1
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
2
|
Bhadauriya P, Varshney V, Goyal A. Molecular Docking-Based Identification of Potential Natural Neuroprotective Molecules for Parkinson's Disease. Chem Biodivers 2023; 20:e202300979. [PMID: 37608470 DOI: 10.1002/cbdv.202300979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common progressive neurodegenerative and the prevailing treatments are ineffective in the early stages of the disease. Therefore, other strategies must be devised to halt the steady decrease of dopaminergic neurons in the brain. In Parkinson's disease, a dysregulated ACE/Ang II/AT1R axis in the brain causes free radical damage, apoptosis, and neuronal destruction. Current PD treatments only alleviate symptoms and do not reverse the degradation mechanism of dopaminergic neurons. As a result, it is critical to discover alternate, dependable medicines for the treatment of Parkinson's disease. METHOD In the present study, homology modelling of MAS receptor, in silico docking and molecular dynamic studies (MDS) were employed to determine the efficacy of flavonoids as MASR activators. RESULT The flavonoids Pterosupin and Amentoflavone exhibited best binding and therefore, the stability of these complexes were evaluated with MDS studies. The Pterosupin-MASR complex demonstrated better stability, stronger interactions and minimal fluctuation than the Amentoflavone-MASR complex. CONCLUSION The data from the present study indicated that the flavonoid Pterosupin possesses better binding, favourable pharmacokinetic properties and stability. However, subsequent in vitro and in vivo assessments are necessary to validate its efficacy.
Collapse
Affiliation(s)
- Poonam Bhadauriya
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
- Institute of Professional Studies, College of Pharmacy, Gwalior, MP, India
| | - Vibhav Varshney
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| |
Collapse
|
3
|
Carbone K, Gervasi F, Kozhamzharova L, Altybaeva N, Sönmez Gürer E, Sharifi-Rad J, Hano C, Calina D. Casticin as potential anticancer agent: recent advancements in multi-mechanistic approaches. Front Mol Biosci 2023; 10:1157558. [PMID: 37304067 PMCID: PMC10250667 DOI: 10.3389/fmolb.2023.1157558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Plants, with their range of pharmacologically active molecules, represent the most promising source for the production of new anticancer drugs and for the formulation of adjuvants in chemotherapy treatments to reduce drug content and/or counteract the side effects of chemotherapy. Casticin is a major bioactive flavonoid isolated from several plants, mainly from the Vitex species. This compound is well known for its anti-inflammatory and antioxidant properties, which are mainly exploited in traditional medicine. Recently, the antineoplastic potential of casticin has attracted the attention of the scientific community for its ability to target multiple cancer pathways. The purpose of this review is, therefore, to present and critically analyze the antineoplastic potential of casticin, highlighting the molecular pathways underlying its antitumor effects. Bibliometric data were extracted from the Scopus database using the search strings "casticin" and "cancer" and analyzed using VOSviewer software to generate network maps to visualize the results. Overall, more than 50% of the articles were published since 2018 and even more recent studies have expanded the knowledge of casticin's antitumor activity by adding interesting new mechanisms of action as a topoisomerase IIα inhibitor, DNA methylase 1 inhibitor, and an upregulator of the onco-suppressive miR-338-3p. Casticin counteracts cancer progression through the induction of apoptosis, cell cycle arrest, and metastasis arrest, acting on several pathways that are generally dysregulated in different types of cancer. In addition, they highlight that casticin can be considered as a promising epigenetic drug candidate to target not only cancer cells but also cancer stem-like cells.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Fabio Gervasi
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Latipa Kozhamzharova
- Department of Scientific Works and International Relations, International Taraz Innovative Institute Named After Sherkhan Murtaza, Taraz, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-frabi, Kazakhstan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | | | - Christophe Hano
- Department of Biological Chemistry, Université ď Orléans, Orléans, France
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
4
|
Wang XL, Cao XZ, Wang DY, Qiu YB, Deng KY, Cao JG, Lin SQ, Xu Y, Ren KQ. Casticin Attenuates Stemness in Cervical Cancer Stem-Like Cells by Regulating Activity and Expression of DNMT1. Chin J Integr Med 2023; 29:224-232. [PMID: 35809177 DOI: 10.1007/s11655-022-3469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore whether casticin (CAS) suppresses stemness in cancer stem-like cells (CSLCs) obtained from human cervical cancer (CCSLCs) and the underlying mechanism. METHODS Spheres from HeLa and CaSki cells were used as CCSLCs. DNA methyltransferase 1 (DNMT1) activity and mRNA levels, self-renewal capability (Nanog and Sox2), and cancer stem cell markers (CD133 and CD44), were detected by a colorimetric DNMT activity/inhibition assay kit, quantitative real-time reverse transcription-polymerase chain reaction, sphere and colony formation assays, and immunoblot, respectively. Knockdown and overexpression of DNMT1 by transfection with shRNA and cDNA, respectively, were performed to explore the mechanism for action of CAS (0, 10, 30, and 100 nmol/L). RESULTS DNMT1 activity was increased in CCSLCs compared with HeLa and CaSki cells (P<0.05). In addition, HeLa-derived CCSLCs transfected with DNMT1 shRNA showed reduced sphere and colony formation abilities, and lower CD133, CD44, Nanog and Sox2 protein expressions (P<0.05). Conversely, overexpression of DNMT1 in HeLa cells exhibited the oppositive effects. Furthermore, CAS significantly reduced DNMT1 activity and transcription levels as well as stemness in HeLa-derived CCSLCs (P<0.05). Interestingly, DNMT1 knockdown enhanced the inhibitory effect of CAS on stemness. As expected, DNMT1 overexpression reversed the inhibitory effect of CAS on stemness in HeLa cells. CONCLUSION CAS effectively inhibits stemness in CCSLCs through suppression of DNMT1 activation, suggesting that CAS acts as a promising preventive and therapeutic candidate in cervical cancer.
Collapse
Affiliation(s)
- Xue-Li Wang
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province, 418000, China
| | - Xiao-Zheng Cao
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dao-Yuan Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
- The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
| | - Ye-Bei Qiu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
- The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
| | - Kai-Yu Deng
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province, 418000, China
| | - Jian-Guo Cao
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
- The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China
| | - Shao-Qiang Lin
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China
| | - Yong Xu
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kai-Qun Ren
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China.
