1
|
Smith EL, Goley ED. House of CarDs: Functional insights into the transcriptional regulator CdnL. Mol Microbiol 2024; 122:789-796. [PMID: 38664995 PMCID: PMC11502505 DOI: 10.1111/mmi.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 07/07/2024]
Abstract
Regulation of bacterial transcription is a complex and multi-faceted phenomenon that is critical for growth and adaptation. Proteins in the CarD_CdnL_TRCF family are widespread, often essential, regulators of transcription of genes required for growth and metabolic homeostasis. Research in the last decade has described the mechanistic and structural bases of CarD-CdnL-mediated regulation of transcription initiation. More recently, studies in a range of bacteria have begun to elucidate the physiological roles of CarD-CdnL proteins as well as mechanisms by which these proteins, themselves, are regulated. A theme has emerged wherein regulation of CarD-CdnL proteins is central to bacterial adaptation to stress and/or changing environmental conditions.
Collapse
Affiliation(s)
- Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
2
|
Kovaľ T, Borah N, Sudzinová P, Brezovská B, Šanderová H, Vaňková Hausnerová V, Křenková A, Hubálek M, Trundová M, Adámková K, Dušková J, Schwarz M, Wiedermannová J, Dohnálek J, Krásný L, Kouba T. Mycobacterial HelD connects RNA polymerase recycling with transcription initiation. Nat Commun 2024; 15:8740. [PMID: 39384756 PMCID: PMC11464796 DOI: 10.1038/s41467-024-52891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Mycobacterial HelD is a transcription factor that recycles stalled RNAP by dissociating it from nucleic acids and, if present, from the antibiotic rifampicin. The rescued RNAP, however, must disengage from HelD to participate in subsequent rounds of transcription. The mechanism of release is unknown. We show that HelD from Mycobacterium smegmatis forms a complex with RNAP associated with the primary sigma factor σA and transcription factor RbpA but not CarD. We solve several structures of RNAP-σA-RbpA-HelD without and with promoter DNA. These snapshots capture HelD during transcription initiation, describing mechanistic aspects of HelD release from RNAP and its protective effect against rifampicin. Biochemical evidence supports these findings, defines the role of ATP binding and hydrolysis by HelD in the process, and confirms the rifampicin-protective effect of HelD. Collectively, these results show that when HelD is present during transcription initiation, the process is protected from rifampicin until the last possible moment.
Collapse
Affiliation(s)
- Tomáš Kovaľ
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Nabajyoti Borah
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Petra Sudzinová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Barbora Brezovská
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Viola Vaňková Hausnerová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Kristýna Adámková
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jarmila Dušková
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Marek Schwarz
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jana Wiedermannová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Libor Krásný
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic.
| |
Collapse
|
3
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
4
|
Wang Y, Yang X, Yu F, Deng Z, Lin S, Zheng J. Structural and functional characterization of AfsR, an SARP family transcriptional activator of antibiotic biosynthesis in Streptomyces. PLoS Biol 2024; 22:e3002528. [PMID: 38427710 PMCID: PMC10936776 DOI: 10.1371/journal.pbio.3002528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/13/2024] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) are widely distributed activators of antibiotic biosynthesis. Streptomyces coelicolor AfsR is an SARP regulator with an additional nucleotide-binding oligomerization domain (NOD) and a tetratricopeptide repeat (TPR) domain. Here, we present cryo-electron microscopy (cryo-EM) structures and in vitro assays to demonstrate how the SARP domain activates transcription and how it is modulated by NOD and TPR domains. The structures of transcription initiation complexes (TICs) show that the SARP domain forms a side-by-side dimer to simultaneously engage the afs box overlapping the -35 element and the σHrdB region 4 (R4), resembling a sigma adaptation mechanism. The SARP extensively interacts with the subunits of the RNA polymerase (RNAP) core enzyme including the β-flap tip helix (FTH), the β' zinc-binding domain (ZBD), and the highly flexible C-terminal domain of the α subunit (αCTD). Transcription assays of full-length AfsR and truncated proteins reveal the inhibitory effect of NOD and TPR on SARP transcription activation, which can be eliminated by ATP binding. In vitro phosphorylation hardly affects transcription activation of AfsR, but counteracts the disinhibition of ATP binding. Overall, our results present a detailed molecular view of how AfsR serves to activate transcription.
Collapse
Affiliation(s)
- Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Zhu DX, Stallings CL. Transcription regulation by CarD in mycobacteria is guided by basal promoter kinetics. J Biol Chem 2023; 299:104724. [PMID: 37075846 PMCID: PMC10232725 DOI: 10.1016/j.jbc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Bacterial pathogens like Mycobacterium tuberculosis (Mtb) employ transcription factors to adapt their physiology to the diverse environments within their host. CarD is a conserved bacterial transcription factor that is essential for viability in Mtb. Unlike classical transcription factors that recognize promoters by binding to specific DNA sequence motifs, CarD binds directly to the RNA polymerase to stabilize the open complex intermediate (RPo) during transcription initiation. We previously showed using RNA-sequencing that CarD is capable of both activating and repressing transcription in vivo. However, it is unknown how CarD achieves promoter-specific regulatory outcomes in Mtb despite binding indiscriminate of DNA sequence. We propose a model where CarD's regulatory outcome depends on the promoter's basal RPo stability and test this model using in vitro transcription from a panel of promoters with varying levels of RPo stability. We show that CarD directly activates full-length transcript production from the Mtb ribosomal RNA promoter rrnAP3 (AP3) and that the degree of transcription activation by CarD is negatively correlated with RPo stability. Using targeted mutations in the extended -10 and discriminator region of AP3, we show that CarD directly represses transcription from promoters that form relatively stable RPo. DNA supercoiling also influenced RPo stability and affected the direction of CarD regulation, indicating that the outcome of CarD activity can be regulated by factors beyond promoter sequence. Our results provide experimental evidence for how RNA polymerase-binding transcription factors like CarD can exert specific regulatory outcomes based on the kinetic properties of a promoter.
Collapse
Affiliation(s)
- Dennis X Zhu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
7
|
Stephanie F, Tambunan USF, Siahaan TJ. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life (Basel) 2022; 12:1774. [PMID: 36362929 PMCID: PMC9695777 DOI: 10.3390/life12111774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is the main source of tuberculosis (TB), one of the oldest known diseases in the human population. Despite the drug discovery efforts of past decades, TB is still one of the leading causes of mortality and claimed more than 1.5 million lives worldwide in 2020. Due to the emergence of drug-resistant strains and patient non-compliance during treatments, there is a pressing need to find alternative therapeutic agents for TB. One of the important areas for developing new treatments is in the inhibition of the transcription step of gene expression; it is the first step to synthesize a copy of the genetic material in the form of mRNA. This further translates to functional protein synthesis, which is crucial for the bacteria living processes. MTB contains a bacterial DNA-dependent RNA polymerase (RNAP), which is the key enzyme for the transcription process. MTB RNAP has been targeted for designing and developing antitubercular agents because gene transcription is essential for the mycobacteria survival. Initiation, elongation, and termination are the three important sequential steps in the transcription process. Each step is complex and highly regulated, involving multiple transcription factors. This review is focused on the MTB transcription machinery, especially in the nature of MTB RNAP as the main enzyme that is regulated by transcription factors. The mechanism and conformational dynamics that occur during transcription are discussed and summarized. Finally, the current progress on MTB transcription inhibition and possible drug target in mycobacterial RNAP are also described to provide insight for future antitubercular drug design and development.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
8
|
Ke N, Kumka JE, Fang M, Weaver B, Burstyn JN, Bauer CE. Redox Brake Regulator RedB and FnrL Function as Yin-Yang Regulators of Anaerobic-Aerobic Metabolism in Rhodobacter capsulatus. Microbiol Spectr 2022; 10:e0235422. [PMID: 36106752 PMCID: PMC9603517 DOI: 10.1128/spectrum.02354-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 01/04/2023] Open
Abstract
We recently described a new member of the CRP (cyclic AMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family called RedB, an acronym for redox brake, that functions to limit the production of ATP and NADH. This study shows that the RedB regulon significantly overlaps the FnrL regulon, with 199 genes being either directly or indirectly regulated by both of these global regulatory proteins. Among these 199 coregulated genes, 192 are divergently regulated, indicating that RedB functions as an antagonist of FnrL. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis indicates that RedB and Fnr directly coregulate only 4 out of 199 genes. The primary mechanism for the divergent regulation of target genes thus involves indirect regulation by both RedB and FnrL (156 cases). Additional regulation involves direct binding by RedB and indirect regulation by FnrL (36 cases) or direct binding by FnrL and indirect regulation by RedB (3 cases). Analysis of physiological pathways under direct and indirect control by these global regulators demonstrates that RedB functions primarily to limit energy production, while FnrL functions to enhance energy production. This regulation includes glycolysis, gluconeogenesis, photosynthesis, hydrogen oxidation, electron transport, carbon fixation, lipid biosynthesis, and protein synthesis. Finally, we show that 75% of genomes from diverse species that code for RedB proteins also harbor genes coding for FNR homologs. This cooccurrence indicates that RedB likely has an important role in buffering FNR-mediated energy production in a broad range of species. IMPORTANCE The CRP/FNR family of regulatory proteins constitutes a large collection of related transcription factors, several of which globally regulate cellular energy production. A well-characterized example is FNR (called FnrL in Rhodobacter capsulatus), which is responsible for regulating the expression of numerous genes that promote maximal energy production and growth under anaerobic conditions. In a companion article (N. Ke, J. E. Kumka, M. Fang, B. Weaver, et al., Microbiol Spectr 10:e02353-22, 2022, https://doi.org/10.1128/Spectrum02353-22), we identified a new subgroup of the CRP/FNR family and demonstrated that a member of this new subgroup, called RedB, has a role in limiting cellular energy production. In this study, we show that numerous genes encompassing the RedB regulon significantly overlap genes that are members of the FnrL regulon. Furthermore, 97% of the genes that are members of both the RedB and FnrL regulons are divergently regulated by these two transcription factors. RedB thus functions as a buffer limiting the amount of energy production that is promoted by FnrL.
