1
|
Zhang H, Yang B. ADAM12 Silencing Mediated by FOXC2 Represses Meningioma Progression Through Inactivating the JAK1/STAT3/VEGFA Pathway. Biochem Genet 2024:10.1007/s10528-024-10893-4. [PMID: 39066954 DOI: 10.1007/s10528-024-10893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Meningioma is a prevalently intracranial tumor, and the malignant type is aggressive with high recurrence. A Disintegrin and Metalloprotease 12 (ADAM12) is a common oncogene and differentially expressed in meningioma. However, its roles and mechanisms in meningioma development remain obscure. The differentially expressed genes in meningioma were analyzed by GEO (GSE77259 and GSE43290) datasets and weighted gene co-expression network analysis (WGCNA) based on GSE16581. ADAM12 expression was measured via qRT-PCR and western blot. The correlation between ADAM12 and FOXC2 was predicted through JASPER tool and identified via luciferase reporter analysis. Cell proliferation, migration and invasion were investigated using CCK-8, EdU, transwell assays. The JAK1/STAT3/VEGFA signaling was activated by IL-6, and analyzed via western blot. The differentially expressed ADAM12 in meningioma was screened by WGCNA and GEO analyses. ADAM12 silencing repressed meningioma cell proliferation, and decreased migration and invasion. The transcription factor FOXC2 expression was enhanced in meningioma based on GSE77259 and GSE43290 datasets, and positively induced ADAM12 transcription. The JAK1/STAT3/VEGFA signaling was inactivated due to ADAM12 silencing and activated via IL-6. Upregulation of FOXC2 promoted cell proliferation, migration and invasion, and these effects were reversed by silencing ADAM12. ADAM12 knockdown mediated via FOXC2 silencing restrained proliferation, migration and invasion of meningioma cells through inactivating the JAK1/STAT3/VEGFA pathway.
Collapse
Affiliation(s)
- Huaming Zhang
- Department of Neurosurgery, China Resources Wisco General Hospital, Wuhan University of Science and Technology, No. 209 Yejin Avenue, Qingshan District, Wuhan, 430080, Hubei, China.
| | - Bing Yang
- Department of Neurology, Wuhan Eighth Hospital, Wuhan, 430014, Hubei, China
| |
Collapse
|
2
|
Hargadon KM, Goodloe TB, Lloyd ND. Oncogenic functions of the FOXC2 transcription factor: a hallmarks of cancer perspective. Cancer Metastasis Rev 2022; 41:833-852. [PMID: 35701636 DOI: 10.1007/s10555-022-10045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
Epigenetic regulation of gene expression is a fundamental determinant of molecular and cellular function, and epigenetic reprogramming in the context of cancer has emerged as one of the key enabling characteristics associated with acquisition of the core hallmarks of this disease. As such, there has been renewed interest in studying the role of transcription factors as epigenetic regulators of gene expression in cancer. In this review, we discuss the current state of knowledge surrounding the oncogenic functions of FOXC2, a transcription factor that frequently becomes dysregulated in a variety of cancer types. In addition to highlighting the clinical impact of aberrant FOXC2 activity in cancer, we discuss mechanisms by which this transcription factor becomes dysregulated in both tumor and tumor-associated cells, placing particular emphasis on the ways in which FOXC2 promotes key hallmarks of cancer progression. Finally, we bring attention to important issues related to the oncogenic dysregulation of FOXC2 that must be addressed going forward in order to improve our understanding of FOXC2-mediated cancer progression and to guide prognostic and therapeutic applications of this knowledge in clinical settings.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA.
