1
|
Li B, Chen B, Wang X, Xiao M, Zhang K, Ye W, Zhao D, Wang X, Yu Y, Li J, Xu X, Zhang W, Zhang Y. Roles of increased NUCKS1 expression in endometriosis. BMC Womens Health 2023; 23:432. [PMID: 37582772 PMCID: PMC10426139 DOI: 10.1186/s12905-023-02563-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/22/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Endometriosis is still a difficult problem for women. The Nuclear Ubiquitous Casein and cyclin-dependent Kinase Substrate 1 (NUCKS1) gene is located on human chromosome 1q32.1. It encodes the NUCKS1 protein, a 27 kDa nuclear DNA binding protein that plays an important role in cell growth and proliferation. NUCKS1 plays an important role in the development of many diseases. However, its role in endometriosis is unclear. METHODS Ectopic endometrial tissues and normal tissue specimens were collected, and the expression of NUCKS1, NF-κB and PI3K was detected by RT-qPCR and immunohistochemistry. Inhibition of NUCKS1 in hEM15A cells, study the changes in cell viability, apoptosis, migration and protein expression by CCK8 assay, flow cytometry, wound-healing assay, western blot and ELISA techniques. The comparison of differences between the two groups was implemented using unpaired sample t test or Mann-whitney U test. One-way analysis of variance or Kruskal-wallis test was used for comparisons among the three groups. RESULTS (1) NUCKS1 is highly expressed in endometriosis tissues. (2) Inhibition of NUCKS1 decreases cell viability and capability of migration, and increases apoptosis in endometriosis cells. (3) Expressions of NF-κB and PI3K are increased in endometriosis tissues, and inhibition of NUCKS1 decreases the expression levels of PI3K and NF-κB in endometriosis cells. (4) Inhibition of NUCKS1 decreases the expression of VEGF. CONCLUSION (1) NUCKS1 is overexpressed in endometriosis, and inhibition of NUCKS1 inhibits cell viability and capability of migration, and increases apoptosis. (2) NUCKS1 promotes the progress of endometriosis through activating PI3K and NF-κB pathways, and VEFG is also involved in this process.
Collapse
Affiliation(s)
- Bo Li
- Hainan Women and Children's Medical Center, Hainan, China
| | - Bocen Chen
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Hainan, China
| | - Xiaoli Wang
- Hainan Women and Children's Medical Center, Hainan, China.
| | - Man Xiao
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Hainan, China
| | - Kan Zhang
- Hainan Women and Children's Medical Center, Hainan, China
| | - Wenjiao Ye
- Hainan Women and Children's Medical Center, Hainan, China
| | - Da Zhao
- Hainan Women and Children's Medical Center, Hainan, China
| | - Xiaohua Wang
- Hainan Women and Children's Medical Center, Hainan, China
| | - Yan Yu
- Hainan Women and Children's Medical Center, Hainan, China
| | - Jun Li
- Hainan Women and Children's Medical Center, Hainan, China
| | - Xun Xu
- Hainan Women and Children's Medical Center, Hainan, China
| | - Wenhui Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanhua Zhang
- Gansu Provincial Maternal and Child Health Hospital, Lanzhou, China
| |
Collapse
|
2
|
Zheng S, Ji R, He H, Li N, Han C, Han J, Li X, Zhang L, Wang Y, Zhao W. NUCKS1, a LINC00629-upregulated gene, facilitated osteosarcoma progression and metastasis by elevating asparagine synthesis. Cell Death Dis 2023; 14:489. [PMID: 37528150 PMCID: PMC10393983 DOI: 10.1038/s41419-023-06010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) has been reported to play an oncogenic role in several cancers. However, the biological functions and regulatory mechanism of NUCKS1 in osteosarcoma have not been fully understood. In this study, we reported that NUCKS1 was significantly increased in osteosarcoma. Depletion of NUCKS1 decreased osteosarcoma cell proliferation and metastasis in vivo and in vitro. Overexpression of NUCKS1 accelerated osteosarcoma cell aggressiveness. Mechanistically, NUCKS1 facilitated asparagine (Asn) synthesis by transcriptionally upregulating asparagine synthetase (ASNS) expression and elevating the levels of Asn in osteosarcoma cells, leading to increased cell growth and metastasis. Inhibition of ASNS or reduction of Asn decreased osteosarcoma cell aggressiveness and impaired the promoting effects of NUCKS1 on tumorigenesis and metastasis. Furthermore, we also found that by acting as a sponge for miR-4768-3p, LINC00629 promoted NUCKS1 expression. Collectively, our findings highlight the role of NUCKS1 in regulating asparagine metabolism and reveal that LINC00629 is an important regulator of NUCKS1 that contributes to NUCKS1 upregulation in osteosarcoma.