| |
Collapse
|
5
|
Waqas M, Ahmed D, Qamar MT. Surfactant-mediated extraction of capsaicin from Capsicum annuum L. fruit in various solvents. Heliyon 2022; 8:e10273. [PMID: 36033307 PMCID: PMC9403339 DOI: 10.1016/j.heliyon.2022.e10273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/02/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Capsaicin is a valuable compound found in Capsicum annuum. The present study aimed to explore the efficiency of different solvents and surfactants on its extraction by maceration. Ethyl acetate was found to be the best solvent followed by dichloromethane and acetone, respectively. Overall order of efficiency of the solvents used was this: ethyl acetate > dichloromethane > acetone > glycerol > acetonitrile > methanol > acetic acid > toluene. Extractability of ethyl acetate for capsaicin remained unaffected by the surfactants. Tween-80 had very positive effect on the extraction efficiency of dichloromethane (DCM) and acetone. Kinetics of the extraction with the most efficient solvent ethyl acetate showed extraction of capsaicin to follow a pseudo-second order kinetic model. In conclusion, for extraction of capsaicin from green chili, ethyl acetate was the most powerful amongst the solvents used in the present work and tween-80 had a notable positive effect on the efficiency of DCM and acetone.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
6
|
Allosteric Modulation of the Main Protease (MPro) of SARS-CoV-2 by Casticin—Insights from Molecular Dynamics Simulations. CHEMISTRY AFRICA 2022. [PMCID: PMC9261893 DOI: 10.1007/s42250-022-00411-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inhibition of the main protease (Mpro) of SARS-CoV-2 has been suggested to be vital in shutting down viral replication in a host. Most efforts aimed at inhibiting MPro activity have been channeled into competitive inhibition at the active site, but this strategy will require a high inhibitor concentration and impressive inhibitor-MPro binding affinity. Allosteric inhibition can potentially serve as an effective strategy for alleviating these limitations. In this study, the ability of antiviral natural products to inhibit MPro in an allosteric fashion was explored with in silico techniques. Molecular docking revealed a strong interaction between casticin, an antiviral flavonoid, and Mpro at a site distant from the active site. This site, characterized as a distal site, has been shown to have an interdependent dynamic effect with the active site region. Mpro only, Mpro-peptide (binary) and Mpro-peptide-casticin (ternary) complexes were subjected to molecular dynamics simulations for 50 ns to investigate the modulatory activity of casticin binding on Mpro. Molecular dynamic simulations revealed that binding of casticin at the distal site interferes with the proper orientation of the peptide substrate in the oxyanion hole of the active site, and this could lead to a halt or decrease in catalytic activity. This study therefore highlights casticin as a potential allosteric modulator of the SARS-CoV-2 main protease, which could be optimized and developed into a potential lead compound for anti-SARS-CoV-2 chemotherapy.
Collapse
|
7
|
Lee JH, Lee S, Nguyen QN, Phung HM, Shin MS, Kim JY, Choi H, Shim SH, Kang KS. Identification of the Active Ingredient and Beneficial Effects of Vitex rotundifolia Fruits on Menopausal Symptoms in Ovariectomized Rats. Biomolecules 2021; 11:1033. [PMID: 34356661 PMCID: PMC8301773 DOI: 10.3390/biom11071033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen replacement therapy is a treatment to relieve the symptoms of menopause. Many studies suggest that natural bioactive ingredients from plants resemble estrogen in structure and biological functions and can relieve symptoms of menopause. The fruit of V. rotundifolia, called "Man HyungJa" in Korean, is a traditional medicine used to treat headache, migraine, eye pain, neuralgia, and premenstrual syndrome in Korea and China. The aim of the present study was to confirm that V. rotundifolia fruit extract (VFE) exerts biological functions similar to those of estrogen in menopausal syndrome. We investigated its in vitro effects on MCF-7 cells and in vivo estrogen-like effects on weight gain and uterine contraction in ovariectomized rats. Using the polar extract, the active constituents of VFE (artemetin, vitexicarpin, hesperidin, luteolin, vitexin, and vanillic acid) with estrogen-like activity were identified in MCF-7 cells. In animal experiments, the efficacy of VFE in ameliorating body weight gain was similar to that of estrogen, as evidenced from improvements in uterine atrophy. Vitexin and vitexicarpin are suggested as the active constituents of V. rotundifolia fruits.
Collapse
Affiliation(s)
- Ji Hwan Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.H.L.); (Q.N.N.); (H.M.P.); (M.-S.S.)
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea;
| | - Quynh Nhu Nguyen
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.H.L.); (Q.N.N.); (H.M.P.); (M.-S.S.)
| | - Hung Manh Phung
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.H.L.); (Q.N.N.); (H.M.P.); (M.-S.S.)
| | - Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.H.L.); (Q.N.N.); (H.M.P.); (M.-S.S.)
| | - Jae-Yong Kim
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sang Hee Shim
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.H.L.); (Q.N.N.); (H.M.P.); (M.-S.S.)
| |
Collapse
|
8
|
Shang HS, Chen KW, Chou JS, Peng SF, Chen YL, Chen PY, Huang HC, Lu HF, Chang HY, Shih YL, Huang WW. Casticin Inhibits In Vivo Growth of Xenograft Tumors of Human Oral Cancer SCC-4 Cells. In Vivo 2021; 34:2461-2467. [PMID: 32871773 DOI: 10.21873/invivo.12061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND/AIM Casticin, one of the active components of Vitex rotundifolia L., presents biological and pharmacological activities including inhibition of migration, invasion and induction of apoptosis in numerous human cancer cells in vitro. This study aimed to assess the effects of casticin on tumor growth in a human oral cancer SCC-4 cell xenograft mouse model in vivo. MATERIALS AND METHODS Twenty-four nude mice were injected subcutaneously with SCC-4 cells and when palpable tumors reached a volume of 100-120 mm3 the mice were randomly divided into three groups. The control (0.1% dimethyl sulfoxide), casticin (0.2 mg/kg), and casticin (0.4 mg/kg) groups were intraperitoneally injected every two days for 18 days. Tumor volume and body weights were measured every two days. RESULTS Casticin significantly decreased tumor volume and weight in SCC-4 cell xenograft mice but there was no statistically significant difference between the body weights of control mice and mice treated with 0.2 mg/kg or 0.4 mg/kg casticin. Therefore, the growth of SCC-4 cells in athymic nude mice can be inhibited by casticin in vivo. CONCLUSION These findings support further investigations in the potential use of casticin as an oral anti-cancer drug in the future.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Kuo-Wei Chen
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Jiann-Shang Chou
- Department of Anatomic Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan, R.O.C
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Hsieh-Chou Huang
- Anesthesiology and Pain Medicine, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C.,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C.,Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C
| | - Hsin-Yu Chang
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Luen Shih
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C. .,Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
9
|
Antifibrotic and anthelminthic effect of casticin on Schistosoma mansoni-infected BALB/c mice. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:314-322. [PMID: 34167886 DOI: 10.1016/j.jmii.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND/PURPOSE Schistosomiasis is an important tropical disease caused by Schistosoma. Although the pathogenesis of liver fibrosis has been intensively studied, the choice of effective treatment is still inadequate. In this study, we aimed to investigate the potential of using Casticin to treat Schistosoma mansoni-induced liver fibrosis. METHODS BALB/c mice were divided into three groups - control, infection, and treatment group. The infection and treatment group were percutaneously infected with 100-120 cercariae. Mice from the treatment group were treated with 20 mg/kg/day Casticin for 14 consecutive days to investigate the potential protective effects of Casticin. Mice were sacrificed and were used for histological, RNA, protein, and parasite burden analysis. RESULTS Our results showed that hepatic fibrosis was significantly attenuated, as indicated by histology and reduction of fibrotic markers such as collagen AI, transforming growth factor β (TGF-β), and α-smooth muscle actin (α-SMA). Furthermore, Casticin treatment significantly reduced worm burden. Anthelmintic effect of Casticin was also observed by scanning electron microscopy. CONCLUSION Collectively, our study suggested that Casticin may be a beneficial candidate in treating S. mansoni infection.
