1
|
Liu H, Zhang Z, Li J, Liu W, Warda M, Cui B, Abd El-Aty AM. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: metabolomic bioinformatic analysis. Food Funct 2022; 13:5416-5429. [PMID: 35475434 DOI: 10.1039/d1fo02667d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we assessed the effects of Lycium barbarum oligosaccharides (LBO) on the intestinal microenvironment of a type 2 diabetes (T2D) mouse model through gut microbiome and metabolomics analysis. We set high (300 mg kg-1), medium (200 mg kg-1), and low (100 mg kg-1) doses of LBO for intervention once a day for 4 weeks. The results showed that the intervention effect of the medium-dose group was the most significant. It reduced the symptoms of hyperglycemia, inflammation, insulin resistance, and lipid accumulation in the T2D mouse model. It restored the structure of damaged tissues and cells, such as the pancreas, liver, and kidneys. LBO increased the relative abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, Prevotella, and Akkermansia, and maintained intestinal barrier integrity. The faecal metabolic map showed that the contents of glycogen amino acids, such as proline, serine, and leucine, increased. The contents of cholic, capric, and dodecanoic acid decreased. In summary, we may suggest that LBO can be used as a prebiotic for treating T2D.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, 251200, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
2
|
Zhang ZM, Chen MJ, Zou JF, Jiang S, Shang EX, Qian DW, Duan JA. UPLC-Q-TOF/MS based fecal metabolomics reveals the potential anti-diabetic effect of Xiexin Decoction on T2DM rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122683. [PMID: 33857887 DOI: 10.1016/j.jchromb.2021.122683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/12/2021] [Accepted: 03/27/2021] [Indexed: 01/06/2023]
Abstract
Xiexin Decoction (XXD), a traditional Chinese medicine prescription composed of Rhei rhizome (RR), Scutellaria radix (SR) and Coptidis rhizome (CR), has been used to cure diabetes in clinical practices for thousands of years, but its mechanism is not clear. Our previous study indicated that XXD could significantly ameliorate the symptom of type 2 diabetes mellitus (T2DM) rats by shifting the composition of gut microbiota. However, the effect of XXD on the metabolic activity of gut microbiota is not clarified. In this study, the underlying mechanism of XXD on the amelioration of T2DM was explored by fecal metabolic profiling analysis based on ultra performance liquid chromatography coupled with quadrupole time-of-fight mass spectrometry (UPLC-Q-TOF/MS). The disordered metabolic profiles in T2DM rats were notably improved by XXD. Ten potential biomarkers, which were mainly involved in arachidonic acid metabolism, amino acid metabolism, bile acid metabolism, glycolysis and gluconeogenesis, were identified. Furthermore, these metabolites were closely related to SCFAs-producing and anti-inflammatory gut microflora. After XXD intervention, these biomarkers restored to the normal level at some extent. This study not only revealed potential biomarkers and related pathways in T2DM rats affected by XXD, but also provided a novel insight to uncover how traditional herb medicines worked from fecal metabolomics.
Collapse
Affiliation(s)
- Zhi-Miao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meng-Jun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jun-Feng Zou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Metabolomic-based clinical studies and murine models for acute pancreatitis disease: A review. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166123. [PMID: 33713791 DOI: 10.1016/j.bbadis.2021.166123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis (AP) is one of the most common gastroenterological disorders requiring hospitalization and is associated with substantial morbidity and mortality. Metabolomics nowadays not only help us to understand cellular metabolism to a degree that was not previously obtainable, but also to reveal the importance of the metabolites in physiological control, disease onset and development. An in-depth understanding of metabolic phenotyping would be therefore crucial for accurate diagnosis, prognosis and precise treatment of AP. In this review, we summarized and addressed the metabolomics design and workflow in AP studies, as well as the results and analysis of the in-depth of research. Based on the metabolic profiling work in both clinical populations and experimental AP models, we described the metabolites with potential utility as biomarkers and the correlation between the altered metabolites and AP status. Moreover, the disturbed metabolic pathways correlated with biological function were discussed in the end. A practical understanding of current and emerging metabolomic approaches applicable to AP and use of the metabolite information presented will aid in designing robust metabolomics and biological experiments that result in identification of unique biomarkers and mechanisms, and ultimately enhanced clinical decision-making.
