1
|
Hjazi A, Jasim SA, Al-Dhalimy AMB, Bansal P, Kaur H, Qasim MT, Mohammed IH, Deorari M, Jawad MA, Zwamel AH. HOXA9 versus HOXB9; particular focus on their controversial role in tumor pathogenesis. J Appl Genet 2024; 65:473-492. [PMID: 38753266 DOI: 10.1007/s13353-024-00868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 08/09/2024]
Abstract
The Homeobox (HOX) gene family is essential to regulating cellular processes because it maintains the exact coordination required for tissue homeostasis, cellular differentiation, and embryonic development. The most distinctive feature of this class of genes is the presence of the highly conserved DNA region known as the homeobox, which is essential for controlling their regulatory activities. Important players in the intricate process of genetic regulation are the HOX genes. Many diseases, especially in the area of cancer, are linked to their aberrant functioning. Due to their distinctive functions in biomedical research-particularly in the complex process of tumor advancement-HOXA9 and HOXB9 have drawn particular attention. HOXA9 and HOXB9 are more significant than what is usually connected with HOX genes since they have roles in the intricate field of cancer and beyond embryonic processes. The framework for a focused study of the different effects of HOXA9 and HOXB9 in the context of tumor biology is established in this study.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | | | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Israa Hussein Mohammed
- College of Nursing, National University of Science and Technology, Dhi Qar, Nasiriyah, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Shenoy US, Basavarajappa DS, Kabekkodu SP, Radhakrishnan R. Pan-cancer exploration of oncogenic and clinical impacts revealed that HOXA9 is a diagnostic indicator of tumorigenesis. Clin Exp Med 2024; 24:134. [PMID: 38904676 PMCID: PMC11192824 DOI: 10.1007/s10238-024-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Homeodomain transcription factor A9 (HOXA9) is a member of the HOX cluster family of transcription factors that are crucially involved in embryo implantation, morphogenesis, body axis development, and endothelial cell differentiation. Despite numerous reports on its aberrant expression in a few malignancies, the molecular and functional complexity of HOXA9 across cancers remains obscure. We aimed to analyze the dynamic role of HOXA9 across cancers by identifying, analyzing, and understanding its multiple modes of regulation and functional implications and identifying possible therapeutic avenues. We conducted a comprehensive analysis to determine the role of HOXA9 across cancers. This approach involved the integration of large-scale datasets from public repositories such as the Genomic Data Commons, specifically the Cancer Genome Atlas (GDC-TCGA), across 33 different cancer types. The multiple modes of HOXA9 regulation by genetic and epigenetic factors were determined using online tools, which comprised experimentally validated observations. Furthermore, downstream pathways were identified by predicting the targets of HOXA9 and by performing functional enrichment analysis. We also assessed the clinical significance of HOXA9 in terms of prognosis and stage stratification. This study evaluated the correlation between HOXA9 and tumor-infiltrating molecules and discussed its association with therapeutically approved antineoplastic drugs. HOXA9 was significantly upregulated in 9 tumors and downregulated in 2 cancers. The deregulation of HOXA9 is primarily attributed to epigenetic factors, including promoter DNA methylation and noncoding RNAs (ncRNAs). The HOXA9 transcription factor interacts with PBX/MEIS cofactors and regulates multiple genes involved in cancer-associated EMT, autophagy, the cell cycle, metabolic pathways, Wnt signaling, TGF-β signaling, the AMPK pathway, PI3K/AKT signaling, and NF-κB signaling, thereby establishing control over downstream mechanisms. Differential expression in various clinical stages across cancers was shown to have prognostic significance and to be correlated with tumor-infiltrating immune molecules. The assessment of the correlation of HOXA9 expression with approved antineoplastic drugs revealed that targeting HOXA9 could be the most reliable strategy for preventing cancer progression. HOXA9 is upregulated in the majority of malignancies and drives cancer progression by regulating multiple signaling mechanisms. Hence, HOXA9 could be a reliable diagnostic indicator and a potential therapeutic candidate for solid cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dhanraj Salur Basavarajappa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield,, S10 2TA, UK.