Collapse
|
10
|
Cheng ZY, Chueh FS, Peng SF, Lin CH, Kuo CL, Huang WW, Chen PY, Way TD, Chung JG. Combinational treatment of 5-fluorouracil and casticin induces apoptosis in mouse leukemia WEHI-3 cells in vitro. ENVIRONMENTAL TOXICOLOGY 2020; 35:911-921. [PMID: 32270916 DOI: 10.1002/tox.22927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Leukemia is one of the major diseases causing cancer-related deaths in the young population, and its cure rate is unsatisfying with side effects on patients. Fluorouracil (5-FU) is currently used as an anticancer drug for leukemia patients. Casticin, a natural polymethoxyflavone, exerts anticancer activity against many human cancer cell lines in vitro, but no other reports show 5-FU combined with casticin increased the mouse leukemia cell apoptosis in vitro. Herein, the antileukemia activity of 5-FU combined with casticin in WEHI-3 mouse leukemia cells was investigated in vitro. Treatment of two-drug combination had a higher decrease in cell viability and a higher increase in apoptotic cell death, the level of DNA condensation, and the length of comet tail than that of 5-FU or casticin treatment alone in WEHI-3 cells. In addition, the two-drug combination has a greater production rate of reactive oxygen species but a lower level of Ca2+ release and mitochondrial membrane potential (ΔΨm ) than that of 5-FU alone. Combined drugs also induced higher caspase-3 and caspase-8 activities than that of casticin alone and higher caspase-9 activity than that of 5-FU or casticin alone at 48 hours treatment. Furthermore, 5-FU combined with casticin has a higher expression of Cu/Zn superoxide dismutase (SOD [Cu/Zn]) and lower catalase than that of 5-FU or casticin treatment alone. The combined treatment has higher levels of Bax, Endo G, and cytochrome C of proapoptotic proteins than that of casticin alone and induced lower levels of B-cell lymphoma 2 (BCL-2) and BCL-X of antiapoptotic proteins than that of 5-FU or casticin only. Furthermore, the combined treatment had a higher expression of cleaved poly (ADP-ribose) polymerase (PARP) than that of casticin only. Based on these findings, we may suggest that 5-FU combined with casticin treatment increased apoptotic cell death in WEHI-3 mouse leukemia cells that may undergo mitochondria and caspases signaling pathways in vitro.
Collapse
Affiliation(s)
- Zheng-Yu Cheng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hsin Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Bose S, Banerjee S, Mondal A, Chakraborty U, Pumarol J, Croley CR, Bishayee A. Targeting the JAK/STAT Signaling Pathway Using Phytocompounds for Cancer Prevention and Therapy. Cells 2020; 9:E1451. [PMID: 32545187 PMCID: PMC7348822 DOI: 10.3390/cells9061451] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a prevalent cause of mortality around the world. Aberrated activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway promotes tumorigenesis. Natural agents, including phytochemicals, exhibit potent anticancer activities via various mechanisms. However, the therapeutic potency of phytoconstituents as inhibitors of JAK/STAT signaling against cancer has only come into focus in recent days. The current review highlights phytochemicals that can suppress the JAK/STAT pathway in order to impede cancer cell growth. Various databases, such as PubMed, ScienceDirect, Web of Science, SpringerLink, Scopus, and Google Scholar, were searched using relevant keywords. Once the authors were in agreement regarding the suitability of a study, a full-length form of the relevant article was obtained, and the information was gathered and cited. All the complete articles that were incorporated after the literature collection rejection criteria were applied were perused in-depth and material was extracted based on the importance, relevance, and advancement of the apprehending of the JAK/STAT pathway and their relation to phytochemicals. Based on the critical and comprehensive analysis of literature presented in this review, phytochemicals from diverse plant origins exert therapeutic and cancer preventive effects, at least in part, through regulation of the JAK/STAT pathway. Nevertheless, more preclinical and clinical research is necessary to completely comprehend the capability of modulating JAK/STAT signaling to achieve efficient cancer control and treatment.
Collapse
Affiliation(s)
- Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Chuchura 712 102, India;
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, India; (S.B.); (U.C.)
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, India
| | - Utsab Chakraborty
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, India; (S.B.); (U.C.)
| | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| | - Courtney R. Croley
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| |
Collapse
|
12
|
An Overview of the Potential Antineoplastic Effects of Casticin. Molecules 2020; 25:molecules25061287. [PMID: 32178324 PMCID: PMC7144019 DOI: 10.3390/molecules25061287] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer persists as one of the leading causes of deaths worldwide, contributing to approximately 9.6 million deaths per annum in recent years. Despite the numerous advancements in cancer treatment, there is still abundant scope to mitigate recurrence, adverse side effects and toxicities caused by existing pharmaceutical drugs. To achieve this, many phytochemicals from plants and natural products have been tested against cancer cell lines in vivo and in vitro. Likewise, casticin, a flavonoid extracted from the Vitex species, has been isolated from the leaves and seeds of V. trifolia and V. agnus-castus. Casticin possesses a wide range of therapeutic properties, including analgesic, anti-inflammatory, antiangiogenic, antiasthmatic and antineoplastic activities. Several studies have been conducted on the anticancer effects of casticin against cancers, including breast, bladder, oral, lung, leukemia and hepatocellular carcinomas. The compound inhibits invasion, migration and proliferation and induces apoptosis (casticin-induced, ROS-mediated and mitochondrial-dependent) and cell cycle arrest (G0/G1, G2/M, etc.) through different signaling pathways, namely the PI3K/Akt, NF-κB, STAT3 and FOXO3a/FoxM1 pathways. This review summarizes the chemo-preventive ability of casticin as an antineoplastic agent against several malignancies.