| | - Travis B Goodloe
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| | - Nathaniel D Lloyd
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| |
Collapse
|
3
|
Zhang L, He Y, Tu X, Wang C, Ding X, Ye R, Shi J, Xie Y, Jiang Y, Deng X. FOXC2 as a prognostic marker and a potential molecular target in patients with human solid tumors. Front Surg 2022; 9:960698. [PMID: 36425886 PMCID: PMC9679010 DOI: 10.3389/fsurg.2022.960698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Forkhead Box Protein C2 (FOXC2) belongs to the Forkhead/Wing-helix family. The regulatory role of this transcription factor in physiological function and carcinogenic activity has been proven in subsequent investigations. However, there is still scarcity of evidence on the relationship between FOXC2 expression and prognosis in human solid tumors. We conducted this meta-analysis to evaluate the role of FOXC2 as a prognosis factor and a possible target marker in human solid tumors. METHODS PubMed, Web of Science, Embase, and the Cochrane library database were all searched methodically. Eligible publications on FOXC2 in human solid tumors were gathered and reviewed. The effect sizes were calculated using pooled hazard ratios (HRs) or odds ratios (ORs) with the corresponding 95% confidence interval (CI). Statistical analysis was conducted with Stata SE12.0. RESULTS This meta-analysis comprised 3,267 patients from 20 studies covering a variety of solid tumors. Increased FOXC2 expression was related to shorter overall survival (OS) (HR = 2.05, 95% CI: 1.73-2.42). High expression of FOXC2 is associated with lymph node metastases (OR = 3.33, 95% CI: 2.65-4.19), TNM stage (OR = 3.09, 95% CI: 2.00-4.78), and age (OR = 1.26, 95% CI: 1.06-1.50), according to the pooled ORs. However, no significant association was observed between the high expression of FOXC2 and sex, tumor size or tumor differentiation. CONCLUSION Increased expression of FOXC2 is associated with unfavored OS, lymph node metastases, TNM stage, and age. FOXC2 is a promising prognostic marker and a novel target marker in human solid tumors.
Collapse
Affiliation(s)
- Long Zhang
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, China
| | - Yong He
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, China
| | - Xiaohong Tu
- Department of Physical Education, Ganzhou Teachers College, Ganzhou, China
| | - Chao Wang
- Hepatic Surgery Center, Institute of Hepato-pancreato-biliary Surgery, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Ding
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, China
| | - Rongqiang Ye
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, China
| | - Jiayu Shi
- Hepatic Surgery Center, Institute of Hepato-pancreato-biliary Surgery, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hepato-pancreato-biliary Surgery, Wuhan University of Science and Technology, Wuhan, China
| | - Yuancai Xie
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, China
| | - Yufen Jiang
- Department of Gastroenterology, Kezhou People’s Hospital, Atushi, China
| | - Xiaohong Deng
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, China
| |
Collapse
|
4
|
Li M, Tao Z, Zhao Y, Li L, Zheng J, Li Z, Chen X. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med 2022; 20:214. [PMID: 35562754 PMCID: PMC9102922 DOI: 10.1186/s12967-022-03427-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, 5-methylcytosine (m5C) RNA modification has emerged as a key player in regulating RNA metabolism and function through coding as well as non-coding RNAs. Accumulating evidence has shown that m5C modulates the stability, translation, transcription, nuclear export, and cleavage of RNAs to mediate cell proliferation, differentiation, apoptosis, stress responses, and other biological functions. In humans, m5C RNA modification is catalyzed by the NOL1/NOP2/sun (NSUN) family and DNA methyltransferase 2 (DNMT2). These RNA modifiers regulate the expression of multiple oncogenes such as fizzy-related-1, forkhead box protein C2, Grb associated-binding protein 2, and TEA domain transcription factor 1, facilitating the pathogenesis and progression of cancers. Furthermore, the aberrant expression of methyltransferases have been identified in various cancers and used to predict the prognosis of patients. In this review, we present a comprehensive overview of m5C RNA methyltransferases. We specifically highlight the potential mechanism of action of m5C in cancer. Finally, we discuss the prospect of m5C-relative studies.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Lei Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Cao Y, Cao Z, Wang W, Jie X, Li L. MicroRNA‑199a‑5p regulates FOXC2 to control human vascular smooth muscle cell phenotypic switch. Mol Med Rep 2021; 24:627. [PMID: 34212977 PMCID: PMC8281299 DOI: 10.3892/mmr.2021.12266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
Varicose veins are among the most common disorders of the vascular system; however, the pathogenesis of varicose veins remains unclear. The present study aimed to investigate the roles of microRNA (miR)‑199a‑5p in varicose veins and in the phenotypic transition of vascular smooth muscle cells (VSMCs). Bioinformatics analysis confirmed that miR‑199a‑5p had target sites on the forkhead box C2 (FOXC2) 3'‑untranslated region. Reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting were used to detect the expression levels of miR‑199a‑5p and FOXC2 in varicose vein and normal great saphenous vein tissues. Cell Counting Kit‑8 and Transwell migration assays were performed to validate the effects of miR‑199a‑5p on VSMCs. Contractile markers, such as smooth muscle 22α, calponin, smooth muscle actin and myosin heavy chain 11 were used to detect phenotypic transition. RT‑qPCR revealed that miR‑199a‑5p was downregulated in varicose veins compared with expression in normal great saphenous veins, whereas FOXC2 was upregulated in varicose veins. In addition, biomarkers of the VSMC contractile phenotype were downregulated in varicose veins. Overexpression of miR‑199a‑5p by mimics suppressed VSMC proliferation and migration, whereas depletion of miR‑199a‑5p enhanced VSMC proliferation and migration. Notably, the effects caused by miR‑199a‑5p could be reversed by FOXC2 overexpression. Dual luciferase reporter analysis confirmed that FOXC2 was a target of miR‑199a‑5p. In conclusion, miR‑199a‑5p may be a novel regulator of phenotypic switching in VSMCs by targeting FOXC2 during varicose vein formation.