| |
Collapse
|
3
|
Shenoy US, Adiga D, Alhedyan F, Kabekkodu SP, Radhakrishnan R. HOXA9 transcription factor is a double-edged sword: from development to cancer progression. Cancer Metastasis Rev 2024; 43:709-728. [PMID: 38062297 PMCID: PMC11156722 DOI: 10.1007/s10555-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 04/02/2024]
Abstract
The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Faisal Alhedyan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
4
|
Zheng ZQ, Yuan GQ, Zhang GG, Nie QQ, Wang Z. Development and validation of a predictive model in diagnosis and prognosis of primary glioblastoma patients based on Homeobox A family. Discov Oncol 2023; 14:108. [PMID: 37351805 DOI: 10.1007/s12672-023-00726-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Homeobox A (HOXA) family is involved in the development of malignancies as either tumor suppressors or oncogenes. However, their roles in glioblastoma (GBM) and clinical significance have not been fully elucidated. METHODS HOXA mutation and expressions in pan-cancers were investigated using GSCA and Oncomine, which in GBM were validated by cBioPortal, Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas (TCGA) datasets. Kaplan-Meier analyses were conducted to determine prognostic values of HOXAs at genetic and mRNA levels. Diagnostic roles of HOXAs in tumor classification were explored by GlioVis and R software. Independent prognostic HOXAs were identified using Cox survival analyses, the least absolute shrinkage and selection operator (LASSO) regression, quantitative real-time PCR, and immunohistochemical staining. A HOXAs-based nomogram survival prediction model was developed and evaluated using Kaplan-Meier analysis, time-dependent Area Under Curve, calibration plots, and Decision Curve Analysis in training and validation cohorts. RESULTS HOXAs were highly mutated and overexpressed in pan-cancers, especially in CGGA and TCGA GBM datasets. Genetic alteration and mRNA expression of HOXAs were both found to be prognostic. Specific HOXAs could distinguish IDH mutation (HOXA1-7, HOXA9, HOXA13) and molecular GBM subtypes (HOXA1-2, HOXA9-11, HOXA13). HOXA1/2/3/10 were confirmed to be independent prognostic members, with high expressions validated in clinical GBM tissues. The HOXAs-based nomogram model exhibited good prediction performance and net benefits for patients in training and validation cohorts. CONCLUSION HOXA family has diagnostic values, and the HOXAs-based nomogram model is effective in survival prediction, providing a novel approach to support the treatment of GBM patients.
Collapse
Affiliation(s)
- Zong-Qing Zheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gui-Qiang Yuan
- Beijing Neurosurgical Institute & Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Capital Medical University, Beijing, China
| | - Guo-Guo Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Qian-Qian Nie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
5
|
Abou-Zeid A, Hashad D, Baess A, Mosaad M, Tayae E. HOXA9 gene promotor methylation and copy number variation of SOX2 and HV2 genes in cell free DNA: A potential diagnostic panel for non-small cell lung cancer. BMC Cancer 2023; 23:329. [PMID: 37038139 PMCID: PMC10088126 DOI: 10.1186/s12885-023-10793-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Most cases of lung cancer are diagnosed at advanced stage. Detection of genetic and epigenetic markers in cell-free DNA (cfDNA) is a promising tool for the diagnosis of lung cancer at an early stage. The aim of this study was to identify non-invasive diagnostic markers in cell free DNA (cfDNA) for non-small cell lung cancer (NSCLC) as it is the most common type of lung cancer. METHODS We investigated the cfDNA HOXA9 gene promotor methylation by pyrosequencing. Copy number variation of SOX2 and HV2 genes were detected by real-time PCR in cfDNA extracted from plasma samples of 25 newly diagnosed NSCLC patients and 25 age and sex matched controls. RESULTS Methylation level of HOXA9 was significantly higher in NSCLC patients than controls (p > 0.001). SOX2 showed significantly higher CNV and HV2 showed lower CNV in patients than controls (p > 0.001, p = 0.001 respectively). Receiver Operating Characteristic (ROC) curve analysis for HOXA9 methylation, SOX2 CNV and HV2 CNV showed a discrimination power of 79.4%, 80% and 77.5% respectively and the area under the curve for the combined analysis of the three genes was 0.958 with 88% sensitivity and 100% specificity. CONCLUSIONS In this study, we suggest a potentially diagnostic panel that may help in detection of lung cancer with high sensitivity and specificity using cell free DNA. This Panel included HOXA9 gene methylation and the CNV of SOX2 and HV2 genes.
Collapse
Affiliation(s)
- Abla Abou-Zeid
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa Hashad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ayman Baess
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mai Mosaad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Tayae
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
6
|
Mahmoodi M, Karami F, Abdollahi H, Giahi N, Divsalar K, Honarmand A, Modarressi MH. Promoter Methylation of Two HOXA9 and NISCH Genes in Opium Users. ADDICTION & HEALTH 2023; 15:87-92. [PMID: 37560396 PMCID: PMC10408764 DOI: 10.34172/ahj.2023.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2022] [Indexed: 08/11/2023]
Abstract
BACKGROUND Opiate abuse has been critically increased in the world, especially in Iran. Owing to the association of opiate use with multiple human cancers and neurological disorders, seeking for genetic and epigenetic effects of opium can pave the way for early diagnosis of major health defects in addicted users. Accordingly, the present study aimed to determine the methylation status of the promoter of two genes, which are actively involved in neurodevelopment and cancer evolution. METHODS DNA was isolated from peripheral blood of 28 opium abusers and 19 healthy controls and then subjected to sonication. Sonicated DNAs undergone methylated DNA immunoprecipitation-real time polymerase chain reaction (MeDIP-Real Time PCR) using specific primer pairs designed for HOXA9 and NISCH genes. Obtained data were analyzed using SPSS software. FINDINGS HOXA9 and NISCH genes were found to be significantly methylated in addicted users compared to controls (P<0.001) which was significantly associated with the mean of the age regarding HOXA9 gene (P=0.002). Neither opium amount nor duration or route of using was associated with the methylation status of HOXA9 or NISCH genes. CONCLUSION Hypermethylation of HOXA9 and NISCH genes as tumor suppressor in opium-addicted individuals can be considered as confirmatory evidence for carcinogenesis of opium. Further studies are required to figure out the role of epigenetic alterations in cancer evolution among opium users.