Collapse
|
13
|
Cheng ZY, Hsiao YT, Huang YP, Peng SF, Huang WW, Liu KC, Hsia TC, Way TD, Chung JG. Casticin Induces DNA Damage and Affects DNA Repair Associated Protein Expression in Human Lung Cancer A549 Cells (Running Title: Casticin Induces DNA Damage in Lung Cancer Cells). Molecules 2020; 25:E341. [PMID: 31952105 PMCID: PMC7024307 DOI: 10.3390/molecules25020341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Casticin was obtained from natural plants, and it has been shown to exert biological functions; however, no report concerns the induction of DNA damage and repair in human lung cancer cells. The objective of this study was to investigate the effects and molecular mechanism of casticin on DNA damage and repair in human lung cancer A549 cells. Cell viability was determined by flow cytometric assay. The DNA damage was evaluated by 4',6-diamidino-2-phenylindole (DAPI) staining and electrophoresis which included comet assay and DNA gel electrophoresis. The protein levels associated with DNA damage and repair were analyzed by western blotting. The expression and translocation of p-H2A.X were observed by confocal laser microscopy. Casticin reduced total viable cell number and induced DNA condensation, fragmentation, and damage in A549 cells. Furthermore, casticin increased p-ATM at 6 h and increased p-ATR and BRCA1 at 6-24 h treatment but decreased p-ATM at 24-48 h, as well as decreased p-ATR and BRCA1 at 48 h. Furthermore, casticin decreased p-p53 at 6-24 h but increased at 48 h. Casticin increased p-H2A.X and MDC1 at 6-48 h treatment. In addition, casticin increased PARP (cleavage) at 6, 24, and 48 h treatment, DNA-PKcs and MGMT at 48 h in A549 cells. Casticin induced the expressions and nuclear translocation of p-H2AX in A549 cells by confocal laser microscopy. Casticin reduced cell number through DNA damage and condensation in human lung cancer A549 cells.
Collapse
Affiliation(s)
- Zheng-Yu Cheng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan;
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| |
Collapse
|
14
|
Nageen B, Sarfraz I, Rasul A, Hussain G, Rukhsar F, Irshad S, Riaz A, Selamoglu Z, Ali M. Eupatilin: a natural pharmacologically active flavone compound with its wide range applications. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1-16. [PMID: 29973097 DOI: 10.1080/10286020.2018.1492565] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is a pharmacologically active flavone which has been isolated from a variety of medicinal plants. Eupatilin is known to possess various pharmacological properties such as anti-cancer, anti-oxidant, and anti-inflammatory. It is speculated that eupatilin could be subjected to structural optimization for the synthesis of derivative analogs to reinforce its efficacy, to minimize toxicity, and to optimize absorption profiles, which will ultimately lead towards potent drug candidates. Although, reported data acclaim multiple pharmacological activities of eupatilin but further experimentations on its molecular mechanism of action are yet mandatory to elucidate full spectrum of its pharmacological activities.
Collapse
Affiliation(s)
- Bushra Nageen
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Faculty of Life Sciences, Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fariha Rukhsar
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Somia Irshad
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad (Sub-campus Layyah), Layyah 31200, Pakistan
| | - Ammara Riaz
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zeliha Selamoglu
- Faculty of Medicine, Department of Medical Biology, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Muhammad Ali
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
15
|
Anti-Atherosclerotic Effects of Fruits of Vitex rotundifolia and Their Isolated Compounds via Inhibition of Human LDL and HDL Oxidation. Biomolecules 2019; 9:biom9110727. [PMID: 31726713 PMCID: PMC6920959 DOI: 10.3390/biom9110727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) oxidation are well known to increase the risk for atherosclerosis. In our ongoing research on natural products with inhibitory activities against oxidation of lipoproteins, fruits of Vitex rotundifolia were found to be highly active. There is no report on the effects on LDL and HDL oxidation. Herein, we investigated the inhibitory effects of V. rotundifolia fruit extract and its six compounds, which are: (1) artemetin, (2) casticin, (3) hesperidin, (4) luteolin, (5) vitexin, and (6) vanillic acid, against LDL and HDL oxidation. The LDL and HDL oxidations were determined by measuring production of conjugated dienes and thiobarbituric acid reactive substances, amount of hyperchromicity and carbonyl content, change in electrical charge, and apoA-I aggregation. In addition, the contents of the compounds in the extracts were analyzed using HPLC-DAD. Consequently, extracts of Vitex rotundifolia fruits and compounds 2 and 4 suppressed oxidation of LDL and HDL, showing inhibition of lipid peroxidation, decrease of negative charges in lipoproteins, reduction of hyperchromicity, decrease in carbonyl contents, and prevention of apoA-I aggregation. In particular, compounds 2 and 4 exhibited more potent inhibitory effect on oxidation of LDL and HDL than the extracts, suggesting their protective role against atherosclerosis via inhibition of LDL and HDL oxidation. The contents of artemetin, casticin, and vanillic acid in the extracts were 1.838 ± 0.007, 8.629 ± 0.078, and 1.717 ± 0.006 mg/g, respectively.
Collapse
|
16
|
Riaz A, Saleem B, Hussain G, Sarfraz I, Nageen B, Zara R, Manzoor M, Rasul A. Eriocalyxin B Biological Activity: A Review on Its Mechanism of Action. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19868598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural products, a rich source of bioactive chemical compounds, have served humans as a safer drug of choice since times. Eriocalyxin B, an ent-Kaurene diterpenoid, has been extracted from a traditional Chinese herb Isodon eriocalyx. Experimental data support the anticancer and anti-inflammatory activities of EriB. This natural entity exhibits anticancer effects against breast, pancreatic, leukemia, ovarian, lung, bladder, and colorectal cancer. EriB has capability to inhibit the proliferation of cancer cells by prompting apoptosis, arresting cell cycle, and modulating cell signaling pathways. The regulation of signaling pathways in cancerous cells by EriB involves the modulation of various apoptosis-related factors (Bak, Bax, caspases, XIAP, survivin, and Beclin-1), transcriptional factors (nuclear factor kappa B [NF-κB], STAT3, Janus-activated kinase 2, Notch, AP-1, and lκBα), enzymes (cyclooxygenase 2, matrix metalloproteinase 2 [MMP-2], MMP-9, and poly (ADP-ribose) polymerase), cytokines, and protein kinases (mitogen-activated protein kinase and ERK1/2). This review proposes that EriB supplies a novel opportunity for the cure of cancer but supplementary investigations along with preclinical trials are obligatory to effectively figure out its biological and pharmacological applications.
Collapse
Affiliation(s)
- Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Bisma Saleem
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Rabia Zara
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Maleeha Manzoor
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
17
|
Xie Y, Zhong L, Duan D, Li T. Casticin inhibits invasion and proliferation via downregulation of β-catenin and reversion of EMT in oral squamous cell carcinoma. J Oral Pathol Med 2019; 48:897-905. [PMID: 31318467 DOI: 10.1111/jop.12930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Casticin expresses multiple anti-cancer activities, whereas the effect of casticin on oral squamous cell carcinoma (OSCC) is still unclear. β-catenin signaling plays a crucial role in the epithelial-mesenchymal transition which is closely related to tumorigenesis. Herein, we aimed to study the functions of casticin on invasion and migration of OSCC, and clarify whether the effect of casticin on OSCC has a relationship with β-catenin signaling. METHODS Human OSCC cell lines UM1 and HSC-3 were treated with different concentrations of casticin. The cell viability was evaluated by MTT and soft agar colony formation. Transwell assay and wound-healing assay were performed to measure the ability of cell invasion and migration. The protein expression was assessed by Western blotting. RESULTS Casticin displayed inhibitory activities of cell viability, invasion, and migration on OSCC cell lines. Meanwhile, casticin could reverse EMT process and inhibit the expression of β-catenin in OSCC. Knock-down or overexpression of β-catenin could alter the effect of casticin on OSCC. CONCLUSIONS Casticin impaired invasion and migration of OSCC by inhibition of β-catenin and reversal of EMT and could be a potential anti-cancer bioactive agent.