Collapse
Affiliation(s)
- Nijia Ke
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Joseph E. Kumka
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Mingxu Fang
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Brian Weaver
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Carl E. Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
9
|
Yang X, Wang Y, Liu G, Deng Z, Lin S, Zheng J. Structural basis of Streptomyces transcription activation by zinc uptake regulator. Nucleic Acids Res 2022; 50:8363-8376. [PMID: 35871291 PMCID: PMC9371925 DOI: 10.1093/nar/gkac627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Streptomyces coelicolor (Sc) is a model organism of actinobacteria to study morphological differentiation and production of bioactive metabolites. Sc zinc uptake regulator (Zur) affects both processes by controlling zinc homeostasis. It activates transcription by binding to palindromic Zur-box sequences upstream of −35 elements. Here we deciphered the molecular mechanism by which ScZur interacts with promoter DNA and Sc RNA polymerase (RNAP) by cryo-EM structures and biochemical assays. The ScZur-DNA structures reveal a sequential and cooperative binding of three ScZur dimers surrounding a Zur-box spaced 8 nt upstream from a −35 element. The ScRNAPσHrdB-Zur-DNA structures define protein-protein and protein-DNA interactions involved in the principal housekeeping σHrdB-dependent transcription initiation from a noncanonical promoter with a −10 element lacking the critical adenine residue at position −11 and a TTGCCC −35 element deviating from the canonical TTGACA motif. ScZur interacts with the C-terminal domain of ScRNAP α subunit (αCTD) in a complex structure trapped in an active conformation. Key ScZur-αCTD interfacial residues accounting for ScZur-dependent transcription activation were confirmed by mutational studies. Together, our structural and biochemical results provide a comprehensive model for transcription activation of Zur family regulators.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Guiyang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
10
|
Li X, Chen F, Liu X, Xiao J, Andongma BT, Tang Q, Cao X, Chou SH, Galperin MY, He J. Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife 2022; 11:73347. [PMID: 35080493 PMCID: PMC8820732 DOI: 10.7554/elife.73347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.
Collapse
Affiliation(s)
- Xinfeng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Xiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binda T Andongma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Müller AU, Kummer E, Schilling CM, Ban N, Weber-Ban E. Transcriptional control of mycobacterial DNA damage response by sigma adaptation. SCIENCE ADVANCES 2021; 7:eabl4064. [PMID: 34851662 PMCID: PMC8635444 DOI: 10.1126/sciadv.abl4064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
Transcriptional activator PafBC is the key regulator of the mycobacterial DNA damage response and controls around 150 genes, including genes involved in the canonical SOS response, through an unknown molecular mechanism. Using a combination of biochemistry and cryo–electron microscopy, we demonstrate that PafBC in the presence of single-stranded DNA activates transcription by reprogramming the canonical −10 and −35 promoter specificity of RNA polymerase associated with the housekeeping sigma subunit. We determine the structure of this transcription initiation complex, revealing a unique mode of promoter recognition, which we term “sigma adaptation.” PafBC inserts between DNA and sigma factor to mediate recognition of hybrid promoters lacking the −35 but featuring the canonical −10 and a PafBC-specific −26 element. Sigma adaptation may constitute a more general mechanism of transcriptional control in mycobacteria.
Collapse
|
12
|
Myers KS, Noguera DR, Donohue TJ. Promoter Architecture Differences among Alphaproteobacteria and Other Bacterial Taxa. mSystems 2021; 6:e0052621. [PMID: 34254822 PMCID: PMC8407463 DOI: 10.1128/msystems.00526-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Much of our knowledge of bacterial transcription initiation has been derived from studying the promoters of Escherichia coli and Bacillus subtilis. Given the expansive diversity across the bacterial phylogeny, it is unclear how much of this knowledge can be applied to other organisms. Here, we report on bioinformatic analyses of promoter sequences of the primary σ factor (σ70) by leveraging publicly available transcription start site (TSS) sequencing data sets for nine bacterial species spanning five phyla. This analysis identifies previously unreported differences in the -35 and -10 elements of σ70-dependent promoters in several groups of bacteria. We found that Actinobacteria and Betaproteobacteria σ70-dependent promoters lack the TTG triad in their -35 element, which is predicted to be conserved across the bacterial phyla. In addition, the majority of the Alphaproteobacteria σ70-dependent promoters analyzed lacked the thymine at position -7 that is highly conserved in other phyla. Bioinformatic examination of the Alphaproteobacteria σ70-dependent promoters identifies a significant overrepresentation of essential genes and ones encoding proteins with common cellular functions downstream of promoters containing an A, C, or G at position -7. We propose that transcription of many σ70-dependent promoters in Alphaproteobacteria depends on the transcription factor CarD, which is an essential protein in several members of this phylum. Our analysis expands the knowledge of promoter architecture across the bacterial phylogeny and provides new information that can be used to engineer bacteria for use in medical, environmental, agricultural, and biotechnological processes. IMPORTANCE Transcription of DNA to RNA by RNA polymerase is essential for cells to grow, develop, and respond to stress. Understanding the process and control of transcription is important for health, disease, the environment, and biotechnology. Decades of research on a few bacteria have identified promoter DNA sequences that are recognized by the σ subunit of RNA polymerase. We used bioinformatic analyses to reveal previously unreported differences in promoter DNA sequences across the bacterial phylogeny. We found that many Actinobacteria and Betaproteobacteria promoters lack a sequence in their -35 DNA recognition element that was previously assumed to be conserved and that Alphaproteobacteria lack a thymine residue at position -7, also previously assumed to be conserved. Our work reports important new information about bacterial transcription, illustrates the benefits of studying bacteria across the phylogenetic tree, and proposes new lines of future investigation.
Collapse
Affiliation(s)
- Kevin S. Myers
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Civil & Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Pan L, Gardner CL, Beliakoff R, da Silva D, Zuo R, Pagliai FA, Padgett-Pagliai KA, Merli ML, Bahadiroglu E, Gonzalez CF, Lorca GL. PrbP modulates biofilm formation in Liberibacter crescens. Environ Microbiol 2021; 23:7121-7138. [PMID: 34431209 DOI: 10.1111/1462-2920.15740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/31/2022]
Abstract
In Liberibacter asiaticus, PrbP is a transcriptional regulatory protein involved in survival and persistence during host infection. Tolfenamic acid was previously found to inhibit interactions between PrbP and the promotor region of rplK, resulting in reduced survival of L. asiaticus in the citrus host. In this study, we performed transcriptome analyses to elucidate the PrbP regulon in L. crescens, as it is phylogenetically the closest related species to L. asiaticus that can be grown in laboratory conditions. Chemical inhibition of PrbP with tolfenamic acid revealed that PrbP is involved in the regulation of diverse cellular processes, including stress response, cell motility, cell cycle and biofilm formation. In vitro DNA binding and bacterial two-hybrid assays also suggested that PrbP is a global regulator of multiple transcription factors (RpoH, VisN, PleD, MucR, MocR and CtrA) at both transcriptional and/or post-transcriptional levels. Sub-lethal concentrations of tolfenamic acid significantly reduced the attachment of L. crescens during biofilm formation and decreased long-term persistence in biofilm structures. Overall, our findings show the importance of PrbP in regulating diverse biological processes through direct and indirect interactions with other transcriptional regulators in L. crescens.