Collapse
|
4
|
Zhou Y, Men L, Pi Z, Wei M, Song F, Zhao C, Liu Z. Fecal Metabolomics of Type 2 Diabetic Rats and Treatment with Gardenia jasminoides Ellis Based on Mass Spectrometry Technique. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1591-1599. [PMID: 29363305 DOI: 10.1021/acs.jafc.7b06082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modern studies have indicated Gardenia jasminoides Ellis (G. jasminoides) showed positive effect in treating type 2 diabetes mellitus (T2DM). In this study, 60 streptozotocin-induced T2DM rats were divided into four groups: type 2 diabetes control group, geniposide-treated group, total iridoid glycosides-treated group, and crude extraction of gardenlae fructus-treated group. The other ten healthy rats were the healthy control group. During 12 weeks of treatment, rat's feces samples were collected for the metabolomics study based on mass spectrometry technique. On the basis of the fecal metabolomics method, 19 potential biomarkers were screened and their relative intensities in each group were compared. The results revealed G. jasminoides mainly regulated dysfunctions in phenylalanine metabolism, tryptophan metabolism, and secondary bile acid biosynthesis pathways induced by diabetes. The current study provides new insight for metabonomics methodology toward T2DM, and the results show that feces can preferably reflect the liver and intestines disorders.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, China
| | - Lihui Men
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Mengying Wei
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Chunfang Zhao
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| |
Collapse
|
5
|
Zhang G, Zhang J, Shang D, Qi B, Chen H. Deoxycholic acid inhibited proliferation and induced apoptosis and necrosis by regulating the activity of transcription factors in rat pancreatic acinar cell line AR42J. In Vitro Cell Dev Biol Anim 2015; 51:851-6. [PMID: 25990271 DOI: 10.1007/s11626-015-9907-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 04/01/2015] [Indexed: 12/24/2022]
Abstract
The objective of this study is to investigate the effect of deoxycholic acid (DCA) on rat pancreatic acinar cell line AR42J and the functional mechanisms of DCA on AR42J cells. AR42J cells were treated with various concentrations of DCA for 24 h and also treated with 0.4 mmol/L DCA for multiple times, and then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to detect the AR42J cell survival rate. Flow cytometric was used to detect the cell apoptosis and necrosis in AR42J cells treated with 0.4 mmol/L and 0.8 mmol/L DCA. The cells treated with phosphate buffer saline (PBS) were served as control. In addition, the DNA-binding activity assays of transcription factors (TFs) in nuclear proteins of cells treated with DCA were determined using Panomics Procarta Transcription Factor Assay Kit. The relative survival rates were markedly decreased (P < 0.05) in a dose- and time-dependent manner. Compared with control group, the cell apoptosis and necrosis ratio were both significantly elevated in 0.4 mmol/L DCA and 0.8 mmol/L DCA groups (P < 0.01). A significant increase (P < 0.05) in the activity of transcription factor 2 (ATF2), interferon-stimulated response element (ISRE), NKX-2.5, androgen receptor (AR), p53, and hypoxia-inducible factor-1 (HIF-1) was observed, and the activity of peroxisome proliferator-activated receptor (PPAR), activator protein 1 (AP1), and E2F1 was reduced (P < 0.05). In conclusion, DCA inhibited proliferation and induced apoptosis and necrosis in AR42J cells. The expression changes of related genes regulated by TFs might be the molecular mechanism of AR42J cell injury.
Collapse
Affiliation(s)
- Guixin Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011.
| | - Jingwen Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011. .,Dalian Medical University, Dalian, China, 116044.
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011.
| | - Bing Qi
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011.
| | - Hailong Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011.
| |
Collapse
|