Collapse
Affiliation(s)
- Yaxin Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingyu Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Wei W, Rasul A, Sadiqa A, Sarfraz I, Hussain G, Nageen B, Liu X, Watanabe N, Selamoglu Z, Ali M, Li X, Li J. Curcumol: From Plant Roots to Cancer Roots. Int J Biol Sci 2019; 15:1600-1609. [PMID: 31360103 PMCID: PMC6643219 DOI: 10.7150/ijbs.34716] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023] Open
Abstract
Natural products, an infinite treasure of bioactive scaffolds, have provided an excellent reservoir for the discovery of drugs since millennium. These naturally occurring, biologically active and therapeutically effective chemical entities have emerged as novel paradigm for the prevention of various diseases. This review aims to give an update on the sources as well as pharmacological profile of curcumol, a pharmacologically active sesquiterpenoid, which is an imperative bioactive constituent of several plants mainly from genus Curcuma. Curcumol has potential to fight against cancer, oxidative stress, neurodegeneration, microbial infections, and inflammation. Curcumol has been documented as potent inducer of apoptosis in numerous cancer cells via targeting key signaling pathways as MAPK/ERK, PI3K/Akt and NF-κB which are generally deregulated in several cancers. The reported data reveals multitarget activity of curcumol in cancer treatment suggesting its importance as anticancer drug in future. It is speculated that curcumol may provide an excellent opportunity for the cure of cancer but further investigations on mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural cancer killer in anticancer therapies.
Collapse
Affiliation(s)
- Wei Wei
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Azhar Rasul
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.,Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Ayesha Sadiqa
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Xintong Liu
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240 Turkey
| | - Muhammad Ali
- Quaid-e-Azam University, Islamabad, 45320, Pakistan
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|
19
|
Lin CC, Chen KB, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Peng SF, Chung JG. Casticin inhibits human prostate cancer DU 145 cell migration and invasion via Ras/Akt/NF-κB signaling pathways. J Food Biochem 2019; 43:e12902. [PMID: 31353708 DOI: 10.1111/jfbc.12902] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 05/04/2019] [Indexed: 12/29/2022]
Abstract
Casticin, a polymethoxyflavone derived from natural plants, has biological activities including induction of cell apoptosis. In this study, we showed the beneficial effects of casticin on the inhibition of prostate cancer cell metastasis. Casticin reduced total viable cell number, thus, we selected low doses of casticin for following experiments. Casticin decreased cell mobility, suppressed cell migration and invasion, and reduced cell gelatinolytic activities of MMP-2/-9. Furthermore, casticin inhibited the protein levels of AKT, GSK3 αβ, Snail, and MMPs (MMP-2, -9, -13, and -7) at 24 and 48 hr treatment. Casticin diminished the expressions of NF-κB p65, GRB2, SOS-1, MEK, p-ERK1/2, and p-JNK1/2 at 48 hr treatment only. However, casticin reduced the level of E-cadherin at 24 hr treatment but elevated at 48 hr. The novel findings suggest that casticin may represent a new and promising therapeutic agent for the metastatic prostate cancer. PRACTICAL APPLICATIONS: Casticin derived from natural plants had been used for Chinese medicine in Chinese population for thousands of years. In the present study, casticin attenuated metastatic effects, including decreasing viable cell number, inhibiting the migration, invasion, and adhesion, and reducing matrix metalloproteinases activity on human prostate DU 145 cancer cells. In addition, the results also provided possible pathways involved in casticin anti-metastasis mechanism. We conclude that casticin may be an aptitude anticancer agent or adjuvant for the metastatic prostate cancer in the future.
Collapse
Affiliation(s)
- Chia-Chang Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Casticin-Induced Inhibition of Cell Growth and Survival Are Mediated through the Dual Modulation of Akt/mTOR Signaling Cascade. Cancers (Basel) 2019; 11:cancers11020254. [PMID: 30813295 PMCID: PMC6406334 DOI: 10.3390/cancers11020254] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
The Akt/mTOR signaling cascade is a critical pathway involved in various physiological and pathological conditions, including regulation of cell proliferation, survival, invasion, and angiogenesis. In the present study, we investigated the anti-neoplastic effects of casticin (CTC), identified from the plant Vitex rotundifolia L., alone and/or in combination with BEZ-235, a dual Akt/mTOR inhibitor in human tumor cells. We found that CTC exerted a significant dose-dependent cytotoxicity and reduced cell proliferation in a variety of human tumor cells. Also, CTC effectively blocked the phosphorylation levels of Akt (Ser473) and mTOR (Ser2448) proteins as well as induced substantial apoptosis. Additionally treatment with CTC and BEZ-235 in conjunction resulted in a greater apoptotic effect than caused by either agent alone thus implicating the anti-neoplastic effects of this novel combination. Overall, the findings suggest that CTC can interfere with Akt/mTOR signaling cascade involved in tumorigenesis and can be used together with pharmacological agents targeting Akt/mTOR pathway.
Collapse
|
21
|
Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in Cancer and Apoptosis. Cancers (Basel) 2018; 11:cancers11010028. [PMID: 30597838 PMCID: PMC6357032 DOI: 10.3390/cancers11010028] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer is the second leading cause of death globally. Although, there are many different approaches to cancer treatment, they are often painful due to adverse side effects and are sometimes ineffective due to increasing resistance to classical anti-cancer drugs or radiation therapy. Targeting delayed/inhibited apoptosis is a major approach in cancer treatment and a highly active area of research. Plant derived natural compounds are of major interest due to their high bioavailability, safety, minimal side effects and, most importantly, cost effectiveness. Flavonoids have gained importance as anti-cancer agents and have shown great potential as cytotoxic anti-cancer agents promoting apoptosis in cancer cells. In this review, a summary of flavonoids and their effectiveness in cancer treatment targeting apoptosis has been discussed.