Collapse
Affiliation(s)
- Lei Pan
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Reagan Beliakoff
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Danilo da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Ran Zuo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Kaylie A Padgett-Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Marcelo L Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Erol Bahadiroglu
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Abstract
Bioinformatic analysis showed previously that a majority of promoters in the photoheterotrophic alphaproteobacterium Rhodobacter sphaeroides lack the thymine at the last position of the -10 element (-7T), a base that is very highly conserved in promoters in bacteria other than alphaproteobacteria. The absence of -7T was correlated with low promoter activity using purified R. sphaeroides RNA polymerase (RNAP), but the transcription factor CarD compensated by activating almost all promoters lacking -7T tested in vitro, including rRNA promoters. Here, we show that a previously uncharacterized R. sphaeroides promoter, the promoter for carD itself, has high basal activity relative to other tested R. sphaeroides promoters despite lacking -7T, and its activity is inhibited rather than activated by CarD. This high basal activity is dependent on a consensus-extended -10 element (TGn) and specific features in the spacer immediately upstream of the extended -10 element. CarD negatively autoregulates its own promoter by producing abortive transcripts, limiting promoter escape, and reducing full-length mRNA synthesis. This mechanism of negative regulation differs from that employed by classical repressors, in which the transcription factor competes with RNA polymerase for binding to the promoter, and with the mechanism of negative regulation used by transcription factors like DksA/ppGpp and TraR that allosterically inhibit the rate of open complex formation. IMPORTANCE R. sphaeroides CarD activates many promoters by binding directly to RNAP and DNA just upstream of the -10 element. In contrast, we show here that CarD inhibits its own promoter using the same interactions with RNAP and DNA used for activation. Inhibition results from increasing abortive transcript formation, thereby decreasing promoter escape and full-length RNA synthesis. We propose that the combined interactions of RNAP with CarD, with the extended -10 element and with features in the adjacent -10/-35 spacer DNA, stabilize the promoter complex, reducing promoter clearance. These findings support previous predictions that the effects of CarD on transcription can be either positive or negative, depending on the kinetic properties of the specific promoter.
Collapse
|
15
|
Lilic M, Darst SA, Campbell EA. Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7. Mol Cell 2021; 81:2875-2886.e5. [PMID: 34171296 PMCID: PMC8311663 DOI: 10.1016/j.molcel.2021.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 01/25/2023]
Abstract
In pathogenic mycobacteria, transcriptional responses to antibiotics result in induced antibiotic resistance. WhiB7 belongs to the Actinobacteria-specific family of Fe-S-containing transcription factors and plays a crucial role in inducible antibiotic resistance in mycobacteria. Here, we present cryoelectron microscopy structures of Mycobacterium tuberculosis transcriptional regulatory complexes comprising RNA polymerase σA-holoenzyme, global regulators CarD and RbpA, and WhiB7, bound to a WhiB7-regulated promoter. The structures reveal how WhiB7 interacts with σA-holoenzyme while simultaneously interacting with an AT-rich sequence element via its AT-hook. Evidently, AT-hooks, rare elements in bacteria yet prevalent in eukaryotes, bind to target AT-rich DNA sequences similarly to the nuclear chromosome binding proteins. Unexpectedly, a subset of particles contained a WhiB7-stabilized closed promoter complex, revealing this intermediate's structure, and we apply kinetic modeling and biochemical assays to rationalize how WhiB7 activates transcription. Altogether, our work presents a comprehensive view of how WhiB7 serves to activate gene expression leading to antibiotic resistance.
Collapse
Affiliation(s)
- Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
16
|
The DUF1013 protein TrcR tracks with RNA polymerase to control the bacterial cell cycle and protect against antibiotics. Proc Natl Acad Sci U S A 2021; 118:2010357118. [PMID: 33602809 DOI: 10.1073/pnas.2010357118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How DNA-dependent RNA polymerase (RNAP) acts on bacterial cell cycle progression during transcription elongation is poorly investigated. A forward genetic selection for Caulobacter crescentus cell cycle mutants unearthed the uncharacterized DUF1013 protein (TrcR, transcriptional cell cycle regulator). TrcR promotes the accumulation of the essential cell cycle transcriptional activator CtrA in late S-phase but also affects transcription at a global level to protect cells from the quinolone antibiotic nalidixic acid that induces a multidrug efflux pump and from the RNAP inhibitor rifampicin that blocks transcription elongation. We show that TrcR associates with promoters and coding sequences in vivo in a rifampicin-dependent manner and that it interacts physically and genetically with RNAP. We show that TrcR function and its RNAP-dependent chromatin recruitment are conserved in symbiotic Sinorhizobium sp. and pathogenic Brucella spp Thus, TrcR represents a hitherto unknown antibiotic target and the founding member of the DUF1013 family, an uncharacterized class of transcriptional regulators that track with RNAP during the elongation phase to promote transcription during the cell cycle.
Collapse
|
17
|
Fang C, Philips SJ, Wu X, Chen K, Shi J, Shen L, Xu J, Feng Y, O’Halloran TV, Zhang Y. CueR activates transcription through a DNA distortion mechanism. Nat Chem Biol 2021; 17:57-64. [PMID: 32989300 PMCID: PMC9904984 DOI: 10.1038/s41589-020-00653-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023]
Abstract
The MerR-family transcription factors (TFs) are a large group of bacterial proteins responding to cellular metal ions and multiple antibiotics by binding within central RNA polymerase-binding regions of a promoter. While most TFs alter transcription through protein-protein interactions, MerR TFs are capable of reshaping promoter DNA. To address the question of which mechanism prevails, we determined two cryo-EM structures of transcription activation complexes (TAC) comprising Escherichia coli CueR (a prototype MerR TF), RNAP holoenzyme and promoter DNA. The structures reveal that this TF promotes productive promoter-polymerase association without canonical protein-protein contacts seen between other activator proteins and RNAP. Instead, CueR realigns the key promoter elements in the transcription activation complex by clamp-like protein-DNA interactions: these induce four distinct kinks that ultimately position the -10 element for formation of the transcription bubble. These structural and biochemical results provide strong support for the DNA distortion paradigm of allosteric transcriptional control by MerR TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven J. Philips
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Jing Shi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juncao Xu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Thomas V. O’Halloran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.,Corresponding author: (T.V.O.); (Y.F.); (Y.Z.)
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
18
|
Stefan MA, Velazquez GM, Garcia GA. High-throughput screening to discover inhibitors of the CarD·RNA polymerase protein-protein interaction in Mycobacterium tuberculosis. Sci Rep 2020; 10:21309. [PMID: 33277558 PMCID: PMC7718890 DOI: 10.1038/s41598-020-78269-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant Mycobacterium tuberculosis (MDR-TB) accounts for 3.7% of new cases of TB annually worldwide and is a major threat to global public health. Due to the prevalence of the MDR-TB and extensively drug resistant tuberculosis (XDR-TB) cases, there is an urgent need for new drugs with novel mechanisms of action. CarD, a global transcription regulator in MTB, binds RNAP and activates transcription by stabilizing the transcription initiation open-promoter complex (RPo). CarD is required for MTB viability and it has highly conserved homologues in many eubacteria. A fluorescence polarization (FP) assay which monitors the association of MTB RNAP, native rRNA promoter DNA and CarD has been developed. Overall, our objective is to identify and characterize small molecule inhibitors which block the CarD/RNAP interaction and to understand the mechanisms by which CarD interacts with the molecules. We expect that the development of a new and improved anti-TB compound with a novel mechanism of action will relieve the burden of resistance. This CarD FP assay is amenable to HTS and is an enabling tool for future novel therapeutic discovery.
Collapse
Affiliation(s)
- Maxwell A Stefan
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Glory M Velazquez
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - George A Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Direct binding of TFEα opens DNA binding cleft of RNA polymerase. Nat Commun 2020; 11:6123. [PMID: 33257704 PMCID: PMC7704642 DOI: 10.1038/s41467-020-19998-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Opening of the DNA binding cleft of cellular RNA polymerase (RNAP) is necessary for transcription initiation but the underlying molecular mechanism is not known. Here, we report on the cryo-electron microscopy structures of the RNAP, RNAP-TFEα binary, and RNAP-TFEα-promoter DNA ternary complexes from archaea, Thermococcus kodakarensis (Tko). The structures reveal that TFEα bridges the RNAP clamp and stalk domains to open the DNA binding cleft. Positioning of promoter DNA into the cleft closes it while maintaining the TFEα interactions with the RNAP mobile modules. The structures and photo-crosslinking results also suggest that the conserved aromatic residue in the extended winged-helix domain of TFEα interacts with promoter DNA to stabilize the transcription bubble. This study provides a structural basis for the functions of TFEα and elucidates the mechanism by which the DNA binding cleft is opened during transcription initiation in the stalk-containing RNAPs, including archaeal and eukaryotic RNAPs.