Collapse
Affiliation(s)
- Majid Mahmoodi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Karami
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamidreza Abdollahi
- Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navidreza Giahi
- Akhtar Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kouros Divsalar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amin Honarmand
- Department of Emergency Medicine, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
7
|
Li XF, Zhang HB, Huo Y. High HOXA9 gene expression predicts response to chemotherapy and prognosis of high-grade serous ovarian cancer patients. J Int Med Res 2022; 50:3000605221135864. [DOI: 10.1177/03000605221135864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective High-grade serous ovarian cancer (HGSOC) is a deadly malignancy. Homeobox protein A9 ( HOXA9) is linked with serous papillary histotype differentiation, and inappropriate HOXA9 expression is a step in ovarian cancer that induces aberrant differentiation. This study aimed to reveal the significance of HOXA9 in HGSOC. Methods HOXA9 mRNA and protein expression were examined by quantitative PCR and immunohistochemistry, respectively. The chi-square test was used to evaluate associations between HOXA9 expression and clinical characteristics. The prognostic value of HOXA9 was calculated by the Kaplan–Meier method. The Kaplan–Meier Plotter database was used to assess the prognostic value of HOXA9. Results The mRNA and protein expression of HOXA9 were significantly upregulated in chemotherapy-resistant HGSOC compared with chemotherapy-sensitive HGSOC. The chi-square test showed that high HOXA9 expression was significantly related with grade, clinical stage, and residual disease. High HOXA9 expression was significantly associated with poor prognosis. The Kaplan–Meier Plotter database further confirmed these results. Cox hazard regression showed that high HOXA9 expression was an independent prognostic factor for survival in HGSOC patients. Conclusion This study showed that HOXA9 expression was associated with chemotherapy resistance and poor outcomes in HGSOC patients. High HOXA9 expression might be a prognostic indicator for HGSOC.
Collapse
Affiliation(s)
- Xiao-fei Li
- Department of Obstetrics and Gynecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Hai-Bo Zhang
- Department of Obstetrics and Gynecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Yan Huo
- Department of Intensive Care Unit, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| |
Collapse
|
8
|
Shenoy US, Adiga D, Kabekkodu SP, Hunter KD, Radhakrishnan R. Molecular implications of HOX genes targeting multiple signaling pathways in cancer. Cell Biol Toxicol 2022; 38:1-30. [PMID: 34617205 PMCID: PMC8789642 DOI: 10.1007/s10565-021-09657-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Homeobox (HOX) genes encode highly conserved homeotic transcription factors that play a crucial role in organogenesis and tissue homeostasis. Their deregulation impacts the function of several regulatory molecules contributing to tumor initiation and progression. A functional bridge exists between altered gene expression of individual HOX genes and tumorigenesis. This review focuses on how deregulation in the HOX-associated signaling pathways contributes to the metastatic progression in cancer. We discuss their functional significance, clinical implications and ascertain their role as a diagnostic and prognostic biomarker in the various cancer types. Besides, the mechanism of understanding the theoretical underpinning that affects HOX-mediated therapy resistance in cancers has been outlined. The knowledge gained shall pave the way for newer insights into the treatment of cancer.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
9
|
Abstract
Obesity is a chronic and complex psychosomatic disease that is becoming increasingly prevalent worldwide. This study aimed to analyze whole methylation profiles to uncover the epigenetic mechanisms associated with obesity. DNA methylation profiles in blood samples from patients with obesity and normal controls were studied using the Illumina 850 K methylation microarray. The diagnostic value of the differentially methylated genes was determined using receiver operating characteristic (ROC) analysis. The expression of selected candidate genes was verified using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and pyrosequencing. A total of 9,371 significantly differentially methylated sites (7,974 hypermethylated sites and 1,397 hypomethylated sites) were identified in 4,571 genes. A difference in the distribution of differentially methylated sites (hypermethylated and hypomethylated) in both gene structures and CpG islands was observed. A total of 114 key differentially methylated sites were identified in the CpG islands. ROC results indicated that Inhibin Subunit Beta B (INHBB), Homeobox A9 (HOXA9), Troponin T3 (TNNT3), Cyclic adenosine monophosphate (cAMP)-responsive element binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) and Zinc finger and BTB domain-containing 7 B (ZBTB7B) could discriminate patients with obesity from normal controls. RT-qPCR results of CRTC1 and ZBTB7B were consistent with our methylation profile results. The pyrosequencing results showed that the methylation levels of CRTC1 CpG sites (CpG1 and CpG2-cg11660071) and INHBB CpG sites (CpG2) were significantly changed in patients with obesity compared with normal controls, which was consistent with our DNA methylation profile results. Our study provides new insights into the pathological mechanism of obesity.