Collapse
Affiliation(s)
- Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Sharon Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| |
Collapse
|
22
|
Casticin inhibits breast cancer cell migration and invasion by down-regulation of PI3K/Akt signaling pathway. Biosci Rep 2018; 38:BSR20180738. [PMID: 30401729 PMCID: PMC6265615 DOI: 10.1042/bsr20180738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Casticin is one of the major active components isolated from Fructus viticis Increasing studies have revealed that casticin has potential anticancer activity in various cancer cells, but its effects on breast cancer cell migration and invasion are still not well known. Therefore, the ability of cell migration and invasion in the breast cancer MDA-MB-231 and 4T1 cells treated by casticin was investigated. The results indicated that casticin significantly inhibited cell migration and invasion in the cells exposed to 0.25 and 0.50 µM of casticin for 24 h. Casticin treatment reduced matrix metalloproteinase (MMP) 9 (MMP-9) activity and down-regulated MMP-9 mRNA and protein expression, but not MMP-2. Casticin treatment suppressed the nuclear translocation of transcription factors c-Jun and c-Fos, but not nuclear factor-κB (NF-κB), and decreased the phosphorylated level of Akt (p-Akt). Additionally, the transfection of Akt overexpression vector to MDA-MB-231 and 4T1 cells could up-regulate MMP-9 expression concomitantly with a marked increase in cell invasion, but casticin treatment reduced Akt, p-Akt, and MMP-9 protein levels and inhibited the ability of cell invasion in breast cancer cells. Additionally, casticin attenuated lung metastasis of mouse 4T1 breast cancer cells in the mice and down-regulated MMP-9 expression in the lung tissues of mice treated by casticin. These findings suggest that MMP-9 expression suppression by casticin may act through inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which in turn results in the inhibitory effects of casticin on cell migration and invasion in breast cancer cells. Therefore, casticin may have potential for use in the treatment of breast cancer invasion and metastasis.
Collapse
|
23
|
Qiao Z, Cheng Y, Liu S, Ma Z, Li S, Zhang W. Casticin inhibits esophageal cancer cell proliferation and promotes apoptosis by regulating mitochondrial apoptotic and JNK signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 392:177-187. [PMID: 30448926 DOI: 10.1007/s00210-018-1574-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/19/2018] [Indexed: 11/29/2022]
Abstract
Casticin, a flavonoid isolated from Vitex species, has been found to have anti-tumor property in multiple human cancers. The present study aimed to investigate the effect of casticin on the proliferation and apoptosis of esophageal cancer (EC) cells, and further illustrate the underlying mechanisms. In in vitro studies, human EC cell lines TE-1 and ECA-109 were treated with various concentrations of casticin (low-, middle-, and high-dose groups). The results showed that casticin dose-dependently inhibited the proliferation and clonogenicity of EC cells and induced cell cycle arrest in sub-G1 and G2 phases. Furthermore, casticin markedly enhanced EC cell apoptosis as detected by flow cytometry and Hoechst 33342 staining. The level of anti-apoptotic Bcl-2 protein was decreased, while the levels of pro-apoptotic Bax, cleaved-caspase-3, cleaved-caspase-9, and cleaved-PARP were conversely increased in casticin-treated TE-1 and ECA-109 cells. Moreover, casticin decreased the mitochondrial membrane potential and increased the release of mitochondrial cytochrome C into cytoplasm. In addition, the JNK signaling pathway was involved in casticin-medicated anti-proliferation and pro-apoptosis. Cells pretreated with SP600125, a JNK pathway inhibitor, partially abolished the effect of casticin. Finally, the anti-tumor property of casticin was confirmed in in vivo xenograft models. Overall, we provided both in vitro and in vivo evidences that casticin inhibited the proliferation and induced apoptosis of EC cells, and the anti-tumor action of casticin was mediated, in part, by the mitochondrial-dependent apoptosis and the activation of JNK signaling pathway.
Collapse
Affiliation(s)
- Zhe Qiao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China.
| | - Yao Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Zhenchuan Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Wei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| |
Collapse
|
24
|
Liou CJ, Cheng CY, Yeh KW, Wu YH, Huang WC. Protective Effects of Casticin From Vitex trifolia Alleviate Eosinophilic Airway Inflammation and Oxidative Stress in a Murine Asthma Model. Front Pharmacol 2018; 9:635. [PMID: 29962952 PMCID: PMC6010522 DOI: 10.3389/fphar.2018.00635] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023] Open
Abstract
Casticin has been isolated from Vitex trifolia and found to have anti-inflammatory and anti-tumor properties. We also previously discovered that casticin can reduce pro-inflammatory cytokines and ICAM-1 expression in inflammatory pulmonary epithelial cells. In the present study, we evaluated whether casticin reduced airway hyper-responsiveness (AHR), airway inflammation, and oxidative stress in the lungs of a murine asthma model and alleviated inflammatory and oxidative responses in tracheal epithelial cells. Female BALB/c mice were randomly divided into five groups: normal controls, ovalbumin (OVA)-induced asthma, and OVA-induced asthma treated with intraperitoneal injection of casticin (5 or 10 mg/kg) or prednisolone (5 mg/kg). Casticin reduced AHR, goblet cell hyperplasia, and oxidative responses in the lungs of mice with asthma. Mechanistic studies revealed that casticin attenuated the levels of Th2 cytokine in bronchoalveolar lavage fluids and regulated the expression of Th2 cytokine and chemokine genes in the lung. Casticin also significantly regulated oxidative stress and reduced inflammation in the lungs of mice with asthma. Consequently, inflammatory tracheal epithelial BEAS-2B cells treated with casticin had significantly suppressed levels of pro-inflammatory cytokines and eotaxin, and reduced THP-1 monocyte cell adherence to BEAS-2B cells via suppressed ICAM-1 expression. Thus, casticin is a powerful immunomodulator, ameliorating pathological changes by suppressing Th2 cytokine expression in mice with asthma.