Collapse
|
20
|
Henry KK, Ross W, Myers KS, Lemmer KC, Vera JM, Landick R, Donohue TJ, Gourse RL. A majority of Rhodobacter sphaeroides promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation. Proc Natl Acad Sci U S A 2020; 117:29658-29668. [PMID: 33168725 PMCID: PMC7703639 DOI: 10.1073/pnas.2010087117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Using an in vitro transcription system with purified RNA polymerase (RNAP) to investigate rRNA synthesis in the photoheterotrophic α-proteobacterium Rhodobacter sphaeroides, we identified a surprising feature of promoters recognized by the major holoenzyme. Transcription from R. sphaeroides rRNA promoters was unexpectedly weak, correlating with absence of -7T, the very highly conserved thymine found at the last position in -10 elements of promoters in most bacterial species. Thymine substitutions for adenine at position -7 in the three rRNA promoters strongly increased intrinsic promoter activity, indicating that R. sphaeroides RNAP can utilize -7T when present. rRNA promoters were activated by purified R. sphaeroides CarD, a transcription factor found in many bacterial species but not in β- and γ-proteobacteria. Overall, CarD increased the activity of 15 of 16 native R. sphaeroides promoters tested in vitro that lacked -7T, whereas it had no effect on three of the four native promoters that contained -7T. Genome-wide bioinformatic analysis of promoters from R. sphaeroides and two other α-proteobacterial species indicated that 30 to 43% contained -7T, whereas 90 to 99% of promoters from non-α-proteobacteria contained -7T. Thus, promoters lacking -7T appear to be widespread in α-proteobacteria and may have evolved away from consensus to enable their coordinated regulation by transcription factors like CarD. We observed a strong reduction in R. sphaeroides CarD levels when cells enter stationary phase, suggesting that reduced activation by CarD may contribute to inhibition of rRNA transcription when cells enter stationary phase, the stage of growth when bacterial ribosome synthesis declines.
Collapse
Affiliation(s)
- Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Kimberly C Lemmer
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Jessica M Vera
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Robert Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| |
Collapse
|
21
|
Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol 2020; 19:95-109. [PMID: 33122819 DOI: 10.1038/s41579-020-00450-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Transcription of DNA is a fundamental process in all cellular organisms. The enzyme responsible for transcription, RNA polymerase, is conserved in general architecture and catalytic function across the three domains of life. Diverse mechanisms are used among and within the different branches to regulate transcription initiation. Mechanistic studies of transcription initiation in bacteria are especially amenable because the promoter recognition and melting steps are much less complicated than in eukaryotes or archaea. Also, bacteria have critical roles in human health as pathogens and commensals, and the bacterial RNA polymerase is a proven target for antibiotics. Recent biophysical studies of RNA polymerases and their inhibition, as well as transcription initiation and transcription factors, have detailed the mechanisms of transcription initiation in phylogenetically diverse bacteria, inspiring this Review to examine unifying and diverse themes in this process.
Collapse
|
22
|
Kim JE, Choi JS, Kim JS, Cho YH, Roe JH. Lysine acetylation of the housekeeping sigma factor enhances the activity of the RNA polymerase holoenzyme. Nucleic Acids Res 2020; 48:2401-2411. [PMID: 31970401 PMCID: PMC7049703 DOI: 10.1093/nar/gkaa011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 02/03/2023] Open
Abstract
Protein lysine acetylation, one of the most abundant post-translational modifications in eukaryotes, occurs in prokaryotes as well. Despite the evidence of lysine acetylation in bacterial RNA polymerases (RNAPs), its function remains unknown. We found that the housekeeping sigma factor (HrdB) was acetylated throughout the growth of an actinobacterium, Streptomyces venezuelae, and the acetylated HrdB was enriched in the RNAP holoenzyme complex. The lysine (K259) located between 1.2 and 2 regions of the sigma factor, was determined to be the acetylated residue of HrdB in vivo by LC–MS/MS analyses. Specifically, the label-free quantitative analysis revealed that the K259 residues of all the HrdB subunits were acetylated in the RNAP holoenzyme. Using mutations that mimic or block acetylation (K259Q and K259R), we found that K259 acetylation enhances the interaction of HrdB with the RNAP core enzyme as well as the binding activity of the RNAP holoenzyme to target promoters in vivo. Taken together, these findings provide a novel insight into an additional layer of modulation of bacterial RNAP activity.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Joon-Sun Choi
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Jung-Hye Roe
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Jensen D, Manzano AR, Rammohan J, Stallings CL, Galburt EA. CarD and RbpA modify the kinetics of initial transcription and slow promoter escape of the Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Res 2020; 47:6685-6698. [PMID: 31127308 PMCID: PMC6648326 DOI: 10.1093/nar/gkz449] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, enacts unique transcriptional regulatory mechanisms when subjected to host-derived stresses. Initiation of transcription by the Mycobacterial RNA polymerase (RNAP) has previously been shown to exhibit different open complex kinetics and stabilities relative to Escherichia coli (Eco) RNAP. However, transcription initiation rates also depend on the kinetics following open complex formation such as initial nucleotide incorporation and subsequent promoter escape. Here, using a real-time fluorescence assay, we present the first in-depth kinetic analysis of initial transcription and promoter escape for the Mtb RNAP. We show that in relation to Eco RNAP, Mtb displays slower initial nucleotide incorporation but faster overall promoter escape kinetics on the Mtb rrnAP3 promoter. Furthermore, in the context of the essential transcription factors CarD and RbpA, Mtb promoter escape is slowed via differential effects on initially transcribing complexes. Finally, based on their ability to increase the rate of open complex formation and decrease the rate of promoter escape, we suggest that CarD and RbpA are capable of activation or repression depending on the rate-limiting step of a given promoter's basal initiation kinetics.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jayan Rammohan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Fang C, Li L, Shen L, Shi J, Wang S, Feng Y, Zhang Y. Structures and mechanism of transcription initiation by bacterial ECF factors. Nucleic Acids Res 2020; 47:7094-7104. [PMID: 31131408 PMCID: PMC6648896 DOI: 10.1093/nar/gkz470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 01/25/2023] Open
Abstract
Bacterial RNA polymerase (RNAP) forms distinct holoenzymes with extra-cytoplasmic function (ECF) σ factors to initiate specific gene expression programs. In this study, we report a cryo-EM structure at 4.0 Å of Escherichia coli transcription initiation complex comprising σE-the most-studied bacterial ECF σ factor (Ec σE-RPo), and a crystal structure at 3.1 Å of Mycobacterium tuberculosis transcription initiation complex with a chimeric σH/E (Mtb σH/E-RPo). The structure of Ec σE-RPo reveals key interactions essential for assembly of E. coli σE-RNAP holoenzyme and for promoter recognition and unwinding by E. coli σE. Moreover, both structures show that the non-conserved linkers (σ2/σ4 linker) of the two ECF σ factors are inserted into the active-center cleft and exit through the RNA-exit channel. We performed secondary-structure prediction of 27,670 ECF σ factors and find that their non-conserved linkers probably reach into and exit from RNAP active-center cleft in a similar manner. Further biochemical results suggest that such σ2/σ4 linker plays an important role in RPo formation, abortive production and promoter escape during ECF σ factors-mediated transcription initiation.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingting Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Shi
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Sheng Wang
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST) Thuwal, 23955, Saudi Arabia
| | - Yu Feng
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
25
|
Boyaci H, Saecker RM, Campbell EA. Transcription initiation in mycobacteria: a biophysical perspective. Transcription 2019; 11:53-65. [PMID: 31880185 DOI: 10.1080/21541264.2019.1707612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Recent biophysical studies of mycobacterial transcription have shed new light on this fundamental process in a group of bacteria that includes deadly pathogens such as Mycobacterium tuberculosis (Mtb), Mycobacterium abscessus (Mab), Mycobacterium leprae (Mlp), as well as the nonpathogenic Mycobacterium smegmatis (Msm). Most of the research has focused on Mtb, the causative agent of tuberculosis (TB), which remains one of the top ten causes of death globally. The enzyme RNA polymerase (RNAP) is responsible for all bacterial transcription and is a target for one of the crucial antibiotics used for TB treatment, rifampicin (Rif). Here, we summarize recent biophysical studies of mycobacterial RNAP that have advanced our understanding of the basic process of transcription, have revealed novel paradigms for regulation, and thus have provided critical information required for developing new antibiotics against this deadly disease.