Collapse
Affiliation(s)
- Chunhu Wang
- 17th Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Wang
- 17th Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiguang Ma
- 17th Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Hahn JM, McFarland KL, Combs KA, Anness MC, Supp DM. Analysis of HOX gene expression and the effects of HOXA9 overexpression in fibroblasts derived from keloid lesions and normal skin. Wound Repair Regen 2021; 29:777-791. [PMID: 33811779 DOI: 10.1111/wrr.12917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
Keloids are fibroproliferative lesions resulting from an abnormal wound healing process due to pathological mechanisms that remain incompletely understood. Keloids tend to occur more frequently in anterior versus posterior body regions (e.g., ears, face, upper torso); this has been attributed to higher skin tension in those areas, although this has not yet been conclusively proven. Previous studies reported reduced expression of multiple homeobox (HOX) genes in keloid versus normal fibroblasts, suggesting a role for HOX genes in keloid pathology. However, HOX genes are differentially expressed along the anterior-posterior axis. Hypothetically, differential HOX expression may be due to differences in body sites, as matched donor sites are often unavailable for keloids and normal skin. To better understand the basis for differential HOX gene expression in cells from keloids compared with normal skin, we compared HOXA7, HOXA9, HOXC8 and HOXC11 expression in keloid and normal skin-derived fibroblasts from various body sites. When keloid (N = 20) and normal (N = 12) fibroblast cell strains were evaluated, expression of HOXA7, HOXA9 and HOXC8 was significantly lower in keloid versus normal fibroblasts. However, HOX gene expression was lower in fibroblasts from more anterior versus posterior body sites. When keloid and normal cells from similar body sites were compared, differential HOX expression was not observed. To investigate the phenotypic relevance of HOX expression, HOXA9 was overexpressed in keloid and normal fibroblasts. HOXA9 overexpression did not affect proliferation but significantly reduced fibroblast migration and altered gene expression. The results suggest that differential HOX expression may be due to differences in positional identity between keloid and normal fibroblasts. However, HOX genes can potentially regulate fibroblast phenotype, suggesting that differential HOX gene expression may play a role in keloid development in anterior body sites.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kevin L McFarland
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly A Combs
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Meridith C Anness
- Women in Science and Engineering Program and Undergraduate Program in Medical Sciences, University of Cincinnati, Cincinnati, Ohio, USA.,Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| |
Collapse
|
11
|
Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. ACTA ACUST UNITED AC 2021; 44:328-355. [PMID: 33402862 PMCID: PMC7759197 DOI: 10.3906/biy-2006-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
MEIS proteins are historically associated with tumorigenesis, metastasis, and invasion in cancer. MEIS and associated PBX-HOX proteins may act as tumor suppressors or oncogenes in different cellular settings. Their expressions tend to be misregulated in various cancers. Bioinformatic analyses have suggested their upregulation in leukemia/lymphoma, thymoma, pancreas, glioma, and glioblastoma, and downregulation in cervical, uterine, rectum, and colon cancers. However, every cancer type includes, at least, a subtype with high MEIS expression. In addition, studies have highlighted that MEIS proteins and associated factors may function as diagnostic or therapeutic biomarkers for various diseases. Herein, MEIS proteins and associated factors in tumorigenesis are discussed with recent discoveries in addition to how they could be modulated by noncoding RNAs or newly developed small-molecule MEIS inhibitors.
Collapse
Affiliation(s)
- Birkan Gİrgİn
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| | - Medine KaradaĞ-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| | - Fatih KocabaŞ
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
12
|
Yu SL, Koo H, Lee SI, Kang J, Han YH, Yeom YI, Lee DC. A Synthetic CPP33-Conjugated HOXA9 Active Domain Peptide Inhibits Invasion Ability of Non-Small Lung Cancer Cells. Biomolecules 2020; 10:biom10111589. [PMID: 33238593 PMCID: PMC7700116 DOI: 10.3390/biom10111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Homeobox A9 (HOXA9) expression is associated with the aggressive growth of cancer cells and poor prognosis in lung cancer. Previously, we showed that HOXA9 can serve as a potential therapeutic target for the treatment of metastatic non-small cell lung cancer (NSCLC). In the present study, we have carried out additional studies toward the development of a peptide-based therapeutic agent. Vectors expressing partial DNA fragments of HOXA9 were used to identify a unique domain involved in the inhibition of NSCLC cell invasion. Next, we performed in vitro invasion assays and examined the expression of EMT-related genes in transfected NSCLC cells. The C-terminal fragment (HOXA9-C) of HOXA9 inhibited cell invasion and led to upregulation of CDH1 and downregulation of SNAI2 in A549 and NCI-H1299 cells. Reduced SNAI2 expression was consistent with the decreased binding of transcription factor NF-kB to the SNAI2 promoter region in HOXA9-C overexpressing cells. Based on the above results, we synthesized a cell-permeable peptide, CPP33-HADP (HOXA9 active domain peptide), for lung-specific delivery and tested its therapeutic efficiency. CPP33-HADP effectively reduced the invasion ability of NSCLC cells in both in vitro and in vivo mouse models. Our results suggest that CPP33-HADP has significant potential for therapeutic applications in metastatic NSCLC.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.-I.L.); (J.K.); (Y.-H.H.)
- Correspondence: (S.-L.Y.); (D.C.L.)
| | - Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (Y.I.Y.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Se-In Lee
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.-I.L.); (J.K.); (Y.-H.H.)
| | - JaeKu Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.-I.L.); (J.K.); (Y.-H.H.)
