1
|
Abdel-Monem MM, El-Khawaga OY, Awadalla AA, Hafez AT, Ahmed AE, Abdelhameed M, Abdelhalim A. Gene expression analysis and the risk of relapse in favorable histology Wilms' tumor. Arab J Urol 2023; 21:45-51. [PMID: 36818371 PMCID: PMC9930804 DOI: 10.1080/2090598x.2022.2127202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction and Objectives Wilms' tumor (WT) relapse occurs in 15% of patients. We aim to investigate the association between the expression of several genetic markers and WT relapse risk. Materials and methods The study included 51 children treated for WT at a tertiary center between 2001 and 2019: 23 patients had disease relapse (group A) and 28 remained relapse-free after at least 2 years of follow-up (group B). Patients with syndromic, bilateral synchronous or anaplastic WT were excluded. Autologous renal tissue from 20 patients served as control. Total RNA was isolated from tumor tissue and control. Gene expression levels of WT1, HIF1α, b-FGF, c-MYC and SLC22A18 were assessed using quantitative RT-PCR and normalized to GAPDH. Immunohistochemical staining for WT1 and gene expression levels were compared between the study groups. Results Median patient age was 3 (IQR = 2-5) years and 36 (70.6%) had stage I disease. Baseline characteristics were similar between study groups. Relapse occurred at a median of 6.8 (2.8-24.7) months, predominantly in the lungs (11/23, 47.8%). Tumors that relapsed expressed significantly higher levels of WT1, HIF1α, b-FGF and c-MYC and lower levels of SLC22A18 (p < 0.001). Strong immunohistochemical staining for WT1 was seen in 73.9% of group A and 14.29% of group B (p < 0.001). These associations retained statistical significance irrespective of patient and tumor characteristics. Conclusions Higher expression levels of WT1, HIF1 α, b-FGF and c-MYC and lower level of SLC22A18 are associated with increased risk of WT relapse. These genetic markers can serve as future prognostic predictors and help stratify patients for treatment.
Collapse
Affiliation(s)
- Mariam M. Abdel-Monem
- The Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Omali Y. El-Khawaga
- The Department of Biochemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira A. Awadalla
- The Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ashraf T. Hafez
- The Department of Urology, Mansoura Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Asmaa E. Ahmed
- The Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed Abdelhameed
- The Department of Pathology, Mansoura Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ahmed Abdelhalim
- The Department of Urology, Mansoura Urology and Nephrology Center, Mansoura University, Mansoura, Egypt,CONTACT Ahmed Abdelhalim Mansoura Urology and Nephrology Center, Mansoura University, Mansoura35516, Egypt
| |
Collapse
|
2
|
Contribution and prognostic value of TSGA10 gene expression in patients with acute myeloid leukemia (AML). Pathol Res Pract 2019; 215:506-511. [PMID: 30638859 DOI: 10.1016/j.prp.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/15/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Different studies have investigated TSGA10 expression in various cancerous tissues but, so far no study has been conducted on newly diagnosed (ND) AML patients. The association of TSGA10 gene expression with hypoxia inducible factor (HIF) and angiogenic factors has remained to be fully elucidated and is still a controversial issue. The present study was designed to investigate this association in patients newly diagnosed with AML. METHODS We evaluated TSGA10, HIF-1α and VEGF mRNA levels in ND AML patients and healthy subjects using real-time PCR technique. Data were analyzed via comparative Livak method. RESULTS Based on the results of this study, TSGA10 gene expression was decreased in 28 out of 30 (93.3%) samples while VEGF and HIF-1α expression levels were increased in all ND AML patients compared to healthy controls. Diagnostic evaluation was performed by receiver operating characteristic (ROC) curve and area under the curve (AUC) calculation. Respectively, using cut-off relative quantification of 1.604, 0.0329, and 0.0042, the sensitivity values of TSGA10, VEGF, and HIF-1α gene expression were 86.7%, 90%, and 100%. Also, specificity values were 100%, 100% and 100%, respectively. TSGA10 expression was shown to be reduced in ND AML patients compared with healthy subjects and we found a negative correlation between TSGA10 and VEGF expression. CONCLUSIONS Since TSGA10 interacts with HIF-1 and affects its transcriptional activity, in ND AML patients with decreased TSGA10 expression, VEGF expression was high suggesting a TSGA10 mediated regulation of HIF-1 target genes. Altogether, the current study showed that TSGA10 could be considered as a tumor suppressor in AML patients.