Collapse
Affiliation(s)
- Hande Boyaci
- Laboratory of Molecular Biophysics, The Rockefeller University , New York, NY, USA
| | - Ruth M Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University , New York, NY, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University , New York, NY, USA
| |
Collapse
|
26
|
Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. eLife 2019; 8:e49375. [PMID: 31841111 PMCID: PMC6970531 DOI: 10.7554/elife.49375] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022] Open
Abstract
TraR and its homolog DksA are bacterial proteins that regulate transcription initiation by binding directly to RNA polymerase (RNAP) rather than to promoter DNA. Effects of TraR mimic the combined effects of DksA and its cofactor ppGpp, but the structural basis for regulation by these factors remains unclear. Here, we use cryo-electron microscopy to determine structures of Escherichia coli RNAP, with or without TraR, and of an RNAP-promoter complex. TraR binding induced RNAP conformational changes not seen in previous crystallographic analyses, and a quantitative analysis revealed TraR-induced changes in RNAP conformational heterogeneity. These changes involve mobile regions of RNAP affecting promoter DNA interactions, including the βlobe, the clamp, the bridge helix, and several lineage-specific insertions. Using mutational approaches, we show that these structural changes, as well as effects on σ70 region 1.1, are critical for transcription activation or inhibition, depending on the kinetic features of regulated promoters.
Collapse
Affiliation(s)
- James Chen
- The Rockefeller UniversityNew YorkUnited States
| | | | | | - Albert Y Chen
- Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUnited States
| | | | - Richard L Gourse
- Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUnited States
| | - Wilma Ross
- Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUnited States
| | | |
Collapse
|
27
|
Bernal-Bernal D, Abellón-Ruiz J, Iniesta AA, Pajares-Martínez E, Bastida-Martínez E, Fontes M, Padmanabhan S, Elías-Arnanz M. Multifactorial control of the expression of a CRISPR-Cas system by an extracytoplasmic function σ/anti-σ pair and a global regulatory complex. Nucleic Acids Res 2019; 46:6726-6745. [PMID: 29893914 PMCID: PMC6061681 DOI: 10.1093/nar/gky475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Expression of CRISPR-Cas systems is a prerequisite for their defensive role against invading genetic elements. Yet, much remains unknown about how this crucial step is regulated. We describe a new mechanism controlling CRISPR-cas expression, which requires an extracytoplasmic function (ECF) σ factor (DdvS), its membrane-bound anti-σ (DdvA) and a global regulatory complex (CarD–CarG). Transcriptomic analyses revealed that the DdvS/CarD/CarG-dependent regulon comprises a type III-B CRISPR-Cas system in Myxococcus xanthus. We mapped four DdvS-driven CarD/CarG-dependent promoters, with one lying immediately upstream of the cas cluster. Consistent with direct action, DdvS and CarD–CarG localize at these promoters in vivo. The cas genes are transcribed as a polycistronic mRNA that reads through the leader into the CRISPR array, a putative σA-dependent promoter in the leader having negligible activity in vivo. Consequently, expression of the entire CRISPR-Cas system and mature CRISPR-RNA (crRNA) production is DdvS/CarD/CarG-dependent. DdvA likely uses its large C-terminal domain to sense and transduce the extracytoplasmic signal triggering CRISPR-cas expression, which we show is not starvation-induced multicellular development. An ECF-σ/anti-σ pair and a global regulatory complex provide an effective mechanism to coordinate signal-sensing with production of precursor crRNA, its processing Cas6 endoribonuclease and other Cas proteins for mature crRNA biogenesis and interference.
Collapse
Affiliation(s)
- Diego Bernal-Bernal
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Javier Abellón-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio A Iniesta
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
28
|
Bergkessel M, Babin BM, VanderVelde D, Sweredoski MJ, Moradian A, Eggleston-Rangel R, Hess S, Tirrell DA, Artsimovitch I, Newman DK. The dormancy-specific regulator, SutA, is intrinsically disordered and modulates transcription initiation in Pseudomonas aeruginosa. Mol Microbiol 2019; 112:992-1009. [PMID: 31254296 DOI: 10.1111/mmi.14337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 11/27/2022]
Abstract
Though most bacteria in nature are nutritionally limited and grow slowly, our understanding of core processes like transcription comes largely from studies in model organisms doubling rapidly. We previously identified a small protein of unknown function, SutA, in a screen of proteins synthesized in Pseudomonas aeruginosa during dormancy. SutA binds RNA polymerase (RNAP), causing widespread changes in gene expression, including upregulation of the ribosomal RNA genes. Here, using biochemical and structural methods, we examine how SutA interacts with RNAP and the functional consequences of these interactions. We show that SutA comprises a central α-helix with unstructured N- and C-terminal tails, and binds to the β1 domain of RNAP. It activates transcription from the rrn promoter by both the housekeeping sigma factor holoenzyme (Eσ70 ) and the stress sigma factor holoenzyme (EσS ) in vitro, but has a greater impact on EσS . In both cases, SutA appears to affect intermediates in the open complex formation and its N-terminal tail is required for activation. The small magnitudes of in vitro effects are consistent with a role in maintaining activity required for homeostasis during dormancy. Our results add SutA to a growing list of transcription regulators that use their intrinsically disordered regions to remodel transcription complexes.
Collapse
Affiliation(s)
- Megan Bergkessel
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brett M Babin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David VanderVelde
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Roxana Eggleston-Rangel
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
29
|
Zhu DX, Garner AL, Galburt EA, Stallings CL. CarD contributes to diverse gene expression outcomes throughout the genome of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2019; 116:13573-13581. [PMID: 31217290 PMCID: PMC6613185 DOI: 10.1073/pnas.1900176116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to regulate gene expression through transcription initiation underlies the adaptability and survival of all bacteria. Recent work has revealed that the transcription machinery in many bacteria diverges from the paradigm that has been established in Escherichia coliMycobacterium tuberculosis (Mtb) encodes the RNA polymerase (RNAP)-binding protein CarD, which is absent in E. coli but is required to form stable RNAP-promoter open complexes (RPo) and is essential for viability in Mtb The stabilization of RPo by CarD has been proposed to result in activation of gene expression; however, CarD has only been examined on limited promoters that do not represent the typical promoter structure in Mtb In this study, we investigate the outcome of CarD activity on gene expression from Mtb promoters genome-wide by performing RNA sequencing on a panel of mutants that differentially affect CarD's ability to stabilize RPo In all CarD mutants, the majority of Mtb protein encoding transcripts were differentially expressed, demonstrating that CarD had a global effect on gene expression. Contrary to the expected role of CarD as a transcriptional activator, mutation of CarD led to both up- and down-regulation of gene expression, suggesting that CarD can also act as a transcriptional repressor. Furthermore, we present evidence that stabilization of RPo by CarD could lead to transcriptional repression by inhibiting promoter escape, and the outcome of CarD activity is dependent on the intrinsic kinetic properties of a given promoter region. Collectively, our data support CarD's genome-wide role of regulating diverse transcription outcomes.
Collapse
Affiliation(s)
- Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ashley L Garner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
30
|
Extracytoplasmic Function σ Factors Can Be Implemented as Robust Heterologous Genetic Switches in Bacillus subtilis. iScience 2019; 13:380-390. [PMID: 30897511 PMCID: PMC6426705 DOI: 10.1016/j.isci.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/14/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
In bacteria, the promoter specificity of RNA polymerase is determined by interchangeable σ subunits. Extracytoplasmic function σ factors (ECFs) form the largest and most diverse family of alternative σ factors, and their suitability for constructing genetic switches and circuits was already demonstrated. However, a systematic study on how genetically determined perturbations affect the behavior of these switches is still lacking, which impairs our ability to predict their behavior in complex circuitry. Here, we implemented four ECF switches in Bacillus subtilis and comprehensively characterized their robustness toward genetic perturbations, including changes in copy number, protein stability, or antisense transcription. All switches show characteristic dose-response behavior that varies depending on the individual ECF-promoter pair. Most perturbations had performance costs. Although some general design rules could be derived, a detailed characterization of each ECF switch before implementation is recommended to understand and thereby accommodate its individual behavior. Four heterologous ECF-based genetic switches were implemented in Bacillus subtilis Each ECF switch was excessively modified and comprehensively evaluated The robustness to genetic perturbations differed significantly between switches B. subtilis has a narrow phylogenetic acceptance range for heterologous ECFs
Collapse
|
31
|
The Core and Holoenzyme Forms of RNA Polymerase from Mycobacterium smegmatis. J Bacteriol 2019; 201:JB.00583-18. [PMID: 30478083 DOI: 10.1128/jb.00583-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) is essential for gene expression and as such is a valid drug target. Hence, it is imperative to know its structure and dynamics. Here, we present two as-yet-unreported forms of Mycobacterium smegmatis RNAP: core and holoenzyme containing σA but no other factors. Each form was detected by cryo-electron microscopy in two major conformations. Comparisons of these structures with known structures of other RNAPs reveal a high degree of conformational flexibility of the mycobacterial enzyme and confirm that region 1.1 of σA is directed into the primary channel of RNAP. Taken together, we describe the conformational changes of unrestrained mycobacterial RNAP.IMPORTANCE We describe here three-dimensional structures of core and holoenzyme forms of mycobacterial RNA polymerase (RNAP) solved by cryo-electron microscopy. These structures fill the thus-far-empty spots in the gallery of the pivotal forms of mycobacterial RNAP and illuminate the extent of conformational dynamics of this enzyme. The presented findings may facilitate future designs of antimycobacterial drugs targeting RNAP.