Collapse
Affiliation(s)
- Yushi Cao
- Department of Hepatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhongwen Cao
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiangyu Jie
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Lei Li
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
6
|
Yan M, Gao H, Lv Z, Liu Y, Zhao S, Gong W, Liu W. Circular RNA PVT1 promotes metastasis via regulating of miR-526b/FOXC2 signals in OS cells. J Cell Mol Med 2020; 24:5593-5604. [PMID: 32249539 PMCID: PMC7214167 DOI: 10.1111/jcmm.15215] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
As a class of covalently closed non-coding RNAs, circular RNAs (circRNAs) are key regulators in various malignancies including osteosarcoma (OS). In the present study, we found that circular RNA PVT1 (circPVT1) was up-regulated in OS and correlated with poor prognosis of patients with OS. Functionally, we showed that knockdown of circPVT1 suppressed OS cells metastasis. In addition, we found that (forkhead box C2) FOXC2 was a downstream gene in circPVT1-mediated metastasis in OS cells. We demonstrated that circPVT1 promoted OS cells metastasis via post-transcriptionally regulating of FOXC2. Furthermore, we revealed that microRNA 526b (miR-526b) was a key bridge which connected circPVT1 and FOXC2. We showed that miR-526b was down-regulated in OS tissue and cell lines. Through a transwell assay, we found that miR-526b suppressed OS cells metastasis by targeting of FOXC2. We also showed that miR-526b targeted circPVT1 via similar mircoRNA response elements (MREs) as it did for FOXC2. Finally, we proved that circPVT1 decoyed miR-526b to promote FOXC2-mediated metastasis in OS cells. In brief, our current study demonstrated that circPVT1, functioning as an oncogene, promotes OS cells metastasis via regulation of FOXC2 by acting as a ceRNA of miR-526b. CircPVT1/miR-526b/FOXC2 axis might be a novel target in molecular treatment of OS.
Collapse
Affiliation(s)
- Ming Yan
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Zhenshan Lv
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Ying Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Song Zhao
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Weiquan Gong
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Wei Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| |
Collapse
|
7
|
Hargadon KM, Györffy B, Strong EW, Tarnai BD, Thompson JC, Bushhouse DZ, Johnson CE, Williams CJ. The FOXC2 Transcription Factor Promotes Melanoma Outgrowth and Regulates Expression of Genes Associated With Drug Resistance and Interferon Responsiveness. Cancer Genomics Proteomics 2020; 16:491-503. [PMID: 31659103 DOI: 10.21873/cgp.20152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND/AIM The FOXC2 transcription factor promotes the progression of several cancer types, but has not been investigated in the context of melanoma cells. To study FOXC2's influence on melanoma progression, we generated a FOXC2-deficient murine melanoma cell line and evaluated The Cancer Genome Atlas (TCGA) patient datasets. MATERIALS AND METHODS We compared tumor growth kinetics and RNA-seq/qRT-PCR gene expression profiles from wild-type versus FOXC2-deficient murine melanomas. We also performed Kaplan-Meier survival analysis of TCGA data to assess the influence of FOXC2 gene expression on melanoma patients' response to chemotherapy and immunotherapy. RESULTS FOXC2 promotes melanoma progression and regulates the expression of genes associated with multiple oncogenic pathways, including the oxidative stress response, xenobiotic metabolism, and interferon responsiveness. FOXC2 expression in melanoma correlates negatively with patient response to chemotherapy and immunotherapy. CONCLUSION FOXC2 drives a tumor-promoting gene expression program in melanoma and is a prognostic indicator of patient response to multiple cancer therapies.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A.