Collapse
Affiliation(s)
- Shuo Zheng
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Renchen Ji
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Hongtao He
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Jian Han
- Department of Orthopedics, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, Liaoning, 116033, P.R. China
| | - Xiaodong Li
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| | - Lu Zhang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| | - Yuan Wang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| | - Wenzhi Zhao
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| |
Collapse
|
3
|
Østvold AC, Grundt K, Wiese C. NUCKS1 is a highly modified, chromatin-associated protein involved in a diverse set of biological and pathophysiological processes. Biochem J 2022; 479:1205-1220. [PMID: 35695515 PMCID: PMC10016235 DOI: 10.1042/bcj20220075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
The Nuclear Casein and Cyclin-dependent Kinase Substrate 1 (NUCKS1) protein is highly conserved in vertebrates, predominantly localized to the nucleus and one of the most heavily modified proteins in the human proteome. NUCKS1 expression is high in stem cells and the brain, developmentally regulated in mice and associated with several diverse malignancies in humans, including cancer, metabolic syndrome and Parkinson's disease. NUCKS1 function has been linked to modulating chromatin architecture and transcription, DNA repair and cell cycle regulation. In this review, we summarize and discuss the published information on NUCKS1 and highlight the questions that remain to be addressed to better understand the complex biology of this multifaceted protein.
Collapse
Affiliation(s)
- Anne Carine Østvold
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Kirsten Grundt
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
4
|
miR-641 Inhibited Cell Proliferation and Induced Apoptosis by Targeting NUCKS1/PI3K/AKT Signaling Pathway in Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5203839. [PMID: 35069784 PMCID: PMC8769837 DOI: 10.1155/2022/5203839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/30/2023]
Abstract
Objective Studies revealed an important role of microRNAs (miRNAs) in multiple cancers, including breast cancer. In the present study, we evaluated the role and function of miR-641 in breast cancer. Methods The expression level of miR-641 in breast cancer cell lines (Hs-578T, MCF7, HCC1937, and MAD-MB-231) was determined by real-time PCR. Functional analyses, including CCK-8 assay, transwell assay, wound-healing assay, and apoptosis detection, were carried out to explore the roles of miRNA-641 in malignant behaviors of breast cancer. Luciferase report assay was used to investigate the regulatory association of miRNA-641 with its potential targets. Results The expression levels of miR-641 were downregulated, while the expression levels of nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) were increased in breast cancer cell lines. The in vitro results showed that miR-641 repressed proliferation and migration/invasion and promoted apoptosis of breast cancer cells. NUCKS1, a positive regulator of phosphatidylinositol-3-kinases (PI3K)/protein-serine-threonine kinase (AKT) pathway, was confirmed as a direct target of miR-641. The of treatment of the PI3K agonist, 740Y-P, could abrogate the antioncogenic potentials of miR-641 in breast cancer cells. Conclusion miR-641 functioned as a tumor suppressor through the PI3K/AKT signaling pathway via targeting NUCKS1 in breast cancer.