Collapse
|
32
|
Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature 2019; 565:382-385. [PMID: 30626968 DOI: 10.1038/s41586-018-0840-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023]
Abstract
A key regulated step of transcription is promoter melting by RNA polymerase (RNAP) to form the open promoter complex1-3. To generate the open complex, the conserved catalytic core of the RNAP combines with initiation factors to locate promoter DNA, unwind 12-14 base pairs of the DNA duplex and load the template-strand DNA into the RNAP active site. Formation of the open complex is a multi-step process during which transient intermediates of unknown structure are formed4-6. Here we present cryo-electron microscopy structures of bacterial RNAP-promoter DNA complexes, including structures of partially melted intermediates. The structures show that late steps of promoter melting occur within the RNAP cleft, delineate key roles for fork-loop 2 and switch 2-universal structural features of RNAP-in restricting access of DNA to the RNAP active site, and explain why clamp opening is required to allow entry of single-stranded template DNA into the active site. The key roles of fork-loop 2 and switch 2 suggest a common mechanism for late steps in promoter DNA opening to enable gene expression across all domains of life.
Collapse
|
33
|
Galburt EA. The calculation of transcript flux ratios reveals single regulatory mechanisms capable of activation and repression. Proc Natl Acad Sci U S A 2018; 115:E11604-E11613. [PMID: 30463953 PMCID: PMC6294943 DOI: 10.1073/pnas.1809454115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of transcription allows cells to adjust the rate of RNA polymerases (RNAPs) initiated in a promoter-specific manner. Classically, transcription factors are directed to a subset of promoters via the recognition of DNA sequence motifs. However, a unique class of regulators is recruited directly through interactions with RNAP. Surprisingly, these factors may still possess promoter specificity, and it has been postulated that the same kinetic mechanism leads to different regulatory outcomes depending on a promoter's basal rate constants. However, mechanistic studies of regulation typically report factor activity in terms of changes in the thermodynamics or kinetics of individual steps or states while qualitatively linking these observations to measured changes in transcript production. Here, I present online calculators that allow for the direct testing of mechanistic hypotheses by calculating the steady-state transcript flux in the presence and absence of a factor as a function of initiation rate constants. By evaluating how the flux ratio of a single kinetic mechanism varies across promoter space, quantitative insights into the potential of a mechanism to generate promoter-specific regulatory outcomes are obtained. Using these calculations, I predict that the mycobacterial transcription factor CarD is capable of repression in addition to its known role as an activator of ribosomal genes. In addition, a modification of the mechanism of the stringent response factors DksA/guanosine 5'-diphosphate 3'-diphosphate (ppGpp) is proposed based on their ability to differentially regulate transcription across promoter space. Overall, I conclude that a multifaceted kinetic mechanism is a requirement for differential regulation by this class of factors.
Collapse
Affiliation(s)
- Eric A Galburt
- Biochemistry and Molecular Biophysics, Washington University in Saint Louis, Saint Louis, MO 63108
| |
Collapse
|
34
|
Bernal-Bernal D, Abellón-Ruiz J, Iniesta AA, Pajares-Martínez E, Bastida-Martínez E, Fontes M, Padmanabhan S, Elías-Arnanz M. Multifactorial control of the expression of a CRISPR-Cas system by an extracytoplasmic function σ/anti-σ pair and a global regulatory complex. Nucleic Acids Res 2018. [PMID: 29893914 DOI: 10.1093/nar/gky475.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of CRISPR-Cas systems is a prerequisite for their defensive role against invading genetic elements. Yet, much remains unknown about how this crucial step is regulated. We describe a new mechanism controlling CRISPR-cas expression, which requires an extracytoplasmic function (ECF) σ factor (DdvS), its membrane-bound anti-σ (DdvA) and a global regulatory complex (CarD-CarG). Transcriptomic analyses revealed that the DdvS/CarD/CarG-dependent regulon comprises a type III-B CRISPR-Cas system in Myxococcus xanthus. We mapped four DdvS-driven CarD/CarG-dependent promoters, with one lying immediately upstream of the cas cluster. Consistent with direct action, DdvS and CarD-CarG localize at these promoters in vivo. The cas genes are transcribed as a polycistronic mRNA that reads through the leader into the CRISPR array, a putative σA-dependent promoter in the leader having negligible activity in vivo. Consequently, expression of the entire CRISPR-Cas system and mature CRISPR-RNA (crRNA) production is DdvS/CarD/CarG-dependent. DdvA likely uses its large C-terminal domain to sense and transduce the extracytoplasmic signal triggering CRISPR-cas expression, which we show is not starvation-induced multicellular development. An ECF-σ/anti-σ pair and a global regulatory complex provide an effective mechanism to coordinate signal-sensing with production of precursor crRNA, its processing Cas6 endoribonuclease and other Cas proteins for mature crRNA biogenesis and interference.
Collapse
Affiliation(s)
- Diego Bernal-Bernal
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Javier Abellón-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio A Iniesta
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
35
|
Chen T, Xiang X, Xu H, Zhang X, Zhou B, Yang Y, Lou Y, Yang XF. LtpA, a CdnL-type CarD regulator, is important for the enzootic cycle of the Lyme disease pathogen. Emerg Microbes Infect 2018; 7:126. [PMID: 29985409 PMCID: PMC6037790 DOI: 10.1038/s41426-018-0122-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/12/2023]
Abstract
Little is known about how Borrelia burgdorferi, the Lyme disease pathogen, adapts and survives in the tick vector. We previously identified a bacterial CarD N-terminal-like (CdnL) protein, LtpA (BB0355), in B. burgdorferi that is preferably expressed at lower temperatures, which is a surrogate condition mimicking the tick portion of the enzootic cycle of B. burgdorferi. CdnL-family proteins, an emerging class of bacterial RNAP-interacting transcription factors, are essential for the viability of Mycobacterium tuberculosis and Myxococcus xanthus. Previous attempts to inactivate ltpA in B. burgdorferi have not been successful. In this study, we report the construction of a ltpA mutant in the infectious strain of B. burgdorferi, strain B31-5A4NP1. Unlike CdnL in M. tuberculosis and M. xanthus, LtpA is dispensable for the viability of B. burgdorferi. However, the ltpA mutant exhibits a reduced growth rate and a cold-sensitive phenotype. We demonstrate that LtpA positively regulates 16S rRNA expression, which contributes to the growth defects in the ltpA mutant. The ltpA mutant remains capable of infecting mice, albeit with delayed infection. Additionally, the ltpA mutant produces markedly reduced spirochetal loads in ticks and was not able to infect mice via tick infection. Overall, LtpA represents a novel regulator in the CdnL family that has an important role in the enzootic cycle of B. burgdorferi.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Haijun Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xuechao Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Bibi Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Youyun Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yongliang Lou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
| | - X Frank Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
36
|
Mycobacterium tuberculosis CarD, an essential global transcriptional regulator forms amyloid-like fibrils. Sci Rep 2018; 8:10124. [PMID: 29973616 PMCID: PMC6031611 DOI: 10.1038/s41598-018-28290-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
CarD is an essential global transcription regulator from Mycobacterium tuberculosis (Mtb) that binds RNA polymerase and activates transcription by stabilizing the transcription initiation complex. Available crystal structures have captured two distinct, monomeric and domain-swapped homodimeric, oligomeric states of CarD. However, the actual oligomeric state of CarD in solution and its biological relevance has remained unclear. Here, we confirm the presence of the homodimeric state of CarD in solution by using synchrotron-based small-angle X-ray scattering. Furthermore, by using biochemical and biophysical experiments, in addition to mass-spectrometry, transmission electron microscopy, and confocal imaging, we show that CarD is the first soluble cytosolic protein in Mtb which displays the tendency to form amyloid-like fibrils both in vitro as well as in vivo. We demonstrate that the deletion of the fourteen N-terminal residues involved in domain-swapping hampers amyloid formation, thus, suggesting that domain-swapping is crucial in amyloidogenesis. The discovery of the amyloidogenic property of an essential cytosolic global transcription regulator, CarD, in a pathogenic bacteria will further open up new frontiers in research.