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Young-Hyun Han
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.-I.L.); (J.K.); (Y.-H.H.)
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (Y.I.Y.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (Y.I.Y.)
- Correspondence: (S.-L.Y.); (D.C.L.)
| |
Collapse
|
13
|
Paço A, de Bessa Garcia SA, Freitas R. Methylation in HOX Clusters and Its Applications in Cancer Therapy. Cells 2020; 9:cells9071613. [PMID: 32635388 PMCID: PMC7408435 DOI: 10.3390/cells9071613] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
HOX genes are commonly known for their role in embryonic development, defining the positional identity of most structures along the anterior–posterior axis. In postembryonic life, HOX gene aberrant expression can affect several processes involved in tumorigenesis such as proliferation, apoptosis, migration and invasion. Epigenetic modifications are implicated in gene expression deregulation, and it is accepted that methylation events affecting HOX gene expression play crucial roles in tumorigenesis. In fact, specific methylation profiles in the HOX gene sequence or in HOX-associated histones are recognized as potential biomarkers in several cancers, helping in the prediction of disease outcomes and adding information for decisions regarding the patient’s treatment. The methylation of some HOX genes can be associated with chemotherapy resistance, and its identification may suggest the use of other treatment options. The use of epigenetic drugs affecting generalized or specific DNA methylation profiles, an approach that now deserves much attention, seems likely to be a promising weapon in cancer therapy in the near future. In this review, we summarize these topics, focusing particularly on how the regulation of epigenetic processes may be used in cancer therapy.
Collapse
Affiliation(s)
- Ana Paço
- Centre Bio: Bioindustries, Biorefineries and Bioproducts, BLC3 Association—Technology and Innovation Campus, 3405-169 Oliveira do Hospital, Portugal;
| | | | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal;
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
14
|
Sun Q, Zhang SY, Zhao JF, Han XG, Wang HB, Sun ML. HIF-1α or HOTTIP/CTCF Promotes Head and Neck Squamous Cell Carcinoma Progression and Drug Resistance by Targeting HOXA9. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:164-175. [PMID: 32169804 PMCID: PMC7068198 DOI: 10.1016/j.omtn.2019.12.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequently diagnosed cancer worldwide. However, the clinical outcomes remain unsatisfactory. The aim of this study is to unravel the functional role and regulatory mechanism of HOXA9 in HNSCC. A cohort of 25 HNSCC tumor tissues and normal tissue counterparts was collected. qRT-PCR and western blotting were performed to determine the levels of HOXA9 and epithelial-mesenchymal transition (EMT)-related markers. Cell Counting Kit-8 (CCK-8) and colony formation assays were conducted to monitor cell viability and cytotoxicity. Transwell and wound healing assays were used to determine cell migration and invasion. Annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) staining was performed to detect cell apoptosis. Bioinformatic analysis, electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assays were performed to investigate the direct binding between HIF-1α or CCCTC binding factor (CTCF) and HOXA9. Glutathione S-transferase (GST) pull-down and RNA pull-down assays were used to validate the interaction between CTCF and HOTTIP. HOXA9 was upregulated in HNSCC tissues and cells. Knockdown of HOXA9 inhibited cell proliferation, migration, invasion, and chemoresistance but promoted apoptosis in CAL-27 and KB cells. Knockdown of HOXA9 also regulated EMT-related marker via targeting YAP1/β-catenin. Silencing of HOTTIP or CTCF exerted similar tumor-suppressive effects in HNSCC. Mechanistically, HIF-1α or CTCF transcriptionally regulated HOXA9, and HOTTIP/CTCF cooperatively regulated HOXA9 in KB cells. HIF-1α or HOTTIP/CTCF transcriptionally modulates HOXA9 expression to regulate HNSCC progression and drug resistance.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, Henan Province 450052, P.R. China
| | - Shuai-Yuan Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, Henan Province 450052, P.R. China
| | - Jun-Fang Zhao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, Henan Province 450052, P.R. China
| | - Xin-Guang Han
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, Henan Province 450052, P.R. China
| | - Hai-Bin Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, Henan Province 450052, P.R. China
| | - Ming-Lei Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, Henan Province 450052, P.R. China.
| |
Collapse
|
15
|
Jin Y, Kim HK, Lee J, Soh EY, Kim JH, Song I, Chung YS, Choi YJ. Transcription Factor HOXA9 is Linked to the Calcification and Invasion of Papillary Thyroid Carcinoma. Sci Rep 2019; 9:6773. [PMID: 31043660 PMCID: PMC6494860 DOI: 10.1038/s41598-019-43207-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/17/2019] [Indexed: 02/03/2023] Open
Abstract
Calcification is important for the diagnosis of papillary thyroid carcinoma (PTC). Runt-related transcription factor 2 (RUNX2), a master transcription factor associated with osteogenic differentiation, is reportedly related to PTC calcification and invasiveness. However, its regulatory role in this process is somewhat uncharacterized. Here, we attempted to identify genes that regulate RUNX2 and clarify its function in PTC carcinogenesis and calcification. The expression of RUNX2-upstream genes was evaluated by real-time PCR in Nthy-Ori 3-1 normal thyroid cells and TPC1 and BHP10-3 PTC cell lines. Luciferase and chromatin immunoprecipitation assays were performed with candidate genes after cloning the RUNX2 promoter. We found that RUNX2 promoter activity was enhanced by homeobox family A9 (HOXA9). Over-expression of HOXA9 was found to enhance alkaline phosphatase activity, mineralization, and in vitro tumour cell migration and invasion, whereas downregulation had the opposite effects. These results indicate that HOXA9, a positive regulator of RUNX2, can enhance calcification, migration, and invasion in PTC. Our data improve the understanding of the molecular mechanisms of microcalcification in PTC as well as tumorigenesis.