Collapse
Affiliation(s)
- Chian-Jiun Liou
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Chung Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
25
|
Chan EWC, Wong SK, Chan HT. Casticin from Vitex species: a short review on its anticancer and anti-inflammatory properties. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:147-152. [PMID: 29559215 DOI: 10.1016/j.joim.2018.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/18/2018] [Indexed: 01/04/2023]
Abstract
This short review provides an update of the anticancer and anti-inflammatory properties of casticin from Vitex species. Casticin is a polymethylflavone with three rings, an orthocatechol moiety, a double bond, two hydroxyl groups and four methoxyl groups. Casticin has been isolated from various tissues of plants in the Vitex genus: fruits and leaves of V. trifolia, aerial parts and seeds of V. agnus-castus and leaves of V. negundo. Studies have reported the antiproliferative and apoptotic activities of casticin from Vitex species. The compound is effective against many cancer cell lines via different molecular mechanisms. Studies have also affirmed the anti-inflammatory properties of casticin, with several molecular mechanisms identified. Other pharmacological properties include anti-asthmatic, tracheospasmolytic, analgesic, antihyperprolactinemia, immunomodulatory, opioidergic, oestrogenic, anti-angiogenic, antiglioma, lung injury protection, rheumatoid arthritis amelioration and liver fibrosis attenuation activities. Clinical trials and commercial use of the casticin-rich fruit extract of V. agnus-castus among women with premenstrual syndrome were briefly discussed.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Siu Kuin Wong
- School of Science, Monash University, Petaling Jaya, Selangor 46150, Malaysia
| | - Hung Tuck Chan
- Secretariat of International Society for Mangrove Ecosystems, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
26
|
Wang J. Casticin alleviates lipopolysaccharide-induced inflammatory responses and expression of mucus and extracellular matrix in human airway epithelial cells through Nrf2/Keap1 and NF-κB pathways. Phytother Res 2018; 32:1346-1353. [PMID: 29508465 DOI: 10.1002/ptr.6067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/11/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Asthma is one of the most common chronic inflammatory diseases of childhood, characterized by airway inflammation, mucus hypersecretion, and accumulation of extracellular matrix proteins. Casticin is an active compound that possesses broad biological activities including anti-inflammatory effect. However, the effect of casticin on asthma remains unknown. The aim of the present study was to evaluate the effect and mechanism of casticin on inflammatory responses and expression of mucus and extracellular matrix in human airway epithelial cells. The results showed that lipopolysaccharide induced the mRNA and protein levels of IL-6, IL-8, MUC5AC, collagen type I, and fibronectin in 16-HBE cells, whereas casticin treatment significantly inhibited the induction of lipopolysaccharide. Casticin induced Nrf2/Keap1 and inhibited nuclear factor κB pathways in 16-HBE cells. Knockdown of Nrf2 attenuated the effect of casticin on production of IL-6 and IL-8, expression of MUC5AC, collagen type I, and fibronectin in 16-HBE cells. In conclusion, the results indicated that casticin might be a novel therapeutic strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Jiusheng Wang
- Department of Pediatrics, The First People's Hospital of Shangqiu, Shangqiu, 476000, Henan, China
| |
Collapse
|
27
|
Skrzypczak-Pietraszek E, Piska K, Pietraszek J. Enhanced production of the pharmaceutically important polyphenolic compounds in Vitex agnus castus L. shoot cultures by precursor feeding strategy. Eng Life Sci 2018; 18:287-297. [PMID: 32624908 DOI: 10.1002/elsc.201800003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/04/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Agitated Vitex agnus castus L. shoot cultures were established to analyse the content of selected pharmaceutically important flavonoids and phenolic acids. Two variants (selected from nine ones) of MS medium were prepared: A (BAP 1 mg/L; NAA 0.5 mg/L; GA3 0.25 mg/L) and B (BAP 2 mg/L; NAA 0.5 mg/L). The biomass was harvested after 1, 2, 3,4, 5 and 6 weeks. Four-week cultures (variant A) were selected to perform the precursor feeding experiment. The L-phenylalanine dose of 1.6 g/L appears to be the most advantageous. Compared to the control cultures, the content of the individual compounds increased in a range from 1.4 to 17.3-fold (e.g. p-coumaric acid - 17.3 fold; casticin - 4.8-fold). The biomass from in vitro cultures is richer in neochlorogenic acid (16-fold), p-coumaric acid (5.3-fold), rutin (2.8-fold), caffeic acid (1.5-fold) and cinaroside (1.5-fold) than the leaves of its parent greenhouse-cultivated plants. Extracts contained 30 mg/100 g DW of casticin, but after the hydrolysis its amount increased up to 200 mg/100 g DW and twice exceeded the content in the greenhouse leaves. The results indicate that V. agnus castus agitated shoot cultures might be considered as a potential biotechnological source of some pharmaceutically important compounds, especially casticin, rutin, neochlorogenic and p-coumaric acids.
Collapse
Affiliation(s)
- Ewa Skrzypczak-Pietraszek
- Chair and Department of Pharmaceutical Botany Collegium Medicum Jagiellonian University Kraków Poland
| | - Kamil Piska
- Chair and Department of Pharmaceutical Botany Collegium Medicum Jagiellonian University Kraków Poland
| | - Jacek Pietraszek
- Department of Software Engineering and Applied Statistics Faculty of Mechanical Engineering Cracow University of Technology Krakow Poland
| |
Collapse
|
28
|
Rajagopal C, Lankadasari MB, Aranjani JM, Harikumar KB. Targeting oncogenic transcription factors by polyphenols: A novel approach for cancer therapy. Pharmacol Res 2018; 130:273-291. [PMID: 29305909 DOI: 10.1016/j.phrs.2017.12.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 12/31/2017] [Indexed: 02/06/2023]
Abstract
Inflammation is one of the major causative factor of cancer and chronic inflammation is involved in all the major steps of cancer initiation, progression metastasis and drug resistance. The molecular mechanism of inflammation driven cancer is the complex interplay between oncogenic and tumor suppressive transcription factors which include FOXM1, NF-kB, STAT3, Wnt/β- Catenin, HIF-1α, NRF2, androgen and estrogen receptors. Several products derived from natural sources modulate the expression and activity of multiple transcription factors in various tumor models as evident from studies conducted in cell lines, pre-clinical models and clinical samples. Further combination of these natural products along with currently approved cancer therapies added an additional advantage and they considered as promising targets for prevention and treatment of inflammation and cancer. In this review we discuss the application of multi-targeting natural products by analyzing the literature and future directions for their plausible applications in drug discovery.
Collapse
Affiliation(s)
- Chitra Rajagopal
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Jesil Mathew Aranjani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
29
|
Fraxinus: A Plant with Versatile Pharmacological and Biological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4269868. [PMID: 29279716 PMCID: PMC5723943 DOI: 10.1155/2017/4269868] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023]
Abstract
Fraxinus, a member of the Oleaceae family, commonly known as ash tree is found in northeast Asia, north America, east and western France, China, northern areas of Pakistan, India, and Afghanistan. Chemical constituents of Fraxinus plant include various secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans; therefore, it is considered as a plant with versatile biological and pharmacological activities. Its tremendous range of pharmacotherapeutic properties has been well documented including anticancer, anti-inflammatory, antioxidant, antimicrobial, and neuroprotective. In addition, its bioactive phytochemicals and secondary metabolites can be effectively used in cosmetic industry and as a competent antiaging agent. Fraxinus presents pharmacological effectiveness by targeting the novel targets in several pathological conditions, which provide a spacious therapeutic time window. Our aim is to update the scientific research community with recent endeavors with specifically highlighting the mechanism of action in different diseases. This potentially efficacious pharmacological drug candidate should be used for new drug discovery in future. This review suggests that this plant has extremely important medicinal utilization but further supporting studies and scientific experimentations are mandatory to determine its specific intracellular targets and site of action to completely figure out its pharmacological applications.