Collapse
|
37
|
Wu X, Haakonsen DL, Sanderlin AG, Liu YJ, Shen L, Zhuang N, Laub MT, Zhang Y. Structural insights into the unique mechanism of transcription activation by Caulobacter crescentus GcrA. Nucleic Acids Res 2018; 46:3245-3256. [PMID: 29514271 PMCID: PMC5887438 DOI: 10.1093/nar/gky161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/21/2018] [Indexed: 01/07/2023] Open
Abstract
Canonical bacterial transcription activators bind to non-transcribed promoter elements to increase transcription of their target genes. Here we report crystal structures of binary complexes comprising domains of Caulobacter crescentus GcrA, a noncanonical bacterial transcription factor, that support a novel mechanism for transcription activation through the preferential binding of methylated cis-regulatory elements and the promotion of open complex formation through an interaction with region 2 of the principal σ factor, σ70. We present crystal structures of the C-terminal, σ factor-interacting domain (GcrA-SID) in complex with domain 2 of σ70 (σ702), and the N-terminal, DNA-binding domain (GcrA-DBD) in complex with methylated double-stranded DNA (dsDNA). The structures reveal interactions essential for transcription activation and DNA recognition by GcrA. These structures, along with mutational analyses, support a mechanism of transcription activation in which GcrA associates with RNA polymerase (RNAP) prior to promoter binding through GcrA-SID, arming RNAP with a flexible GcrA-DBD. The RNAP-GcrA complex then binds and activates target promoters harboring a methylated GcrA binding site either upstream or downstream of the transcription start site.
Collapse
Affiliation(s)
- Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diane L Haakonsen
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allen G Sanderlin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yue J Liu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningning Zhuang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,To whom correspondence should be addressed to Yu Zhang. Tel: +1 86 21 54924351; . Correspondence may also be addressed to Michael T. Laub. Tel: +1 617 324-0418;
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,To whom correspondence should be addressed to Yu Zhang. Tel: +1 86 21 54924351; . Correspondence may also be addressed to Michael T. Laub. Tel: +1 617 324-0418;
| |
Collapse
|
38
|
Characterization of a Minimal Type of Promoter Containing the -10 Element and a Guanine at the -14 or -13 Position in Mycobacteria. J Bacteriol 2017; 199:JB.00385-17. [PMID: 28784819 DOI: 10.1128/jb.00385-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/03/2017] [Indexed: 11/20/2022] Open
Abstract
Three key promoter elements, i.e., -10, -35, and T-15G-14N, are recognized by the σ subunit of RNA polymerase. Among them, promoters with the -10 element and either -35 or T-15G-14N are known to initiate transcription efficiently, but recent systematic analyses have identified a large group of promoters in Mycobacterium tuberculosis that contain only a -10 consensus. How these promoters initiate transcription remains poorly understood. Here, we show that promoters containing the -10 element and an upstream G located at the -14 or -13 position can successfully initiate transcription in mycobacteria. Importantly, this new type of promoter is active in the absence of other promoter consensuses, suggesting that it is a minimal promoter type. Mutation of the upstream G in promoters decreased the efficiencies of their binding with RNA polymerase and their abilities to initiate transcription in both in vitro and in vivo analyses. A glutamic acid in σ region 3.0 is essential for recognizing G-14 and G-13 and is conserved in both principal and principal-like σ factors in mycobacteria, indicating that recognition of this minimal type of promoter might be a common mechanism for transcription initiation. Consistently, more than 70% of the identified promoters in M. tuberculosis contained G-14 or G-13 upstream of the conserved -10 element, and thousands of promoters in representative mycobacterial species have been predicted using the -10 consensus and G-14 or G-13 Altogether, our study presents a universal mechanism for transcription initiation from a minimal promoter in mycobacteria, which might also be applicable to other bacteria.IMPORTANCE In contrast to the detailed information for recognizing classic promoters in the model organism Escherichia coli, very little is known about how transcription is initiated in the human pathogen Mycobacterium tuberculosis In this study, we characterized a new type of promoter in mycobacteria that requires only a -10 consensus and an upstream G-14 or G-13 Residues important for recognizing the -10 element and the upstream G are conserved in σA and σB from mycobacterial species. According to such features, thousands of promoters in mycobacteria can be predicted using the -10 consensus and G-14 or G-13, which suggests that transcription from this new type of promoter might be widespread. Our findings provide insightful information for characterizing promoters in mycobacteria.
Collapse
|
39
|
Pan L, Gardner CL, Pagliai FA, Gonzalez CF, Lorca GL. Identification of the Tolfenamic Acid Binding Pocket in PrbP from Liberibacter asiaticus. Front Microbiol 2017; 8:1591. [PMID: 28878750 PMCID: PMC5572369 DOI: 10.3389/fmicb.2017.01591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
In Liberibacter asiaticus, PrbP is an important transcriptional accessory protein that was found to regulate gene expression through interactions with the RNA polymerase β-subunit and a specific sequence on the promoter region. It was found that inactivation of PrbP, using the inhibitor tolfenamic acid, resulted in a significant decrease in the overall transcriptional activity of L. asiaticus, and the suppression of L. asiaticus infection in HLB symptomatic citrus seedlings. The molecular interactions between PrbP and tolfenamic acid, however, were yet to be elucidated. In this study, we modeled the structure of PrbP and identified a ligand binding pocket, TaP, located at the interface of the predicted RNA polymerase interaction domain (N-terminus) and the DNA binding domain (C-terminus). The molecular interactions of PrbP with tolfenamic acid were predicted using in silico docking. Site-directed mutagenesis of specific amino acids was followed by electrophoresis mobility shift assays and in vitro transcription assays, where residues N107, G109, and E148 were identified as the primary amino acids involved in interactions with tolfenamic acid. These results provide insight into the binding mechanism of PrbP to a small inhibitory molecule, and a starting scaffold for the identification and development of therapeutics targeting PrbP and other homologs in the CarD_CdnL_TRCF family.
Collapse
Affiliation(s)
| | | | | | | | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of FloridaGainesville, FL, United States
| |
Collapse
|
40
|
Pérez V, Hengst M, Kurte L, Dorador C, Jeffrey WH, Wattiez R, Molina V, Matallana-Surget S. Bacterial Survival under Extreme UV Radiation: A Comparative Proteomics Study of Rhodobacter sp., Isolated from High Altitude Wetlands in Chile. Front Microbiol 2017; 8:1173. [PMID: 28694800 PMCID: PMC5483449 DOI: 10.3389/fmicb.2017.01173] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l.), permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, Rhodobacter sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation (in situ sunlight and UVB lamps), cut-off filters (Mylar, Lee filters) and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of Rhodobacter sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins.
Collapse
Affiliation(s)
- Vilma Pérez
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile.,Programa de Doctorado en Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad de AntofagastaAntofagasta, Chile
| | - Martha Hengst
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Lenka Kurte
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Cristina Dorador
- Centre for Biotechnology and BioengineeringSantiago, Chile.,Laboratory of Microbial Complexity and Functional Ecology, Institute of Antofagasta and Department of Biotechnology, Universidad de AntofagastaAntofagasta, Chile
| | - Wade H Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, PensacolaFL, United States
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute of Biosciences, University of MonsMons, Belgium
| | - Veronica Molina
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad de Playa AnchaValparaíso, Chile
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of StirlingStirling, United Kingdom
| |
Collapse
|
41
|
Sanders K, Lin CL, Smith AJ, Cronin N, Fisher G, Eftychidis V, McGlynn P, Savery NJ, Wigley DB, Dillingham MS. The structure and function of an RNA polymerase interaction domain in the PcrA/UvrD helicase. Nucleic Acids Res 2017; 45:3875-3887. [PMID: 28160601 PMCID: PMC5397179 DOI: 10.1093/nar/gkx074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 11/14/2022] Open
Abstract
The PcrA/UvrD helicase functions in multiple pathways that promote bacterial genome stability including the suppression of conflicts between replication and transcription and facilitating the repair of transcribed DNA. The reported ability of PcrA/UvrD to bind and backtrack RNA polymerase (1,2) might be relevant to these functions, but the structural basis for this activity is poorly understood. In this work, we define a minimal RNA polymerase interaction domain in PcrA, and report its crystal structure at 1.5 Å resolution. The domain adopts a Tudor-like fold that is similar to other RNA polymerase interaction domains, including that of the prototype transcription-repair coupling factor Mfd. Removal or mutation of the interaction domain reduces the ability of PcrA/UvrD to interact with and to remodel RNA polymerase complexes in vitro. The implications of this work for our understanding of the role of PcrA/UvrD at the interface of DNA replication, transcription and repair are discussed.
