1
|
Li M, Li J, Tang Q, Zhu Y. Potential antitumor activity of triptolide and its derivatives: Focused on gynecological and breast cancers. Biomed Pharmacother 2024; 180:117581. [PMID: 39427548 DOI: 10.1016/j.biopha.2024.117581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer remains one of the greatest global health concerns. This is especially true for gynecological cancers, which include cervical, ovarian, and endometrial cancers, and breast cancer. Natural products used for cancer treatment offer some unique advantages. Triptolide (TPL) is a biologically active terpenoid extracted from Tripterygium wilfordii, which exhibits anti-inflammatory, immunosuppressive, antitumor, and other pharmacological activities. However, clinical applications of TPL are restricted because of poor water solubility and severe cytotoxicity; to overcome these limitations, various TPL derivatives and drug delivery systems, especially nanocarriers, have been used. Furthermore, various preclinical and clinical studies have demonstrated that TPL and its derivatives exhibit excellent antitumor effects by targeting proteins involved in multiple signaling pathways. Here, we review the progress regarding novel drug delivery systems, antitumor activities, and molecular mechanisms of action of TPL and its derivatives against gynecological and breast cancers. TPL and its derivatives inhibit tumor growth, suppress tumor metastasis, and enhance the drug sensitization of resistant cancers. In addition, TPL and its derivatives exert synergistic antitumor effects against gynecological and breast cancers when combined with existing antitumor drugs, such as carboplatin, cisplatin, and PI3K inhibitors. Moreover, we highlight the clinical potential of TPL analogs against cancer from bench to bedside and their prospects for future applications in gynecologic and breast cancers.
Collapse
Affiliation(s)
- Mengjie Li
- College of Pharmacy, Qinghai University for Nationalities, Xining, China; Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jiamiao Li
- Department of Pharmacy, The Affilliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, China
| | - Qing Tang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Gulbay G, Secme M, Ilhan H. Exploring the Potential of Thymoquinone-Stabilized Selenium Nanoparticles: In HEC1B Endometrial Cancer Cells Revealing Enhanced Anticancer Efficacy. ACS OMEGA 2023; 8:39822-39829. [PMID: 37901525 PMCID: PMC10601430 DOI: 10.1021/acsomega.3c06028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The aim of this research is to examine the potential anticancer properties of thymoquinone (TQ)-encapsulated selenium nanoparticles (TQ-SeNPs) in HEC1B endometrial carcinoma cells. TQ-SeNPs were synthesized, and their size, morphology, and elemental analysis were characterized. Morphological changes were examined by using scanning electron microscopy (SEM). The cytotoxicity and viability of nanothymoquinone were assessed by the XTT (2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5 carboxanilide) assay. Gene expressions and protein levels of the mitogen-activated protein kinase (MAPK) signaling pathway were analyzed by real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The decrease in the viability of HEC1B endometrial carcinoma cells was observed in a time- and dose-dependent manner. HEC-1B cells were treated with TQ-SeNP at 40-640 μg/mL concentrations and time intervals, and their viability was assessed by XTT assay. IC50 doses of TQ-SeNP in HEC1B cells were detected as 526.45 μg/mL at 48th hour. ELISA indicated that TQ-SeNP treatment reduced the level of p38 MAPK. ERK2, MEK2, and NFKB (p65) mRNA expressions were decreased in the dose group administered TQ-SeNP at the 48th hour compared to that in the control group. However, it was not significant. The novel nanoparticle showed an antiproliferative effect in endometrial cancer cells. However, further studies are needed to increase the anticancer activity of the cell in the TQ-SeNP interaction.
Collapse
Affiliation(s)
- Gonca Gulbay
- Department
of Medical Biology, Faculty of Medicine, Ordu University, Ordu 52200, Turkey
| | - Mucahit Secme
- Department
of Medical Biology, Faculty of Medicine, Ordu University, Ordu 52200, Turkey
| | - Hasan Ilhan
- Department
of Chemistry, Faculty of Science, Ordu University, Ordu 52200, Turkey
| |
Collapse
|
3
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
4
|
Kozak J, Wdowiak P, Maciejewski R, Torres A. A guide for endometrial cancer cell lines functional assays using the measurements of electronic impedance. Cytotechnology 2017; 70:339-350. [PMID: 28988392 PMCID: PMC5809663 DOI: 10.1007/s10616-017-0149-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/22/2017] [Indexed: 12/29/2022] Open
Abstract
Endometrial cancer cell lines are critical tools to investigate the molecular mechanism of tumorigenesis using the end point cell-based assay such as proliferation, cytotoxicity, apoptosis, anoikis or migration and invasion. The proper assay optimization and performance is essential for physiologically relevant results interpretation. In this study we use label-free real-time cell analysis platform (xCELLigence) to optimize growing conditions for proliferation and migration experiments of two types of endometrial cancer cell lines HEC-1-B, HEC-1-A, KLE, and Ishikawa. Profiling of cell lines by cell index measurement in proliferation and migration experiments was performed. Our experimental approach allowed us to monitor particular stage of the cell growth, to see the relation between seeding density and dynamic cell growth as well as to choose the optimal serum concentration as chemoattractant in migration experiment. The highest rate of proliferation was shown for Ishikawa cells. The rapid pace of cellular migration was observed in case of KLE and HEC-1-B cells as compared to weak migratory activity of Ishikawa cells. The cell index that reflects the cell status characterized real-time cytological profile of each analyzed cell line. These cell profiles were crucial for better planning the classical end-point assays used in further research.
Collapse
Affiliation(s)
- Joanna Kozak
- Laboratory of Biostructure, Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland.
| | - Paulina Wdowiak
- Laboratory of Biostructure, Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| | - Ryszard Maciejewski
- Laboratory of Biostructure, Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| | - Anna Torres
- Laboratory of Biostructure, Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
5
|
Triptolide Combined with Radiotherapy for the Treatment of Nasopharyngeal Carcinoma via NF-κB-Related Mechanism. Int J Mol Sci 2016; 17:ijms17122139. [PMID: 27999372 PMCID: PMC5187939 DOI: 10.3390/ijms17122139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022] Open
Abstract
Advanced nasopharyngeal carcinoma (NPC) has a poor prognosis because of the lack of an effective treatment. Here we explored the efficiency and the molecular mechanisms of combined treatment with triptolide and ionizing radiation for treating NPC. Human nasopharyngeal carcinoma (CNE) cells were treated with triptolide, ionizing radiation, or triptolide plus ionizing radiation in vitro. Tumor potency was examined in an in vivo CNE cell xenograft mouse model, which was treated as above. Our results demonstrated that triptolide caused a significant reduction in cell growth and colony number, and induced a marked apoptosis that was further enhanced with increasing doses of ionizing radiation. Combination treatment synergistically reduced tumor weight and volume without obvious toxicity. Western blot analysis in vitro and in vivo showed that triptolide induced apoptotic protein Bax expression and inhibited phosph-NF-κB p65, Bcl-2 and VEGF proteins without affecting other NF-κB related protein expression. In conclusion, our findings revealed that triptolide plus ionizing radiation had synergistic anti-tumor and anti-angiogenesis effects in NPC via down-regulating NF-κB p65 phosphorylation. The combination therapy may provide novel mechanism insights into inhibit NPC.
Collapse
|