1
|
Szymaszkiewicz A, Mierzejewski M, Januszkiewicz E, Machelak W, Talar M, Włodarczyk J, Świerczyński M, Kordek R, Fichna J, Zielińska M. The role of bidirectional communication between the adipokines and the endogenous opioid system in an experimental mouse model of colitis-associated colorectal cancer. Pharmacol Rep 2024; 76:112-126. [PMID: 38236555 DOI: 10.1007/s43440-023-00566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of death globally. Multiple factors may contribute to the pathogenesis of CRC, including the abnormalities in the functioning of the endogenous opioid system (EOS) or adiponectin-related signaling. The aim of our study was to evaluate if differences in the expression of opioid receptors (ORs) influence the development of CRC and if modulation of adiponectin receptors using AdipoRon, a selective AdipoR1 receptor agonist, affects colorectal carcinogenesis. METHODS Naltrexone, an opioid receptor antagonist, was injected intraperitoneally every second day for 2 weeks, at the dose of 1 mg/kg in healthy Balb/C mice to induce changes in ORs expression. CRC was induced by a single intraperitoneal injection of azoxymethane (AOM) and the addition of dextran sodium sulfate (DSS) into drinking water in three-week cycles. The development of CRC was assessed using macro- and microscopic scoring and molecular analysis (RT qPCR, ELISA) after 14 weeks. RESULTS Naltrexone significantly increased the mRNA expression of Oprm1, Oprd1, and Oprk1 in the mouse colon and in the brain (non-significantly). The pretreatment of mice with naltrexone aggravated the course of CRC (as indicated by tumor area, colon thickness, and spleen weight). The level of circulatory adiponectin was lowered in mice with CRC and increased in the colon as compared with healthy mice. The β-endorphin level was increased in the plasma of mice with CRC and decreased in the colon as compared to healthy mice. AdipoRon, AdipoR1 agonist, worsened the CRC development, and pretreatment with naltrexone enhanced this negative effect in mice. CRC did not affect the expression of the Adipor1 gene, but the Adipor1 level was increased in mice pretreated with naltrexone (AOM/DSS and healthy mice). AdipoRon did not influence the expression of opioid receptors at the mRNA level in the colon of mice with CRC. The mRNA expression of Ptgs2, Il6, Nos2, Il1b, Il18, Gsdmd, and Rela was increased in mice with CRC as compared to the healthy colon. AdipoRon significantly decreased mRNA expression of Ptgs2, Il6, Il1b, and Il18 as compared to CRC mice. CONCLUSION EOS and adiponectin-related signaling may play a role in the pathogenesis of CRC and these systems may present some additivity during carcinogenesis.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Mikołaj Mierzejewski
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Emilia Januszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Łódź, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland.
| |
Collapse
|
2
|
Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166281. [PMID: 34610472 DOI: 10.1016/j.bbadis.2021.166281] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. The occurrence and development of CRC are complicated processes. Obesity and dysbacteriosis have been increasingly regarded as the main risk factors for CRC. Understanding the etiology of CRC from multiple perspectives is conducive to screening for some potential drugs or new treatment strategies to limit the serious side effects of conventional treatment and prolong the survival of CRC patients. Melatonin, a natural indoleamine, is mainly produced by the pineal gland, but it is also abundant in other tissues, including the gastrointestinal tract, retina, testes, lymphocytes, and Harder's glands. Melatonin could participate in lipid metabolism by regulating adipogenesis and lipolysis. Additionally, many studies have focused on the potential beneficial effects of melatonin in CRC, such as promotion of apoptosis; inhibition of cell proliferation, migration, and invasion; antioxidant activity; and immune regulation. Meaningfully, gut microbiota is the main determinant of all aspects of health and disease (including obesity and tumorigenesis). The gut microbiota is of great significance for understanding the relationship between obesity and increased risk of CRC. Although the current understanding of how the melatonin-mediated gut microbiota coordinates a variety of physiological and pathological activities is fairly comprehensive, there are still many unknown topics to be explored in the face of a complex nutritional status and a changeable microbiota. This review summarizes the potential links among melatonin, lipid metabolism, gut microbiota, and CRC to promote the development of melatonin as a preventive and therapeutic agent for CRC.
Collapse
|
3
|
Chakraborty D, Jin W, Wang J. The bifurcated role of adiponectin in colorectal cancer. Life Sci 2021; 278:119524. [PMID: 33887344 DOI: 10.1016/j.lfs.2021.119524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 01/05/2023]
Abstract
The association of adiponectin with metabolism and cancer is well established. Since its discovery in 1990, adiponectin, as one of the adipose tissue-secreted adipokines, has been very widely studied in biomedical research. Low levels of circulatory adiponectin have been reported in obesity, inflammatory diseases and various types of cancers including colorectal cancer (CRC), which is highly linked with obesity and gut inflammation. However, the function and underlying mechanisms of adiponectin in CRC is not well understood. In addition, there are contradictory reports on the role of adiponectin in cancer. Therefore, further investigation is needed. In this review, we explore the information available on the relationship between adiponectin and CRC with respect to proliferation, cell survival, angiogenesis and inflammation. We also highlighted the knowledge gaps, filling in which could help us better understand the function and mechanisms of adiponectin in CRC.
Collapse
Affiliation(s)
- Debrup Chakraborty
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, BRT-860, 460 W 12th Ave, Columbus, OH 43210, United States of America.
| | - Wei Jin
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, BRT-860, 460 W 12th Ave, Columbus, OH 43210, United States of America
| | - Jing Wang
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, BRT-860, 460 W 12th Ave, Columbus, OH 43210, United States of America.
| |
Collapse
|
4
|
Abstract
Adiponectin (APN), an adipokine produced by adipocytes, has been shown to have a critical role in the pathogenesis of obesity-associated malignancies. Through its receptor interactions, APN may exert its anti-carcinogenic effects including regulating cell survival, apoptosis and metastasis via a plethora of signalling pathways. Despite the strong evidence supporting this notion, some work may indicate otherwise. Our review addresses all controversies critically. On the whole, hypoadiponectinaemia is associated with increased risk of several malignancies and poor prognosis. In addition, various genetic polymorphisms may predispose individuals to increased risk of obesity-associated malignancies. We also provide an updated summary on therapeutic interventions to increase APN levels that are of key interest in this field. To date efforts to manipulate APN levels have been promising, but much work remains to be done.
Collapse
Affiliation(s)
- Arnav Katira
- UCL Medical School, UCL Faculty of Medical Science, University College London, London WC1E 6BT, UK
| | - Peng H Tan
- UCL Medical School, UCL Faculty of Medical Science, University College London, London WC1E 6BT, UK; Breast Unit, Whittington Health, London N19 5NF, UK
| |
Collapse
|