Collapse
Affiliation(s)
- Kelly Sanders
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chia-Liang Lin
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Abigail J. Smith
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Nora Cronin
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Gemma Fisher
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Nigel J. Savery
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Dale B. Wigley
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Mark S. Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
42
|
Caulobacter crescentus CdnL is a non-essential RNA polymerase-binding protein whose depletion impairs normal growth and rRNA transcription. Sci Rep 2017; 7:43240. [PMID: 28233804 PMCID: PMC5324124 DOI: 10.1038/srep43240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
CdnL is an essential RNA polymerase (RNAP)-binding activator of rRNA transcription in mycobacteria and myxobacteria but reportedly not in Bacillus. Whether its function and mode of action are conserved in other bacteria thus remains unclear. Because virtually all alphaproteobacteria have a CdnL homolog and none of these have been characterized, we studied the homolog (CdnLCc) of the model alphaproteobacterium Caulobacter crescentus. We show that CdnLCc is not essential for viability but that its absence or depletion causes slow growth and cell filamentation. CdnLCc is degraded in vivo in a manner dependent on its C-terminus, yet excess CdnLCc resulting from its stabilization did not adversely affect growth. We find that CdnLCc interacts with itself and with the RNAP β subunit, and localizes to at least one rRNA promoter in vivo, whose activity diminishes upon depletion of CdnLCc. Interestingly, cells expressing CdnLCc mutants unable to interact with the RNAP were cold-sensitive, suggesting that CdnLCc interaction with RNAP is especially required at lower than standard growth temperatures in C. crescentus. Our study indicates that despite limited sequence similarities and regulatory differences compared to its myco/myxobacterial homologs, CdnLCc may share similar biological functions, since it affects rRNA synthesis, probably by stabilizing open promoter-RNAP complexes.
Collapse
|
43
|
Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence. J Bacteriol 2017; 199:JB.00698-16. [PMID: 27920294 DOI: 10.1128/jb.00698-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 01/29/2023] Open
Abstract
CarD is an essential RNA polymerase (RNAP) interacting protein in Mycobacterium tuberculosis that stimulates formation of RNAP-promoter open complexes. CarD plays a complex role in M. tuberculosis growth and virulence that is not fully understood. Therefore, to gain further insight into the role of CarD in M. tuberculosis growth and virulence, we determined the effect of increasing the affinity of CarD for RNAP. Using site-directed mutagenesis guided by crystal structures of CarD bound to RNAP, we identified amino acid substitutions that increase the affinity of CarD for RNAP. Using these substitutions, we show that increasing the affinity of CarD for RNAP increases the stability of the CarD protein in M. tuberculosis In addition, we show that increasing the affinity of CarD for RNAP increases the growth rate in M. tuberculosis without affecting 16S rRNA levels. We further show that increasing the affinity of CarD for RNAP reduces M. tuberculosis virulence in a mouse model of infection despite the improved growth rate in vitro Our findings suggest that the CarD-RNAP interaction protects CarD from proteolytic degradation in M. tuberculosis, establish that growth rate and rRNA levels can be uncoupled in M. tuberculosis and demonstrate that the strength of the CarD-RNAP interaction has been finely tuned to optimize virulence. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a major global health problem. In order to develop new strategies to battle this pathogen, we must gain a better understanding of the molecular processes involved in its survival and pathogenesis. We have previously identified CarD as an essential transcriptional regulator in mycobacteria. In this study, we detail the effects of increasing the affinity of CarD for RNAP on transcriptional regulation, CarD protein stability, and virulence. These studies expand our understanding of the global transcription regulator CarD, provide insight into how CarD activity is regulated, and broaden our understanding of prokaryotic transcription.
Collapse
|
44
|
Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife 2017; 6. [PMID: 28067618 PMCID: PMC5302886 DOI: 10.7554/elife.22520] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/07/2017] [Indexed: 02/07/2023] Open
Abstract
RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the −10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD. DOI:http://dx.doi.org/10.7554/eLife.22520.001
Collapse
Affiliation(s)
| | - Allison Fay
- Immunology Program, Sloan-Kettering Institute, New York, United States
| | - Catherine Xu
- The Rockefeller University, New York, United States
| | - James M Bean
- Immunology Program, Sloan-Kettering Institute, New York, United States
| | | | - Michael S Glickman
- Immunology Program, Sloan-Kettering Institute, New York, United States.,Division of Infectious Diseases, Memorial Sloan-Kettering Cancer Center, New York, United States
| | - Seth A Darst
- The Rockefeller University, New York, United States
| | | |
Collapse
|
45
|
Deaconescu AM, Suhanovsky MM. From Mfd to TRCF and Back Again-A Perspective on Bacterial Transcription-coupled Nucleotide Excision Repair. Photochem Photobiol 2017; 93:268-279. [PMID: 27859304 PMCID: PMC5672955 DOI: 10.1111/php.12661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022]
Abstract
Photochemical and other reactions on DNA cause damage and corrupt genetic information. To counteract this damage, organisms have evolved intricate repair mechanisms that often crosstalk with other DNA-based processes such as transcription. Intriguing observations in the late 1980s and early 1990s led to the discovery of transcription-coupled repair (TCR), a subpathway of nucleotide excision repair. TCR, found in all domains of life, prioritizes for repair lesions located in the transcribed DNA strand, directly read by RNA polymerase. Here, we give a historical overview of developments in the field of bacterial TCR, starting from the pioneering work of Evelyn Witkin and Aziz Sancar, which led to the identification of the first transcription-repair coupling factor (the Mfd protein), to recent studies that have uncovered alternative TCR pathways and regulators.
Collapse
Affiliation(s)
- Alexandra M. Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Margaret M. Suhanovsky
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| |
Collapse
|
46
|
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front Mol Biosci 2016; 3:73. [PMID: 27882317 PMCID: PMC5101437 DOI: 10.3389/fmolb.2016.00073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
DNA-dependent multisubunit RNA polymerase (RNAP) is the key enzyme of gene expression and a target of regulation in all kingdoms of life. It is a complex multifunctional molecular machine which, unlike other DNA-binding proteins, engages in extensive and dynamic interactions (both specific and nonspecific) with DNA, and maintains them over a distance. These interactions are controlled by DNA sequences, DNA topology, and a host of regulatory factors. Here, we summarize key recent structural and biochemical studies that elucidate the fine details of RNAP-DNA interactions during initiation. The findings of these studies help unravel the molecular mechanisms of promoter recognition and open complex formation, initiation of transcript synthesis and promoter escape. We also discuss most current advances in the studies of drugs that specifically target RNAP-DNA interactions during transcription initiation and elongation.
Collapse
Affiliation(s)
- Jookyung Lee
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| |
Collapse
|
47
|
Abstract
During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.
Collapse
Affiliation(s)
- Yuhong Zuo
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| | - Thomas A Steitz
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.,b Howard Hughes Medical Institute , New Haven , CT , USA.,c Department of Chemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
48
|
|
49
|
Feng Y, Zhang Y, Ebright RH. Structural basis of transcription activation. Science 2016; 352:1330-3. [PMID: 27284196 DOI: 10.1126/science.aaf4417] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme.
Collapse
Affiliation(s)
- Yu Feng
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
50
|
Rammohan J, Ruiz Manzano A, Garner AL, Prusa J, Stallings CL, Galburt EA. Cooperative stabilization of Mycobacterium tuberculosis rrnAP3 promoter open complexes by RbpA and CarD. Nucleic Acids Res 2016; 44:7304-13. [PMID: 27342278 PMCID: PMC5009747 DOI: 10.1093/nar/gkw577] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/16/2016] [Indexed: 01/24/2023] Open
Abstract
The essential mycobacterial transcriptional regulators RbpA and CarD act to modulate transcription by associating to the initiation complex and increasing the flux of transcript production. Each of these factors interacts directly with the promoter DNA template and with RNA polymerase (RNAP) holoenzyme. We recently reported on the energetics of CarD-mediated open complex stabilization on the Mycobacterium tuberculosis rrnAP3 ribosomal promoter using a stopped-flow fluorescence assay. Here, we apply this approach to RbpA and show that RbpA stabilizes RNAP-promoter open complexes (RPo) via a distinct mechanism from that of CarD. Furthermore, concentration-dependent stopped-flow experiments with both factors reveal positive linkage (cooperativity) between RbpA and CarD with regard to their ability to stabilize RPo The observation of positive linkage between RbpA and CarD demonstrates that the two factors can act on the same transcription initiation complex simultaneously. Lastly, with both factors present, the kinetics of open complex formation is significantly faster than in the presence of either factor alone and approaches that of E. coli RNAP on the same promoter. This work provides a quantitative framework for the molecular mechanisms of these two essential transcription factors and the critical roles they play in the biology and pathology of mycobacteria.
Collapse
Affiliation(s)
- Jayan Rammohan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashley L Garner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|