lines with different metastatic potential. MATERIALS AND METHODS Hesa-A was prepared in normal saline as a stock solution of 10 mg/ml and further diluted to final concentrations of 100 μg/ml, 200 μg/ ml, 300 μg/ml and 400 μg/ml. MTT-based cytotoxicity assays were performed with A549 (lung non small cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. RESULTS All treated cancer cells showed significant (P<0.01) or very significant (P<0.0001) differences in comparison to negative control at almost all of the tested doses (100-400 μg/ml). At the lower dose (100 μg/ml), Hesa-A reduced cell viability to 66%, 45.3%, 35.5%, 33.2% in SKOV3, A549, PC-3 and MCF-7 cells, respectively. Moreover, at the highest dose (400 μg/ml), Hesa-A resulted in 88.5%, 86.6% , 84.9% and 79.3% growth inhibition in A549, MCF-7, PC-3 and SKOV3 cells, respectively. CONCLUSIONS Hesa-A exert potent cytotoxic effects on different human cancer cells, especially those with a high metastatic potential.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | |
Collapse
|
14
|
Abbasi MM, Jahanban-Esfahlan R, Monfaredan A, Seidi K, Hamishehkar H, Khiavi MM. Oral and IV dosages of doxorubicin-methotrexate loaded- nanoparticles inhibit progression of oral cancer by down- regulation of matrix Methaloproteinase 2 expression in vivo. Asian Pac J Cancer Prev 2015; 15:10705-11. [PMID: 25605162 DOI: 10.7314/apjcp.2014.15.24.10705] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Oral cancer is one of the most common and lethal cancers in the world. Combination chemotherapy coupled with nanoparticle drug delivery holds substantial promise in cancer therapy. This study aimed to evaluate the efficacy and safety of two dosages of our novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NPs) with attention to the MMP-2 mRNA profile in a 4-nitroquinoline-1-oxide induced oral squamous cell carcinoma (OSCC) model in the rat. Our results showed that both IV and oral dosages of DOX-MTX NP caused significant decrease in mRNA levels of MMP-2 compared to the untreated group (p<0.003). Surprisingly, MMP-2 mRNA was not affected in DOX treated compared to cancer group (p>0.05). Our results indicated that IV dosage of MTX-DOX is more effective than free DOX (12 fold) in inhibiting the activity of MMP-2 in OSCCs (P<0.001). Furthermore, MMP-2 mRNA expression in the DOX-MTX treated group showed a significant relation with histopathological changes (P=0.011). Compared to the untreated cancer group, we observed no pathological changes and neither a significant alteration in MMP-2 amount in either of healthy controls that were treated with oral and IV dosages of DOX-MTX NPs whilst cancer group showed a high level of MMP-2 expression compared to healthy controls (p<0.001).Taking together our results indicate that DOX- MTX NPs is a safe chemotherapeutic nanodrug that its oral and IV forms possess potent anti-cancer properties on aggressive tumors like OSCC, possibly by affecting the expression of genes that drive tumor invasion and metastasis.
Collapse
Affiliation(s)
- Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | | | |
Collapse
|