Collapse
Affiliation(s)
- Yilan Jin
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Hyeung Kyoo Kim
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Jeonghun Lee
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Euy Young Soh
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Jang-Hee Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, South Korea
| | - Insun Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yoon-Sok Chung
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
16
|
Zhou C, Li J, Li Q, Liu H, Ye D, Wu Z, Shen Z, Deng H. The clinical significance of HOXA9 promoter hypermethylation in head and neck squamous cell carcinoma. J Clin Lab Anal 2019; 33:e22873. [PMID: 30843252 PMCID: PMC6595302 DOI: 10.1002/jcla.22873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/13/2019] [Accepted: 02/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The purpose of the current study was to assess the association between HOXA9 (homeobox A9) promoter methylation and head and neck squamous cell carcinoma (HNSCC) and its diagnostic value. METHODS Quantitative methylation-specific PCR (qMSP) was applied to measure HOXA9 promoter methylation levels in 145 paired HNSCC and corresponding normal tissue samples. Data from the Cancer Genome Atlas (TCGA) database (n = 578; 528 HNSCC and 50 normal) were also analyzed. RESULTS Significantly higher levels of HOXA9 promoter methylation were detected in HNSCC, compared with normal, tissues (our cohort: P = 1.06E-35; TCGA cohort: P = 3.06E-39). Moreover, HOXA9 methylation was significantly increased in patients with advanced tumor (T) stage, lymph node metastasis, and advanced clinical stage. Areas under the receiver characteristic curves (AUCs) based on our cohort and TCGA data were 0.930 and 0.967, respectively. CONCLUSION In summary, our study reveals that HOXA9 promoter hypermethylation contributes to the risk of HNSCC and its progression and metastasis. Additionally, HOXA9 hypermethylation is a potential biomarker for the early diagnosis and screening of patients with HNSCC.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Jinyun Li
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Huigao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, China
| | - Dong Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhenhua Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center, Lihuili Eastern Hospital, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
17
|
Yu SL, Koo H, Lee HY, Yeom YI, Lee DC, Kang J. Recombinant cell-permeable HOXA9 protein inhibits NSCLC cell migration and invasion. Cell Oncol (Dordr) 2019; 42:275-285. [DOI: 10.1007/s13402-019-00424-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 11/28/2022] Open
|
18
|
Huang Y, Chen L, Guo A. Upregulated expression of HOXC8 is associated with poor prognosis of cervical cancer. Oncol Lett 2018; 15:7291-7296. [PMID: 29725445 DOI: 10.3892/ol.2018.8200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
Homeobox C8 (HOXC8) is a transcription factor that has been reported to regulate numerous genes associated with tumor progression. However, its function in cervical cancer (CC) remains to be elucidated. In the present study, the expression level of HOXC8 was examined in CC tissues and cell lines using reverse transcription-quantitative polymerase chain reaction and western blot analysis. Additionally, CC cell lines were transfected with small interfering RNAs (siRNAs) to downregulate the expression of HOX8 and assess cell proliferation using Cell Counting Kit-8. The results demonstrated a significantly increased expression of HOXC8 in CC tissues and cell lines compared with non-tumor tissues, and a normal cervical cell line, respectively. Additionally, the downregulation of HOXC8, which was achieved by siRNA transfection, significantly inhibited the proliferation rate of CC cell lines. Kaplan-Meier curves demonstrated that the increased expression of HOXC8 was associated with poor prognosis of patients with CC. Additionally, univariate and multivariate analysis revealed that HOXC8 was a significant and independent predictor for overall survival of patients with CC. In conclusion, the results of the present study suggest that HOXC8 may be involved in the progression of CC and may serve as a therapeutic target for CC.