| | - Balázs Györffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Semmelweis University, 2nd Department of Pediatrics, Budapest, Hungary
| | - Elijah W Strong
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Brian D Tarnai
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Jefferson C Thompson
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - David Z Bushhouse
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Coleman E Johnson
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Corey J Williams
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| |
Collapse
|
8
|
Xie F, Dong D, Du N, Guo L, Ni W, Yuan H, Zhang N, Jie J, Liu G, Tai G. An 8‑gene signature predicts the prognosis of cervical cancer following radiotherapy. Mol Med Rep 2019; 20:2990-3002. [PMID: 31432147 PMCID: PMC6755236 DOI: 10.3892/mmr.2019.10535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Gene expression and DNA methylation levels affect the outcomes of patients with cancer. The present study aimed to establish a multigene risk model for predicting the outcomes of patients with cervical cancer (CerC) treated with or without radiotherapy. RNA sequencing training data with matched DNA methylation profiles were downloaded from The Cancer Genome Atlas database. Patients were divided into radiotherapy and non‑radiotherapy groups according to the treatment strategy. Differently expressed and methylated genes between the two groups were identified, and 8 prognostic genes were identified using Cox regression analysis. The optimized risk model based on the 8‑gene signature was defined using the Cox's proportional hazards model. Kaplan‑Meier survival analysis indicated that patients with higher risk scores exhibited poorer survival compared with patients with lower risk scores (log‑rank test, P=3.22x10‑7). Validation using the GSE44001 gene set demonstrated that patients in the high‑risk group exhibited a shorter survival time comprared with the low‑risk group (log‑rank test, P=3.01x10‑3). The area under the receiver operating characteristic curve values for the training and validation sets were 0.951 and 0.929, respectively. Cox regression analyses indicated that recurrence and risk status were risk factors for poor outcomes in patients with CerC treated with or without radiotherapy. The present study defined that the 8‑gene signature was an independent risk factor for the prognosis of patients with CerC. The 8‑gene prognostic model had predictive power for CerC prognosis.
Collapse
Affiliation(s)
- Fei Xie
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dan Dong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Na Du
- Department of Infections, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liang Guo
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Nannan Zhang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiang Jie
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guomu Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
9
|
Wang T, Zheng L, Wang Q, Hu YW. Emerging roles and mechanisms of FOXC2 in cancer. Clin Chim Acta 2018; 479:84-93. [PMID: 29341903 DOI: 10.1016/j.cca.2018.01.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
Forkhead box protein C2 (FOXC2), a transcription factor of the forkhead/winged-helix family, is required for embryonic and prenatal development. FOXC2 acts as a crucial modulator during both angiogenesis and lymphangiogenesis via multiple angiogenic and lymphangiogenic pathways, respectively. Although recent studies have shed light on the emerging role of FOXC2 in cancer, very little is known about the precise underlying mechanisms. The purpose of this review is to summarize the current understanding of FOXC2 and provide potential mechanistic explanations of the relationship between FOXC2 and cancer, as well as discuss the prospect for future research in the promising prognostic value of FOXC2 in cancer.