Collapse
|
3
|
Petrov I, Suntsova M, Mutorova O, Sorokin M, Garazha A, Ilnitskaya E, Spirin P, Larin S, Zhavoronkov A, Kovalchuk O, Prassolov V, Roumiantsev A, Buzdin A. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells. Aging (Albany NY) 2016; 8:2936-2947. [PMID: 27870639 PMCID: PMC5182073 DOI: 10.18632/aging.101102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022]
Abstract
Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Biomarkers, Tumor
- Bone Marrow
- Case-Control Studies
- Child
- Child, Preschool
- Female
- Gene Expression
- Gene Expression Profiling
- Humans
- Infant
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
Collapse
Affiliation(s)
- Ivan Petrov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- First Oncology Research and Advisory Center, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141700, Russia
| | - Maria Suntsova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Olga Mutorova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Morozov Pediatric Clinical Hospital, Moscow, 101000, Russia
| | - Maxim Sorokin
- National Research Centre “Kurchatov Institute”, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, 123182, Russia
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141700, Russia
| | - Elena Ilnitskaya
- First Oncology Research and Advisory Center, Moscow, 117997, Russia
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia,119991
| | - Sergey Larin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Alex Zhavoronkov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- First Oncology Research and Advisory Center, Moscow, 117997, Russia
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia,119991
| | - Alexander Roumiantsev
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Anton Buzdin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- National Research Centre “Kurchatov Institute”, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, 123182, Russia
| |
Collapse
|
4
|
Rezai O, Khodadadi A, Heike Y, Mostafai A, Gerdabi ND, Rashno M, Abdoli Z. Assessment of Relationship between Wilms' Tumor Gene (WT1) Expression in Peripheral Blood of Acute Leukemia Patients and Serum IL-12 and C3 Levels. Asian Pac J Cancer Prev 2016; 16:7303-7. [PMID: 26514528 DOI: 10.7314/apjcp.2015.16.16.7303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leukemia is a common cancer among children and adolescents. Wilms' tumor gene (WT1) is highly expressed in patients with acute leukemia. It is found as a tumor associated antigen (TAA) in various types of hematopoietic malignancies and can be employed as a useful marker for targeted immunotherapy and monitoring of minimal residual disease (MRD). In this regard, WT1 is a transcription factor that promotes gene activation or repression depending on cellular and promoter context. The purpose of this study was assessment of WT1 gene expression in patients with acute leukemia, measurement of IL-12 and C3 levels in serum and evaluation of the relationship between them. MATERIALS AND METHODS We evaluated the expression of WT1 mRNA using real-time quantitative RT-PCR and serum levels of IL-12 and C3 using ELISA and nephelometry in peripheral blood of 12 newly diagnosed patients with acute leukemia and 12 controls. RESULTS The results of our study showed that the average wT1 gene expression in patients was 7.7 times higher than in healthy controls (P <0.05). In addition, IL-12 (P = 0.003) and C3 (P <0.0001) were significantly decreased in the test group compared to controls. CONCLUSIONS WT1 expression levels are significantly higher in patients compared with control subjects whereas serum levels of interleukin-12 and C3 are significantly lower in patients. Wt1 expression levels in patients are inversely related with serum levels of IL-12 and C3.
Collapse
Affiliation(s)
- Omran Rezai
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran E-mail :
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhao MY, Yu Y, Xie M, Yang MH, Zhu S, Yang LC, Kang R, Tang DL, Zhao LL, Cao LZ. Digital gene expression profiling analysis of childhood acute lymphoblastic leukemia. Mol Med Rep 2016; 13:4321-8. [PMID: 27053012 DOI: 10.3892/mmr.2016.5089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most commonly diagnosed malignancy in children. It is a heterogeneous disease, and is determined by multiple gene alterations and chromosomal rearrangements. To improve current understanding of the underlying molecular mechanisms of ALL, the present study profiled genome‑wide digital gene expression (DGE) in a population of children with ALL in China. Using second‑generation sequencing technology, the profiling revealed that 2,825 genes were upregulated and 1,952 were downregulated in the ALL group. Based on the DGE profiling data, the present study further investigated seven genes (WT1, RPS26, MSX1, CD70, HOXC4, HOXA5 and HOXC6) using reverse transcription‑quantitative polymerase chain reaction analysis. Gene Ontology analysis suggested that the differentially expressed genes were predominantly involved in immune cell differentiation, metabolic processes and programmed cell death. The results of the present study provided novel insights into the gene expression patterns in children with ALL.
Collapse
Affiliation(s)
- Ming-Yi Zhao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ming-Hua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Liang-Chun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rui Kang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dao-Lin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling-Ling Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Li-Zhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
6
|
Kalantar E, Assadi M, Pormazaheri H, Hatami S, Barari MA, Asgari E, Mahmoudi E, Kabir K, Marashi SMA. Candida non albicans with a High Amphotericin B Resistance Pattern Causing Candidemia among Cancer Patients. Asian Pac J Cancer Prev 2015; 15:10933-5. [DOI: 10.7314/apjcp.2014.15.24.10933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|