Collapse
Affiliation(s)
- Yuxiu Huang
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lihong Chen
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Aqin Guo
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
19
|
Watanabe Y, Saito M, Saito K, Matsumoto Y, Kanke Y, Onozawa H, Hayase S, Sakamoto W, Ishigame T, Momma T, Ohki S, Takenoshita S. Upregulated HOXA9 expression is associated with lymph node metastasis in colorectal cancer. Oncol Lett 2017; 15:2756-2762. [PMID: 29435001 PMCID: PMC5778893 DOI: 10.3892/ol.2017.7650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Homeobox A (HOXA) cluster genes, members of the HOX family, perform an important role in normal organ development. It has previously been reported that HOXA gene expression in various types of cancer is associated with poor patient outcomes. However, the role of HOXA genes, as well as their expression, in colorectal cancers (CRC) remains unknown. Therefore, the present study investigated HOXA gene expression in patients with CRC and revealed that HOXA9 expression was significantly increased in tumor tissues compared with non-tumor tissues. Additionally, the functional role of HOXA9 was assessed by knocking down the HOXA9 gene in CRC cells and by evaluating cell growth. Regarding gene expression, cases with positive HOXA9 expression (as detected by immunohistochemical staining) were significantly associated with higher TNM stage and positive lymph node metastasis, although no association was observed between increased HOXA9 levels and the rate of overall survival in the present cohort. Regarding the functional role, HOXA9 expression was demonstrated to be upregulated in patients with CRC and was associated with lymph node metastasis.
Collapse
Affiliation(s)
- Yohei Watanabe
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yoshiko Matsumoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yasuyuki Kanke
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hisashi Onozawa
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Suguru Hayase
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Teruhide Ishigame
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shinji Ohki
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Seiichi Takenoshita
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
20
|
Raju K L, Augustine D, Rao RS, S V S, Haragannavar VC, Nambiar S, Prasad K, Awan KH, Patil S. Biomarkers in Tumorigenesis Using Cancer Cell Lines: A Systematic Review. Asian Pac J Cancer Prev 2017; 18:2329-2337. [PMID: 28950674 PMCID: PMC5720632 DOI: 10.22034/apjcp.2017.18.9.2329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide. Despite many research advancements in the field, the genetic changes
regulating the transformation of normal oral cells into malignant cells have not been fully elucidated. Several studies have
evaluated carcinogenesis at the molecular level. Cancer cell lines are commonly used in biomedical research because
they provide an unlimited source of cells and represent various stages of initiation and progression of carcinogenesis
in vitro. Aims: The objective of the study was to review original research articles using cancer cell lines as a tool to
understand carcinogenesis and to identify the genes involved in tumor development. Additionally, we also examined
the application of the genes as predictive biomarkers. Methods and Materials: Several databases, including PubMed,
Google Scholar, Ebsco, and Science Direct, were searched from 1985 to December 2016 using various combinations of
the following key words: “mouth neoplasm”, “cell lines”, and “tumorigenesis”. Original experimental studies published
in English were included. We excluded letters to the editor, historic reviews, and unpublished data from the analysis.
Results: There were 17 studies (in vitro) included in the analysis. There were 14 genes and 4 miRNAs involved in
malignant transformation of oral keratinocytes into cancer cells. The most commonly studied genes were p53, cyclin
D1, and hTERT. Conclusion: Additional reviews and studies are needed to identify a panel of genes specific to various
potentially malignant disorders and to aid in the early detection of oral squamous cell carcinoma (OSCC) because
tumorigenesis involves the mutation of multiple genes. Furthermore, improving advanced cost-effective diagnostic
methods may benefit the public health sector.
Collapse
Affiliation(s)
- Lizbeth Raju K
- Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, M.S.Ramaiah University of Applied Sciences, M S R Nagar, Bangalore, Karnataka, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mora-García ML, Ávila-Ibarra LR, García-Rocha R, Weiss-Steider B, Hernández-Montes J, Don-López CA, Gutiérrez-Serrano V, Titla-Vilchis IJ, Fuentes-Castañeda MC, Monroy-Mora A, Jave-Suárez LF, Chacón-Salinas R, Vallejo-Castillo L, Pérez-Tapia SM, Monroy-García A. Cervical cancer cells suppress effector functions of cytotoxic T cells through the adenosinergic pathway. Cell Immunol 2017; 320:46-55. [PMID: 28950987 DOI: 10.1016/j.cellimm.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND The expression of CD73 in tumor cells plays a significant role in the production of adenosine (Ado) that suppresses antitumor effector cells. METHODS In this study we analyzed the capability of HPV-positive (HPV+) cervical cancer (CeCa) cell lines CaSki, SiHa, HeLa, and RoVa; and HPV-negative (HPV-) cell lines C33A and ViBo to produce Ado and inhibit effector functions of CD8+ T cells. RESULTS HPV+ CeCa cells expressed significantly higher levels of CD73 in the membrane (p<0.01) than HPV- CeCa cells and this expression was associated with the production of larger amounts of Ado (>400μM) compared to HPV-CeCa cells (<200μM) in the presence of AMP, as well asa stronger inhibition of (>50%) proliferation, activation, and cytotoxic activity of CD8+ T cells via interaction with A2A adenosine receptor. We also provide evidence that silenced E6/E7 expression in CeCa cells, strongly reduced its CD73 expression level and its capability to generate Ado. CONCLUSION This results suggest that HPV infection, which is associated with more than 99% of CeCa cases, may present an increased constitutive expression of CD73 in cervical neoplasia to contribute to the suppression of the immune response mediated by the production of large amounts of Ado.