Collapse
|
5
|
Ma H, Xu J, Zhao R, Qi Y, Ji Y, Ma K. Upregulation of NUCKS1 in Lung Adenocarcinoma is Associated with a Poor Prognosis. Cancer Invest 2021; 39:435-444. [PMID: 33683970 DOI: 10.1080/07357907.2021.1899199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To evaluate the clinicopathologic features and survival analysis of NUCKS1 expression in human lung adenocarcinoma (LA), we used bioinformatic methods to obtain NUCKS1 gene status and correlated it with prognosis in LA. We compared NUCKS1 expression in 70 samples of LA with intrinsically normal lung alveoli (NLA) by immunohistochemistry, and analyzed their clinicopathologic features. NUCKS1 was overexpressed in LA components(LACs) relative to NLA, and was significantly correlated to patient with 5-year disease-free survival (DFS) and overall survival(OS). Elevated NUCKS1 expression in LACs was shown to be an independent prognostic indicator for OS and a biomarker in LA.
Collapse
Affiliation(s)
- Hongfei Ma
- Department of Thoracic Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China.,Department of Thoracic Surgery, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Jing Xu
- Department of Pathology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Ruixia Zhao
- Department of Pathology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Yongyun Qi
- Department of Pathology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Yong Ji
- Medical Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Shenzhen, China
| | - Kai Ma
- Department of Thoracic Surgery, The Affiliated Hospital, Qingdao University, Qingdao, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
6
|
Huang YK, Kang WM, Ma ZQ, Liu YQ, Zhou L, Yu JC. NUCKS1 promotes gastric cancer cell aggressiveness by upregulating IGF-1R and subsequently activating the PI3K/Akt/mTOR signaling pathway. Carcinogenesis 2018; 40:370-379. [PMID: 30371738 DOI: 10.1093/carcin/bgy142] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/17/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ya-Kai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wei-Ming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Zhi-Qiang Ma
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Yu-Qin Liu
- Cell Culture Centre, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Jian-Chun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, P.R. China
| |
Collapse
|
7
|
Linjawi S, AlGaithy Z, Sindi S, Hamdi N, Linjawi A, Alharbi M. Regulation of Lipocalin-2 oncogene and its impact on gene polymorphisms on breast cancer patients in Jeddah, Saudi Arabia. Saudi Med J 2018; 39:558-563. [PMID: 29915849 PMCID: PMC6058746 DOI: 10.15537/smj.2018.6.22950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To identify the impact of Lipocalin-2 (LCN2) gene polymorphisms on breast cancer patients in western Saudi Arabia. METHODS It is a case control study in which blood samples of participants from Medical Reference Clinics and King Abdulaziz University Hospital in Jeddah, Saudi Arabia have been taken between 2014 and 2016. This study recruited 128 participants (50% control, 50% patients) and used Tetra-Primer amplification-refractory mutation system-polymerase chain reaction method for the detection of missense SNP (rs11556770). The study measured LCN2 plasma protein expression by enzyme-linked immunosorbent assay technique. Results: The results have shown that 100% of the genotypes were normal allele (G/G). In contrast, the plasma level of LCN2 was considerably elevated among patients as compared to control (p=0.001), and higher in invasive ductal carcinoma patients (p=0.001). The LCN2 protein expression in plasma level was significantly elevated among patients, particularly who demonstrated invasive ductal carcinoma. Conclusion: There is no significant relationship between breast cancer patients and LCN2 gene polymorphisms (rs11556770).