Collapse
Affiliation(s)
- Teng Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
10
|
Pietilä M, Vijay GV, Soundararajan R, Yu X, Symmans WF, Sphyris N, Mani SA. FOXC2 regulates the G2/M transition of stem cell-rich breast cancer cells and sensitizes them to PLK1 inhibition. Sci Rep 2016; 6:23070. [PMID: 27064522 PMCID: PMC4827390 DOI: 10.1038/srep23070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer cells with stem cell properties (CSCs) underpin the chemotherapy resistance and high therapeutic failure of triple-negative breast cancers (TNBCs). Even though CSCs are known to proliferate more slowly, they are sensitive to inhibitors of G2/M kinases such as polo-like kinase 1 (PLK1). Understanding the cell cycle regulatory mechanisms of CSCs will help target these cells more efficiently. Herein, we identify a novel role for the transcription factor FOXC2, which is mostly expressed in CSCs, in the regulation of cell cycle of CSC-enriched breast cancer cells. We demonstrate that FOXC2 expression is regulated in a cell cycle-dependent manner, with FOXC2 protein levels accumulating in G2, and rapidly decreasing during mitosis. Knockdown of FOXC2 in CSC-enriched TNBC cells delays mitotic entry without significantly affecting the overall proliferation rate of these cells. Moreover, PLK1 activity is important for FOXC2 protein stability, since PLK1 inhibition reduces FOXC2 protein levels. Indeed, FOXC2 expressing CSC-enriched TNBC cells are sensitive to PLK1 inhibition. Collectively, our findings demonstrate a novel role for FOXC2 as a regulator of the G2/M transition and elucidate the reason for the observed sensitivity of CSC-enriched breast cancer cells to PLK1 inhibitor.
Collapse
Affiliation(s)
- Mika Pietilä
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Geraldine V. Vijay
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Xian Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - William F. Symmans
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Nathalie Sphyris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
- Metastasis Research Centre, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
- Center for Stem Cells and Developmental Biology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| |
Collapse
|
11
|
FOXC2 is up-regulated in pancreatic ductal adenocarcinoma and promotes the growth and migration of cancer cells. Tumour Biol 2016; 37:8579-85. [PMID: 26733175 DOI: 10.1007/s13277-015-4607-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
The transcriptional factor Forkhead box protein C2 (FOXC2) was recently demonstrated to be up-regulated in various cancer types. However, its expression profile and the biological functions in pancreatic cancer remain unknown. In this study, we examined the expression pattern of FOXC2 in pancreatic ductal adenocarcinoma (PDAC) tissues and investigated the functions of FOXC2 in the progression of PDAC. It was found that the expression of FOXC2 was up-regulated in PDAC samples. Forced expression of FOXC2 promoted the growth and migration of the PDAC cells, while knocking down the expression of FOXC2 inhibited the growth and migration of the PDAC cells. Moreover, FOXC2 was found to interact with beta-catenin and promote cell growth by activating beta-catenin/TCF signaling. Taken together, this study demonstrated the oncogenic roles of FOXC2 in PDAC, and FOXC2 might be a therapeutic target for PDAC.
Collapse
|
12
|
Zhang YL, Sun FT, Zhang Z, Chen XX, Liu AX, Pan JJ, Peng F, Zhou S, Sun LJ. Comprehensive expression analysis suggests functional overlapping of human FOX transcription factors in cancer. Asian Pac J Cancer Prev 2015; 15:10475-81. [PMID: 25556495 DOI: 10.7314/apjcp.2014.15.23.10475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Forkhead-box (FOX) transcription factors comprise a large gene family that contains more than 50 members in man. Extensive studies have revealed that they not only have functions in control of growth and development, but also play important roles in different diseases, especially in cancer. However, biological functions for most of the members in the FOX family remain unknown. In the present study, the expression of 39 FOX genes in 48 kinds of cancer was mined from the Gene Expression Atlas database of European Bioinformatics Institute. The analysis results showed that some FOX genes demonstrate overlapping expression in various cancers, which suggests particular biological functions. The pleiotropic features of the FOX genes make them excellent candidates in efforts aimed to give medical treatment for cancers at the genetic level. The results also indicated that different FOX genes may have the synergy or antagonistics effects in the same cancers. The study provides clues for further functional analysis of FOX genes, especially for the pleiotropic biological functions and crosstalk of FOX genes in human cancers.
Collapse
|
13
|
Kurmyshkina OV, Kovchur PI, Volkova TO. 'Drawing' a Molecular Portrait of CIN and Cervical Cancer: a Review of Genome-Wide Molecular Profiling Data. Asian Pac J Cancer Prev 2015; 16:4477-87. [DOI: 10.7314/apjcp.2015.16.11.4477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Wang YW, Yin CL, Zhang HY, Hao JM, Yang YY, Liao H, Jiao BH. High Expression of Forkhead Box Protein C2 is Related to Poor Prognosis in Human Gliomas. Asian Pac J Cancer Prev 2015; 15:10621-5. [DOI: 10.7314/apjcp.2014.15.24.10621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|