Collapse
Affiliation(s)
- M L Mora-García
- Laboratorio de Inmunobiología, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM, Ciudad de México, Mexico.
| | - L R Ávila-Ibarra
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, Mexico.
| | - R García-Rocha
- Laboratorio de Inmunobiología, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM, Ciudad de México, Mexico.
| | - B Weiss-Steider
- Laboratorio de Inmunobiología, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM, Ciudad de México, Mexico.
| | - J Hernández-Montes
- Laboratorio de Inmunobiología, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM, Ciudad de México, Mexico.
| | - C A Don-López
- Laboratorio de Inmunobiología, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM, Ciudad de México, Mexico.
| | - V Gutiérrez-Serrano
- Laboratorio de Inmunobiología, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM, Ciudad de México, Mexico.
| | - I J Titla-Vilchis
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, Mexico.
| | - M C Fuentes-Castañeda
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, Mexico.
| | - A Monroy-Mora
- Laboratorio de Inmunobiología, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM, Ciudad de México, Mexico.
| | - L F Jave-Suárez
- División de Inmunología, Inmunología Molecular, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Mexico.
| | - R Chacón-Salinas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional, Ciudad de México, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Ciudad de México, Mexico.
| | - L Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional, Ciudad de México, Mexico; Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Ciudad de México, Mexico.
| | - S M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional, Ciudad de México, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Ciudad de México, Mexico; Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - A Monroy-García
- Laboratorio de Inmunobiología, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM, Ciudad de México, Mexico; Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, Mexico.
| |
Collapse
|
22
|
Re-expression of pro-fibrotic, embryonic preserved mediators in irradiated arterial vessels of the head and neck region. Strahlenther Onkol 2017; 193:951-960. [DOI: 10.1007/s00066-017-1192-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/28/2017] [Indexed: 01/19/2023]
|
23
|
Wang K, Jin J, Ma T, Zhai H. MiR-139-5p inhibits the tumorigenesis and progression of oral squamous carcinoma cells by targeting HOXA9. J Cell Mol Med 2017; 21:3730-3740. [PMID: 28780773 PMCID: PMC5706525 DOI: 10.1111/jcmm.13282] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Our study sought to clarify the effects of microRNA-139-5p (miR-139-5p) in the tumorigenesis and progression of oral squamous cell carcinoma (OSCC) by regulating HOXA9. MiR-139-5p and HOXA9 expression in OSCC tissues, tumour adjacent tissues, OSCC cells and normal cells were tested by qRT-PCR. SAS and CAL-27 cell lines were selected in among four OSCC cell lines and then transfected with miR-139-5p mimics, pEGFP-HOXA9 and cotransfected with miR-139-5p mimics + pEGFP-HOXA9. We used MTT, colony formation, transwell and wound healing assays to analyse cell viability, proliferation, invasion and migration. The target relationship between miR-139-5p and HOXA9 was verified by luciferase reporter assay and Western blot, respectively. MiR-139-5p was down-regulated, whereas HOXA9 was up-regulated in OSCC tissues and cells. The proliferation, invasion and migration ability of SAS and CAL-27 cells in miR-139-5p mimics group were significantly weaker than those in the control group and the miR-NC group (P < 0.01). MiR-139-5p can negatively regulate HOXA9. The proliferation, invasion and migration of SAS and CAL-27 cells in the miR-139-5p mimics + pEGFP-HOXA9 group were not significantly different from those in the blank control and negative control groups (P > 0.05). Our results indicated that miR-139-5p could directly inhibit HOXA9, which might be a potential mechanism in inhibiting the proliferation, invasiveness and migration of OSCC cells.
Collapse
Affiliation(s)
- Kai Wang
- Department of Plastic Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jun Jin
- Department of Plastic Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Tengxiao Ma
- Department of Plastic Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongfeng Zhai
- Department of Plastic Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Mansour MA, Senga T. HOXD8 exerts a tumor-suppressing role in colorectal cancer as an apoptotic inducer. Int J Biochem Cell Biol 2017; 88:1-13. [PMID: 28457970 DOI: 10.1016/j.biocel.2017.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/16/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023]
Abstract
Homeobox (HOX) genes are conserved transcription factors which determine the anterior-posterior body axis patterning. HOXD8 is a member of HOX genes deregulated in several tumors such as lung carcinoma, neuroblastoma, glioma and colorectal cancer (CRC) in a context-dependent manner. In CRC, HOXD8 is downregulated in cancer tissues and metastatic foci as compared to normal tissues. Whether HOXD8 acts as a tumor suppressor of malignant progression and metastasis is still unclear. Also, the underlying mechanism of its function including the downstream targets is totally unknown. Here, we clarified the lower expression of HOXD8 in clinical colorectal cancer vs. normal colon tissues. Also, we showed that stable expression of HOXD8 in colorectal cancer cells significantly reduced the cell proliferation, anchorage-independent growth and invasion. Further, using The Cancer Genome Atlas (TCGA), we identified the genes associated with HOXD8 in order to demonstrate its function as a suppressor or a promoter of colorectal carcinoma. Among inversely related genes, apoptotic inhibitors like STK38 kinase and MYC were shown to be negatively associated with HOXD8. We demonstrated the ability of HOXD8 to upregulate executioner caspases 6 & 7 and cleaved PARP, thus inducing the apoptotic events in colorectal cancer cells.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt; Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550 Japan
| |
Collapse
|