1
|
LANDO AMYM, BAZACO MICHAELC, PARKER CARYCHEN, FERGUSON MARTINE. Characteristics of U.S. Consumers Reporting Past Year Intake of Raw (Unpasteurized) Milk: Results from the 2016 Food Safety Survey and 2019 Food Safety and Nutrition Survey. J Food Prot 2022; 85:1036-1043. [PMID: 35333921 PMCID: PMC9241341 DOI: 10.4315/jfp-21-407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumption of unpasteurized (raw) milk has been linked to foodborne illness in the United States at higher relative rates than has consumption of pasteurized milk and milk products. Regulation of these products differs by state. Regardless of the risk of consumption, some people still purchase and consume unpasteurized milk. Based on information from the 2016 Food Safety Survey and the 2019 Food Safety and Nutrition Survey conducted by the U.S. Food and Drug Administration, we evaluated prevalence, frequency, and demographic predictors of consumption of raw milk in the U.S. adult population. Results show that 4.4% of U.S. adults reported consuming raw milk at least once in the past year, with 1.6% reporting frequent consumption of raw milk (once per month or more often) and 1.0% reporting consumption once per week or more often. The individuals who consumed raw milk in the previous 12 months were more likely to be younger, living in a rural area, and living in a state in which retail sale of raw milk is legal. These results provide quantitative information on consumption prevalence and frequency and demographic characteristics of individuals who consume unpasteurized milk in the United States. HIGHLIGHTS
Collapse
|
2
|
Butler MI, Bastiaanssen TFS, Long-Smith C, Berding K, Morkl S, Cusack AM, Strain C, Busca K, Porteous-Allen P, Claesson MJ, Stanton C, Cryan JF, Allen D, Dinan TG. Recipe for a Healthy Gut: Intake of Unpasteurised Milk Is Associated with Increased Lactobacillus Abundance in the Human Gut Microbiome. Nutrients 2020; 12:nu12051468. [PMID: 32438623 PMCID: PMC7285075 DOI: 10.3390/nu12051468] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The gut microbiota plays a role in gut-brain communication and can influence psychological functioning. Diet is one of the major determinants of gut microbiota composition. The impact of unpasteurised dairy products on the microbiota is unknown. In this observational study, we investigated the effect of a dietary change involving intake of unpasteurised dairy on gut microbiome composition and psychological status in participants undertaking a residential 12-week cookery course on an organic farm. METHODS Twenty-four participants completed the study. The majority of food consumed during their stay originated from the organic farm itself and included unpasteurised milk and dairy products. At the beginning and end of the course, participants provided faecal samples and completed self-report questionnaires on a variety of parameters including mood, anxiety and sleep. Nutrient intake was monitored with a food frequency questionnaire. Gut microbiota analysis was performed with 16S rRNA gene sequencing. Additionally, faecal short chain fatty acids (SCFAs) were measured. RESULTS Relative abundance of the genus Lactobacillus increased significantly between pre- and post-course time points. This increase was associated with participants intake of unpasteurised milk and dairy products. An increase in the faecal SCFA, valerate, was observed along with an increase in the functional richness of the microbiome profile, as determined by measuring the predictive neuroactive potential using a gut-brain module approach. CONCLUSIONS While concerns in relation to safety need to be considered, intake of unpasteurised milk and dairy products appear to be associated with the growth of the probiotic bacterial genus, Lactobacillus, in the human gut. More research is needed on the effect of dietary changes on gut microbiome composition, in particular in relation to the promotion of bacterial genera, such as Lactobacillus, which are recognised as being beneficial for a range of physical and mental health outcomes.
Collapse
Affiliation(s)
- Mary I. Butler
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Psychiatry, University College Cork, T12 YN60 Cork, Ireland
- Correspondence: ; Tel.: +353-0-21-4901224
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YN60 Cork, Ireland
| | - Caitriona Long-Smith
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
| | - Sabrina Morkl
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Anne-Marie Cusack
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Teagasc Food Research Programme, Moorepark, Fermoy, Co. Cork, T12 YN60 Cork, Ireland
| | - Kizkitza Busca
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Teagasc Food Research Programme, Moorepark, Fermoy, Co. Cork, T12 YN60 Cork, Ireland
| | - Penny Porteous-Allen
- Ballymaloe Cookery School, Organic Farm and Gardens, Shanagarry, Co. Cork, T12 YN60 Cork, Ireland; (P.P.-A.); (D.A.)
| | - Marcus J. Claesson
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Teagasc Food Research Programme, Moorepark, Fermoy, Co. Cork, T12 YN60 Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YN60 Cork, Ireland
| | - Darina Allen
- Ballymaloe Cookery School, Organic Farm and Gardens, Shanagarry, Co. Cork, T12 YN60 Cork, Ireland; (P.P.-A.); (D.A.)
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Psychiatry, University College Cork, T12 YN60 Cork, Ireland
| |
Collapse
|