Collapse
Affiliation(s)
- Sabah Linjawi
- Biology Department, Faculty of Science, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | | | |
Collapse
|
8
|
Nucks1 synergizes with Trp53 to promote radiation lymphomagenesis in mice. Oncotarget 2018; 7:61874-61889. [PMID: 27542204 PMCID: PMC5308697 DOI: 10.18632/oncotarget.11297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022] Open
Abstract
NUCKS1 is a 27 kD vertebrate-specific protein, with a role in the DNA damage response. Here, we show that after 4 Gy total-body X-irradiation, Trp53+/− Nucks1+/− mice more rapidly developed tumors, particularly thymic lymphoma (TL), than Trp53+/− mice. TLs in both cohorts showed loss of heterozygosity (LOH) of the Trp53+ allele in essentially all cases. In contrast, LOH of the Nucks1+ allele was rare. Nucks1 expression correlated well with Nucks1 gene dosage in normal thymi, but was increased in the majority of TLs from Trp53+/− Nucks1+/− mice, suggesting that elevated Nucks1 message may be associated with progression towards malignancy in vivo. Trp53+/− Nucks1+/− mice frequently succumbed to CD4- CD8- TLs harboring translocations involving Igh but not Tcra/d, indicating TLs in Trp53+/− Nucks1+/− mice mostly originated prior to the double positive stage and at earlier lineage than TLs in Trp53+/- mice. Monoclonal rearrangements at Tcrb were more prevalent in TLs from Trp53+/− Nucks1+/− mice, as was infiltration of primary TL cells to distant organs (liver, kidney and spleen). We propose that, in the context of Trp53 deficiency, wild type levels of Nucks1 are required to suppress radiation-induced TL, likely through the role of the NUCKS1 protein in the DNA damage response.
Collapse
|
9
|
Roles of NUCKS1 in Diseases: Susceptibility, Potential Biomarker, and Regulatory Mechanisms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7969068. [PMID: 29619377 PMCID: PMC5830027 DOI: 10.1155/2018/7969068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is a 27 kD chromosomal, highly conserved, and vertebrate-specific protein. NUCKS1 gene encodes a nuclear protein and the conserved regions of NUCKS1 contain several consensus phosphorylation sites for casein kinase II (CK2) and cyclin-dependent kinases (Cdk) and a basic DNA-binding domain. NUCKS1 is similar to the high mobility group (HMG) family which dominates chromatin remodeling and regulates gene transcription. Meanwhile, NUCKS1 is a RAD51 associated protein 1 (RAD51AP1) paralog that is significant for homologous recombination (HR) and genome stability and also a transcriptional regulator of the insulin signaling components. NUCKS1 plays an important role in DNA damage response and metabolism, participates in inflammatory immune response, and correlates with microRNA. Although there is still not enough functional information on NUCKS1, evidences suggest that NUCKS1 can be used as the biomarker of several cancers. This review summarizes the latest research on NUCKS1 about its susceptibility in diseases, expression levels, and regulatory mechanisms as well as the possible functions in reference to diseases.
Collapse
|
10
|
Grundt K, Thiede B, Østvold AC. Identification of kinases phosphorylating 13 sites in the nuclear, DNA-binding protein NUCKS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:359-369. [PMID: 28011258 DOI: 10.1016/j.bbapap.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
NUCKS is a vertebrate specific, nuclear and DNA-binding phospho protein. The protein is highly expressed in rapidly dividing cells, and is overexpressed in a number of cancer tissues. The phosphorylation of NUCKS is cell cycle and DNA-damage regulated, but little is known about the responsible kinases. By utilizing in vitro and in vivo phosphorylation assays using isolated NUCKS as well as synthetic NUCKS-derived peptides in combination with mass spectrometry, phosphopeptide mapping, phosphphoamino acid analyses, phosphospecific antibodies and the use of specific kinase inhibitors, we found that NUCKS is phosphorylated on 11 sites by CK2. At least 7 of the CK2 sites are phosphorylated in vivo. We also found that NUCKS is phosphorylated on two sites by ATM kinase and DNA-PK in vitro, and is phosphorylated in vivo by ATM kinase in γ-irradiated cells. All together, we identified three kinases phosphorylating 13 out of 39 in vivo phosphorylated sites in mammalian NUCKS. The identification of CK2 and PIKK kinases as kinases phosphorylating NUCKS in vivo provide further evidence for the involvement of NUCKS in cell cycle control and DNA repair.