Collapse
|
30
|
Casticin inhibits interleukin-1β-induced ICAM-1 and MUC5AC expression by blocking NF-κB, PI3K-Akt, and MAPK signaling in human lung epithelial cells. Oncotarget 2017; 8:101175-101188. [PMID: 29254155 PMCID: PMC5731865 DOI: 10.18632/oncotarget.20933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/27/2017] [Indexed: 01/31/2023] Open
Abstract
The compound casticin, isolated from Vitex rotundifolia, exerts anti-inflammatory effects and causes apoptosis of cancer cells. In this study, we explored the anti-inflammatory effects of casticin and modulation of cyclooxygenase (COX)-2, intercellular adhesion molecule 1 (ICAM-1), and mucin 5AC (MUC5AC) expression in interleukin-1β (IL-1β)-activated A549 human pulmonary epithelial cells. A549 cells were treated with various concentrations of casticin (5-20 μM), and an inflammatory response was triggered with interleukin (IL)-1β cytokines. Casticin decreased levels of IL-6, tumor necrosis factor α, and IL-8 and suppressed COX-2 expression and prostaglandin E2 production. It also reduced MUC5AC, proinflammatory cytokine, and chemokine gene expression and inhibited ICAM-1 expression for monocyte adhesion in IL-1β-stimulated A549 cells. In addition, casticin inhibited phosphorylation of Akt, phosphatidylinositol 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) and blocked nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. Co-culture of NF-κB, MAPK, and PI3K inhibitors with casticin also led to more significantly suppressed ICAM-1 expression in inflammatory A549 cells. These results provide evidence that casticin has an anti-inflammatory effect by blocking proinflammatory cytokine, chemokine, and ICAM-1 expression via suppression of the PI3K/Akt, NF-κB, and MAPK signaling pathways in IL-1β-stimulated inflammatory pulmonary epithelial cells.
Collapse
|
31
|
Zhou L, Dong X, Wang L, Shan L, Li T, Xu W, Ding Y, Lai M, Lin X, Dai M, Bai X, Jia C, Zheng H. Casticin attenuates liver fibrosis and hepatic stellate cell activation by blocking TGF-β/Smad signaling pathway. Oncotarget 2017; 8:56267-56280. [PMID: 28915589 PMCID: PMC5593560 DOI: 10.18632/oncotarget.17453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 04/14/2017] [Indexed: 01/18/2023] Open
Abstract
Although many advances have been made in understanding the pathogenesis of liver fibrosis, few options are available for treatment. Casticin, one of the major flavonoids in Fructus Viticis extracts, has shown hepatoprotective potential, but its effects on liver fibrosis are not clear. In this study, we investigated the antifibrotic activity of casticin and its underlying mechanism in vivo and in vitro. Male mice were injected intraperitoneally with carbon tetrachloride (CCl4) or underwent bile duct ligation (BDL) to induce liver fibrosis, followed by treatment with casticin or vehicle. In addition, transforming growth factor-β1(TGF-β1)-activated LX-2 cells were used. In vivo experiments showed that treatment with casticin alone had no toxic effect while significantly attenuating CCl4-or BDL-induced liver fibrosis, as indicated by reductions in the density of fibrosis, hydroxyproline content, expression of α-SMA and collagen α1(I) mRNA. Moreover, casticin inhibited LX2 proliferation, induced apoptosis in a time- and dose-dependent manner in vitro. The underlying molecular mechanisms for the effect of casticin involved inhibition of hepatic stellate cell (HSC) activation and reduced the expression of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 resulting from blocking TGF-β1/Smad signaling, as well as increased the apoptosis of HSCs. The results suggest that casticin has potential benefits in the attenuation and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoying Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Linlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lanlan Shan
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Ding
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingqiang Lai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojun Lin
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Dai
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Abstract
Mitochondria play a key role in ATP generation, redox homeostasis and regulation of apoptosis. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is considered as an attractive therapeutic strategy. However, metabolic flexibility in cancer cells may enable the upregulation of compensatory pathways, such as glycolysis to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of both targeting mitochondria and inhibiting glycolysis may be particularly useful to overcome such drug-resistant mechanism. This review provides an update on recent development in the field of targeting mitochondria and novel compounds that impact mitochondria, glycolysis or both. Key challenges in this research area and potential solutions are also discussed.
Collapse
|
33
|
Altholactone Inhibits NF-κB and STAT3 Activation and Induces Reactive Oxygen Species-Mediated Apoptosis in Prostate Cancer DU145 Cells. Molecules 2017; 22:molecules22020240. [PMID: 28178219 PMCID: PMC6155856 DOI: 10.3390/molecules22020240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/29/2017] [Accepted: 02/02/2017] [Indexed: 12/21/2022] Open
Abstract
Altholactone, a natural compound isolated from Goniothalamus spp., has demonstrated anti-inflammatory and anticancer activities, but its molecular mechanisms are still not fully defined. Nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play pivotal roles in the cell survival of many human tumors. The objective of this study was to elucidate the mechanism of action of altholactone against prostate cancer DU145 cells and to evaluate whether its effects are mediated by inhibition of NF-κB and STAT3 activity. Altholactone inhibited proliferation of DU145 cells and induced cell cycle arrest in S phase and triggered apoptosis. Reporter assays revealed that altholactone repressed p65- and TNF-α-enhanced NF-κB transcriptional activity and also inhibited both constitutive and IL-6-induced transcriptional activity of STAT3. Consistent with this, altholactone down-regulated phosphorylation of STAT3 and moreover, decreased constitutively active mutant of STAT3 (STAT3C)-induced transcriptional activity. Altholactone treatment also results in down-regulation of STAT3 target genes such as survivin, and Bcl-2 followed by up regulation of pro-apoptotic Bax protein. However, pre-treatment with the antioxidant N-acetylcysteine (NAC) significantly inhibited the activation of Bax and prevented down-regulation of STAT3 target genes. Collectively, our findings suggest that altholactone induces DU145 cells death through inhibition of NF-κB and STAT3 activity.
Collapse
|
34
|
Yang F, He K, Huang L, Zhang L, Liu A, Zhang J. Casticin inhibits the activity of transcription factor Sp1 and the methylation of RECK in MGC803 gastric cancer cells. Exp Ther Med 2016; 13:745-750. [PMID: 28352361 DOI: 10.3892/etm.2016.4003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the effect of casticin on reversion-inducing-cysteine-rich protein with kazal motifs (RECK) gene expression and intracellular methylation levels in MGC803 gastric cancer cells. Cells were treated with 1, 10 and 30 µmol/l casticin. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were performed to determine the protein expression and mRNA levels of RECK and DNA methyltransferase 1 (DNMT1), respectively. High-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry was used to detect RECK methylation. In addition, MGC803 cell proliferation was measured by an MTT assay and the DNA-binding activity of transcription factor Sp1 was determined using an enzyme-linked immunosorbent assay. The results demonstrated that treatment with 1, 10 and 30 µmol/l casticin significantly increased RECK protein expression and mRNA levels. In addition, casticin (30 µmol/l) decreased RECK promoter methylation levels by 31%, global DNA methylation levels by 39% and nuclear methylation activity by 71.6%. Furthermore, casticin downregulated the mRNA levels and protein expression of DNMT1. The MTT assay demonstrated that MGC803 cell proliferation was inhibited by casticin treatment and DNA binding assays indicated that casticin reduced the DNA-binding activity of Sp1. The present study therefore indicated that casticin inhibits the proliferation of gastric cancer MGC803 cells by upregulating RECK gene expression and reducing intracellular methylation levels.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China; Department of Basic Medicine, Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Kefei He
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Li Huang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lingyan Zhang
- Medical Department of Chongqing Bishan People's Hospital, Chongqing 402760, P.R. China
| | - Aixue Liu
- Department of Oncology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, P.R. China
| | - Jiren Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|