Collapse
Affiliation(s)
- Kirsten Grundt
- University of Oslo, Institute of Basic Medical Sciences, Department of Biochemistry, P.O. Box 1112, Blindern N-0317, Oslo, Norway
| | - Bernd Thiede
- University of Oslo, Department of Biosciences, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Anne Carine Østvold
- University of Oslo, Institute of Basic Medical Sciences, Department of Biochemistry, P.O. Box 1112, Blindern N-0317, Oslo, Norway.
| |
Collapse
|
11
|
Parplys AC, Zhao W, Sharma N, Groesser T, Liang F, Maranon DG, Leung SG, Grundt K, Dray E, Idate R, Østvold AC, Schild D, Sung P, Wiese C. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Res 2015; 43:9817-34. [PMID: 26323318 PMCID: PMC4787752 DOI: 10.1093/nar/gkv859] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Torsten Groesser
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Eloïse Dray
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rupa Idate
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Liu TC. Influence of propofol, isoflurane and enflurance on levels of serum interleukin-8 and interleukin-10 in cancer patients. Asian Pac J Cancer Prev 2015; 15:6703-7. [PMID: 25169512 DOI: 10.7314/apjcp.2014.15.16.6703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To observe the influence of propofol, isoflurane and enflurance on interleukin-8 (IL-8) and IL-10 levels in cancer patients. METHODS Ninety cancer patients with selective operation from March 2011 to May 2014 were randomly divided into group A (34 cases), group B (28 cases) and group C (28 cases). Intramuscular injections of scopine hydrochloride and phenobarbital sodium were routinely conducted to 3 groups. After general anesthesia was induced, tracheal intubations were given. During the maintenance of anesthesia, 0.5~1.0 mg/ kg propofol was intravenously injected to group A discontinuously, while continuous suctions of isoflurane and enflurance were subsequently performed to group B and C correspondingly. Clinical outcomes, postoperative complications as well as serum IL-8 and IL-10 levels before operation (T0), at the time of skin incision (T1), 3 h after the beginning of the operation (T2) and 24 h (T3) and 72 h (T4) after the operation were observed among 3 groups. RESULTS Operations in all groups were successfully completed. The rates of surgery associated complications were 8.82% (3/34), 7.14% (2/28) and 7.14% (2/28) in group A, B and C, respectively, and there were no significant differences (P>0.05). Serum IL-8 and IL-10 levels increased gradually from the beginning of the operation and reached the peak at T3, and were evidently higher at each time point than at T0 (P<0.01). At T1, serum IL-8 and IL-10 levels had no significant differences among 3 groups (P<0.05), but the differences were significant at T2, T3 and T4 (P<0.05). Moreover, correlation analysis suggested that serum IL-8 level was in positive relation with IL-10 level (r=0.952, P<0.01). CONCLUSIONS Propofol, which is better in inhibiting serum IL-8 secretion and improving IL-10 secretion than isoflurane and enflurance, can be regarded as a preferable anesthetic agent in inhibiting traumatic inflammatory responses.
Collapse
Affiliation(s)
- Tie-Cheng Liu
- Department of Anesthesiology, The 2nd Hospital of Jilin University, Changchun, Jilin, China E-mail :
| |
Collapse
|
13
|
Abstract
Nuclear, casein kinase and cyclin-dependent kinase substrate (NUCKS), a protein similar to the HMG (high-mobility group) protein family, is one of the most modified proteins in the mammalian proteome. Although very little is known about the biological roles of NUCKS, emerging clinical evidence suggests that this protein can be a biomarker and therapeutic target in various human ailments, including several types of cancer. An inverse correlation between NUCKS protein levels and body mass index in humans has also been observed. Depletion of NUCKS in mice has been reported to lead to obesity and impaired glucose homoeostasis. Genome-wide genomic and proteomic approaches have revealed that NUCKS is a chromatin regulator that affects transcription. The time is now ripe for further understanding of the role of this novel biomarker of cancer and the metabolic syndrome, and how its sundry modifications can affect its function. Such studies could reveal how NUCKS could be a link between physiological cues and human ailments.
Collapse
|
14
|
Abstract
Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/ Children's Nutrition Research Center, Baylor College of Medicine , Houston, TX , USA
| | | | | |
Collapse
|
15
|
Association of periodontal disease with oral cancer: a meta-analysis. Tumour Biol 2014; 35:7073-7. [DOI: 10.1007/s13277-014-1951-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/06/2014] [Indexed: 12/11/2022] Open
|